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a b s t r a c t

The last decade witnessed a dramatic advance in cloud computing research and techniques. One of the
key challenges in this field is reducing the massive amount of energy consumption in cloud computing
data centers. Many power-aware virtual machine (VM) allocation and consolidation approaches were
proposed to reduce energy consumption efficiently. However, most of the existing efficient cloud
solutions save energy at the cost of significant performance degradation. In this paper, we propose a
strategy to calculate the optimized working utilization levels for host computers. As the performance
and power data need to be measured on real platforms, to make our design practical, we propose
a strategy named ‘‘PPRGear’’ which is based on the sampling of utilization levels with distinct
Performance-to-Power Ratios (PPR) calculated as the number of Server Side Java operations completed
during a certain time period divided by the average active power consumption in that period. In
addition, we present a framework for virtual machine allocation and migration which leverages the
PPR for various host types. By achieving the optimal balance between host utilization and energy
consumption, our framework is able to ensure that host computers run at the most power-efficient
utilization levels, i.e., the levels with the highest PPR, thus tremendously reducing energy consumption
with ignorable sacrifice of performance. Our extensive experiments with real world traces show that
compared with three baseline energy-efficient VM allocation and selection algorithms, IqrMc, MadMmt,
and ThrRs, our framework is able to reduce the energy consumption up to 69.31% for various host
computer types with fewer migration times, shutdown times, and little performance degradation for
cloud computing data centers.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has been widely adopted by businesses, in-
dividuals, and large enterprises. However, energy consumption
has become a big concern in the last decade since cloud data
centers consumed significant power and generated giant power
bills. According to the data disclosed by The New York Times in
2012, Facebook data centers consumed about 60 million watts
and Google data centers consumed as much as almost 300 million
watts [1]. In 2013, data centers in the United States collectively
consumed 91 billion kWh of electrical energy and generated 97
million metric tons of carbon dioxide (CO2) [2]. In 2014, more
than 2% of the United State’s electricity usage was consumed
by data centers [3]. Furthermore, by 2020, the annual electricity
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usage in the United States is expected to be as much as 140
billion kWh which is the output of about 50 power plants [4].
The carbon dioxide emission generated by Information and Com-
munication Technology (ICT) is expected to exceed 1.4 billion
metric tons. It is estimated that data centers are responsible for
about 18% of the total energy consumed by all ICT systems in
the world [5]. Therefore, many energy-efficient approaches have
been explored at facility level, in cooling systems [6,7], in data
center network [8], and by using computing resource allocation
strategies. Among those methods, the computing resource allo-
cation is considered as the most achievable and cost-effective
approach since it does not require any hardware modifications
or upgrades. Virtualization is a key technology to achieve en-
ergy efficiency in data centers. VMs can be created, deleted,
and migrated among host computers depending on power-aware
decisions [9]. Energy-efficient VM management has been ex-
plored in task scheduling [10], workload consolidation [11,12],
temperature-aware capping [13], request batching [14], local or
remote clouds choosing [15], mobile service selection [16], etc.
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Gelenbe et al. showed that energy consumption in ICT is
related to workload, and concluded that the optimal energy con-
sumption and processing time trade-off could be achieved by
tuning workloads in computer systems [5]. Their work also in-
dicated that computing systems should turn on more servers
when the workload is sufficiently high in order to achieve energy
efficiency and acceptable levels of Quality of Service (QoS) [17].

To the best of our knowledge, our work is the first to leverage
the Performance-to-Power Ratio (PPR) of computing nodes in VM
allocation and migration to achieve the optimal balance between
host utilization and energy consumption. Performance-to-Power
Ratio is calculated as the number of Server Side Java operations,
or ssj_ops, completed during a certain time period divided by
the average active power consumption in that period. Most of
the current VM placement and migration policies are based on
primitive system characteristics like power, utilization, network
bandwidth, or storage space. However, in this paper, we propose
an energy-efficient VM allocation and migration strategy based
on PPR which is not a primitive characteristic of host computers.
Our proposed framework is able to dynamically allocate VMs
to and migrate VMs among hosts so that host computers can
operate at the most power-efficient utilization levels, i.e., at the
utilization level with the highest PPR. Specifically, this paper has
the following contributions:

• We propose a novel VM allocation and migration framework
which allocates and migrates virtual machines in clouds
based on host performance-to-power ratios. Under this
framework, host computers run at their optimal or near-
optimal utilization levels so that the energy consumption
can be significantly reduced without much sacrifice of
cloud-end computation performance.
• We propose the exact and approximate methods to deter-

mine the ranges of gears for a specific host type. Thanks to
our sampling strategy, the proposed approximate method is
able to efficiently derive the range of each gear and estimate
the whole system energy cost. Without loss of generality,
in our verification experiments, we assume that each host
computer maintains 11 gear levels (from gear 0 to gear 10)
that corresponds to distinct utilization levels (from 0%, 10%,
. . . to 100%).
• We develop the VM allocation and migration modules under

our proposed PPRGear framework based on the calculation
of the Performance-to-Power Ratio (PPR) on host computers.
These two modules have been designed seamlessly to trig-
ger virtual machine allocation and migration automatically
when a host is overutilized or underutilized in order to
achieve the optimal balance between host utilization and
energy consumption.
• Our extensive experiments on CloudSim [18] with real-

world traces show that compared with ThrRs, MadMmt, and
IqrMc [19], our framework is able to reduce the energy
consumption significantly for various host computer types.
More importantly, the SLA violation rate of our framework is
almost the same as that of Dynamic Voltage and Frequency
Scaling (DVFS), indicating that our framework results in
ignorable performance degradation.

In our design, each host computer maintains 11 gear levels (from
gear 0 to gear 10) that correspond to distinct utilization levels
(from 0%, 10%, . . . to 100%). The gear with the highest PPR is
chosen as the best gear . The top n gears with the highest PPRs
are chosen as preferred gears. When the current working gear
of a host is not in the range of the preferred gears, the cur-
rent host is considered as either overutilized or underutilized.
Before executing any tasks energy-efficiently, we evaluate the

characteristics of computing node at different utilization levels.
This evaluation finds the best gear with the highest PPR and the
n preferred gears with the n highest PPR values. By allocating
and migrating VMs in clouds, we aim to keep computing nodes
working at the best gears. When a computing node is working
at a gear higher than any preferred gears, the computing node
is considered overutilized. When a computing node is working
at a gear lower than any preferred gears, the computing node is
considered underutilized. If a computing node is overutilized, one
or multiple VM(s) in this host will be selected and then migrated
out. If a computing node is underutilized, the cloud will either
migrate VMs from other hosts to this host or migrate out all VMs
on this host then shutdown it to save energy consumption.

The remaining part of the paper is organized as follows:
Section 2 introduces the motivation and observation, Section 3
presents the preferred utilization and the energy model, Section 4
presents the overview of our approach, Section 5 details the al-
gorithmic design, Section 6 compares PPRGear with the baselines
and shows our simulation results, Section 7 presents the related
work, Section 8 concludes the paper.

2. Our observations

Our paper is focused on energy conservation by improving the
effectiveness of energy usage, i.e., accomplishing more tasks with
less energy, rather than simply reducing the energy consumption,
which is vital for heavy workloads.

Standard Performance and Evaluation Corporation (SPEC) de-
veloped an energy benchmark suite SPECpower_ssj2008 [20]. A
number of corporations have conducted experiments on their
host computers by using SPECpower_ssj2008 and uploaded ex-
perimental results to the SPEC website. Performance-to-Power
Ratio, or PPR, is calculated as the number of Server Side Java
operations(ssj_ops) completed during a certain time period di-
vided by the average active power consumption in that period.
PPR indicates the effectiveness of power usage on a computing
node.

The SPECpower_ssj2008 workload is controlled by system
throughput and varies on different computing platforms. For
instance, if the current utilization hits 100% when workload
is n ssj_ops instructions per second, the 20% utilization’s cor-
responding workload will be 0.2 × n instructions per second.
Power consumption data of the current computing platform will
be collected under workloads 0, 0.1 × n, 0.2 × n, . . . , until n
instructions per second, which represent the utilization levels
from 0%, 10%, 20%, . . . , until 100%.

Although a few factors, including CPU, memory, hard drives,
NIC, and etc., may contribute to the total energy consumption of
a computing system, Google’s recent research [21] reveals that
even by using CPU utilization only, we are able to estimate the
power cost of the whole system very accurately. This conclu-
sion was drawn by measuring the total energy cost by running
Google’s most representative benchmarks and some other micro-
benchmarks with a variety of loads. Therefore, in our study, we
mainly base our discussion on SPECPower benchmark and we
expect that the research findings we obtained also generalize to
other types of workloads with different characteristics in terms
of CPU, memory, and I/O consumption.

Fig. 1 presents the power consumption trends and PPR trends
while CPU utilization increases in four different host models of
Fujitsu Primergy RX1330 M1, Inspur NF5280M4, Dell PowerEdge
R820, and IBM NeXtScale nx360 M4. According to DVFS, power
consumption of CPU increases exponentially while CPU utilization
increases linearly. However, the power consumption of a host
computer includes CPUs, memory, secondary storage, network
adaptors, etc. Möbius states that power consumption model of
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Fig. 1. PPR and power consumption with increase in CPU utilization.

Table 1
Host models [23–26].
Model CPU Clock Cores RAM Test date

Fujitsu Primergy Intel Xeon E3-1275 2.5 GHz 4 16 GB Jul 30
RX1330 M1 8 MB L3 Cache 2014

Inspur Intel Xeon E5-2699 v3 2.3 GHz 18 64 GB Aug 29
NF5280M4 45 MB L3 Cache 2014

Dell PowerEdge Intel Xeon E5-4650 v2 2.4 GHz 40 48 GB Apr 1
R820 25 MB L3 Cache 2014

IBM NeXtScale Intel Xeon E5-2660 v2 2.2 GHz 20 24 GB Mar 17
nx360 M4 25 MB L3 Cache 2014

a host computer solely employs CPU utilization metrics [22].
According to the data collected by SPECpower_ssj2008 in Fig. 1,
we observe that the power consumption of a host computer
increases linearly while CPU utilization increases linearly even
though the four host computers have different configurations as
presented in Table 1.

Fig. 1(a) presents the power consumption and PPR of host
model Fujitsu Primergy RX1330 M1 on utilization from 0 to 1. It
is expected that the power consumption increases almost linearly
while CPU utilization increases. However, the highest PPR appears
at utilization level 0.7, or 70%. In other words, the computing host
works the most energy-efficiently at CPU utilization 0.7. Likewise,
Figs. 1(b), 1(c), 1(d) present similar PPR trends of host models In-
spur NF5280M4, Dell PowerEdge R820, and IBM NeXtScale nx360
M4. Therefore, instead of trying to reduce power by simply de-
creasing utilization, PPRGear attempts to keep computing nodes
working under the highest PPR as long as possible in order to
balance utilization and power consumption.

3. Problem formulation

The objective of our work is to achieve the optimal balance
between the host utilization and the energy consumption for
cloud data centers. Inspired by the aforementioned observations,

our proposed mechanism achieves the goal by allocating and
migrating VMs so that computing nodes are able to operate at
their best gears, i.e., the utilization levels that will result in the
highest performance-to-power ratios. In this section, we first
focus on the definition and calculation of the best gear and then
we present the energy consumption model of PPRGear.

3.1. Discovery of best gear

In this subsection, we are presenting the definition of the best
gear using mathematical models and definition. Here the gear
with the highest PPR value is considered the best gear, or to
say, the most energy-efficient gear. The best gear is named as
G and the utilization range is represented as [α, α + I]. In our
proposed PPRGear framework, when a new host type is added
into the cloud, its power consumption pattern at different CPU
utilization levels must be learned in advance to identify its best
gear to facilitate the subsequent VM allocation and migration.

Definition 1. The Gear G of a computing node is a certain
utilization level [x, y] where 0 ≤ x ≤ y ≤ 1. If the current
utilization rate of a host is in the range of x to y, we say that
this host is operating at gear G.

Definition 2. The Best Gear of a computing node is a gear that
yields the highest performance-to-power ratio of that computing
node, which can be represented as [α, α+I]. Here I is a predefined
range for each gear and α can be calculated using Eq. (1), where
the function fPPR(u) describes the performance-to-power ratio at
the utilization rate u (0 ≤ u ≤ 1).

α =argmax
∫ α+I

α

fPPR(u) du,

subject to 0 ≤ α ≤ α + I ≤ 1
(1)

The PPR and power values need to be calculated and collected
by conducting experiments. Since it is computationally expensive
to identify the PPR and power values at all possible utilization
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levels, the best gear can be approximated efficiently by calcu-
lating the PPR values at a certain number of utilization levels.
In Fig. 1, the function fPPR(u) for each host type is estimated
by measuring the performance-to-power ratios at 11 uniformly
distributed utilization rates, i.e., from 0, 0.1, 0.2, 0.3, . . . , to 1 (here
we assume that the interval for each utilization level is 0.1). Take
Fig. 1(a) as an example, according to Fig. 1(a), the best gear of
a Fujitsu PRIMERGY RX1330 M1 machine should be [0.65, 0.75],
which is the gear with the highest performance-to-power ratio
on this machine.

Since the PPR and power values are only measured at 11
utilization levels, it is important to accurately calculate the power
values at each utilization level. fPower(u) can also be approximated
efficiently by sampling over utilization levels. In Fig. 1, fPower(u) is
calculated by (1) sampling at the utilization rates from 0, 0.1, 0.2,
0.3, . . . , to 1 and (2) applying linear interpolation to every two
adjacent sampled results. Formally, given any utilization rate u
(Ul ≤ u ≤ Uh), the power consumption at u can be estimated
efficiently using Eq. (2), where Ph means the power consumption
at Uh and Pl is the power consumption at Ul.

fPower (u) =
Ph − Pl
Uh − Ul

U −
PhUl − PlUh

Uh − Ul
(2)

3.2. Energy cost calculation

Energy consumption at a host depends on the time and the
power. Since the power can be represented as a function of
utilization rate, as shown in Fig. 1, we may formulate the energy
consumption Ehi in the host hi in terms of utilization rate and
time using Eq. (3). In Eq. (3), thi is the total working time of host
i, fUtilization(t) describes how its utilization rate changes over time
t , and fPower(u) means the power at the utilization rate u.

Ehi =
∫ thi

0
f hiPower (f

hi
Utilization(t)) dt (3)

Suppose we use N to represent the total number of the hosts in
a cloud computing system, the total energy cost EAll in the cloud
computing system can be estimated using Eq. (4).

EAll =
N∑
i=1

∫ thi

0
f hiPower (f

hi
Utilization(t)) dt (4)

4. System design

Most of current VM placement and migration policies are
based on the factors that are primitive system characteristics like
power, utilization, network bandwidth, and storage space. We
propose an energy-efficient VM allocation and migration strategy
based on Performance-to-Power Ratio (PPR) which is not a prim-
itive characteristic of host computers. Before executing any tasks
energy-efficiently, we evaluate the characteristics of computing
nodes at different utilization levels, called gears. The evaluation
indicates the best gear with the highest PPR and the preferred
gears with the highest n PPR values. By allocating and migrating
VMs in clouds, we attempt to keep computing nodes working
at the best gear (or as close as possible). When a computing
node is working at a gear that is higher than the preferred gears,
the computing node is overutilized; when a computing node is
working at a gear lower than the preferred gears, the computing
node is underutilized. If a computing node is overutilized due to
VM utilization increasing, one or multiple VM(s) will be selected
then migrated out. If a computing node is underutilized, the
cloud will try to migrate out all VMs on the node then shut the
computing node down. This scheme is called PPRGear.

Fig. 2. An illustration of gear selection (3 preferred gears and 1 best gear).

Before a cloud can be utilized energy-efficiently, each com-
puting node in the cloud hardware platform should be evaluated
in the following steps to find out the best gear and n preferred
gears. First, the performance and the power data is collected by
using benchmark suit SPECpower_ssj2008 [20]. In this paper, the
performance and the power data was collected by the following
vendors: Fujitsu, Inspur, Dell, and IBM. The Table 1 presents the
configurations of the hosts used in later experiments. Power is
the average power consumption in a certain time interval which
is 300 s in this paper. We define performance as ssj_ops over time.
Second, PPR is calculated simply by performance over power in
our experiments for the eleven gears (n = 11) on CPU utilization
from 0%, 10% ... 100%. Third, sort gears on PPR in descending order
to find the best gear and n preferred gears.

Fig. 1 indicates that although power consumption increases
linearly while utilization increases, the highest PPR values may
not appear with the highest power consumption values. There-
fore, even though the host computer offers the highest per-
formance at the highest utilization, the CPU is not working as
efficiently as working under a lower utilization due to the lower
PPR. Based on PPR values, PPRGear decides how to allocate new
VMs and how to migrate running VMs.

Fig. 2 demonstrates an example of gear selection for the four
host types. In this example, the number of preferred gears is
set to 3. According to the PPR values in Fig. 1, the best gear is
selected from each group and is marked in white; three preferred
gears (including the best gear) are selected and are marked in
light gray; all gears higher than preferred gears are selected
as overutilized gears and are marked in dark gray; all gears
lower than preferred gears are selected as underutilized gears
and are marked in dot pattern. Each gear has a corresponding
CPU utilization. For example, gear 7 means the current host
computer is working at CPU utilization 70%. PPRGear attempts
to keep each host working at the preferred gears as long as
possible. If the utilization goes below or over the preferred gears,
PPRGear will conduct migrations to migrate VMs either out or
in. When PPRGear is migrating VMs to a destination host com-
puter, PPRGear attempts to allocate VMs in order to make the
destination host working at the CPU utilization level which is the
closest to that of the best gear. Fig. 2 indicates that different host
models may have different selections for the best and preferred
gears based on PPR values. Therefore, allocation and migration
may vary due to different gear selections.
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Fig. 3. A possible snapshot of VM allocation and migration (3 machines (Hosts 5, 6, and 7) underutilized, 1 (Host 1) overutilized, 1 (Host 4) at the best gear, 2
(Hosts 2 and 3) at preferred gears). For the sake of presentation, we assume every VM consumes the same amount of host utilization—10%. At this point of time,
Algorithm 3 will select two VMs on Host 1 to migrate out to Host 6, which is selected by Algorithm 2 as the destination host. That will reduce Host 1’s utilization
to the Best Gear range and will make Host 6 closer to its Best Gear. Afterwards, all VMs on Host 5 and Host 7 will migrate out by Algorithm 4 to Host 6. At last,
Host 5 and 7 will be shut down due to no VMs on them.

Notice that in Fig. 2, three preferred gears of Dell Power Edge
R820 are the exact three gears with the highest utilizations.
Therefore, there are no overutilized gears for this host type. But
migrations will still be conducted if current VMs require more
MIPS that exceeds current host’s capability. And it is unlikely to
have VMs migrate in since a host would be the last choice of
migration destination when it is working at the best gear.

Fig. 3 serves as an example of the VM allocation and migration
strategy based on PPRGear framework. Assuming there are 7
hosts in the cloud, Host 1 is overutilized; Host 5, 6, and 7 are
underutilized; Host 2 and 3 are working at preferred gears; and
Host 4 is working at the best gear. In this case, Host 1 needs to
migrate VMs out to lower utilization, Host 5, 6, and 7 need to
either migrate VMs in, to increase utilization, or migrate all VMs
out to shut down. Underutilized hosts and the hosts at preferred
gears are the possible destination hosts.

5. Algorithmic design

In this section, we first provide our algorithmic design of
PPRGear and then elaborate on its two modules: VM Allocation
and VM Migration.

5.1. Overall design of PPRGear

Algorithm 1 presents the overall algorithm of
PPRGear. PPRGear is a daemon process that monitors the cloud
computing environment and balances the workload among hosts
by conducting migration based on PPR.

5.2. VM allocation

VM Allocation algorithm is used to place a VM. The VM to
be placed is either newly created or migrated from an overuti-
lized host or an underutilized host. VM allocation chooses an
appropriate destination host with both computing capability and
power consumption concerns. Algorithm 2 presents how PPRGear
allocates hosts for VMs. First, PPRGear traverses all hosts to collect
current CPU utilization of each host. Current CPU utilization is

Algorithm 1 PPRGear Overall Algorithm

1: while True do
2: run Algorithm 3: VM Selection on Overutilized Hosts for

Migration
3: if Hover is not empty then
4: run Algorithm 2: VM Placement Algorithm
5: end if
6: run Algorithm 4: VM Selection on Underutilized Hosts for

Migration
7: end while

summed by all the VMs running on or migrating to the host. Sec-
ond, PPRGear skips all the overutilized hosts even though some
of them may still have enough resource to run the VM due to
energy-efficient concerns. Third, PPRGear calculates the expected
host utilization by summing the current host utilization and the
predicted utilization of the VM on the host. If the expected host
CPU utilization is at the best gear or at the CPU utilization closest
to the best gear (3% tolerance), the current host is considered to
be chosen as the destination host for the VM. If no hosts’ expected
utilization is within the tolerable range, then PPRGear attempts to
find the host whose expected utilization is the closest to the best
gear utilization.

5.3. VM migration

VMs migrate to other hosts when the current host is either
overutilized or underutilized. VMs on overutilized and underuti-
lized hosts will be selected for migration with power consump-
tion concerns. Then VM Allocation algorithm will be in charge
of allocating appropriate hosts for the selected VMs. Therefore,
VM Migration contains three steps: 1. Detect overutilized hosts
and underutilized hosts; 2. Select VMs for migration; 3. Choose
appropriate destination hosts. When VMs are migrating from
either underutilized or overutilized hosts, PPRGear considers the
underutilized hosts as possible destination hosts first. The use of
hosts at preferred gears will be the second choice. We concluded
two cases to describe PPRGear VM Migration.
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Algorithm 2 VM Placement Algorithm

1: input: Hlist : all hosts, vm: a new virtual machine, utilization-
Diff: MAXVALUE

2: output: hchosen: the chosen destination host
3: hchosen ← null
4: for each h in Hlist do
5: utilization← 0
6: VMh ← All Virtual Machines on h
7: for each v in VMh do
8: utilization← utilization + v.utilization
9: end for

10: if utilization > highest preferred gear utilization ∨
utilization + vm.utilization > 1 then

11: continue
12: else if utilization + vm.utilization > best gear Utilization -

0.03 ∧ utilization + vm.utilization < best gear Utilization +
0.03 then

13: return h
14: else if abs(utilization + vm.utilization - best gear utilization)

< utilizationDiff ) then
15: utilizationDiff ← abs(utilization + vm.utilization - best

gear utilization)
16: hchosen ← h
17: end if
18: end for
19: return hchosen

5.3.1. Overutilized hosts detection and VM selection
The utilization on a host varies even though there is no VMs

migrate in or out. The reason is that the utilization of each VM
also varies as time goes. In other words, a host currently working
at the best gear may exceed the highest preferred gear after a
while with no VMs migrating in, and vice versa.

Algorithm 3 shows Overutilized Host Detection and VM Selec-
tion to migrate VMs out from overutilized hosts. First, PPRGear
traverses all hosts to find overutilized hosts and put them in
overutilized host list H_over . Whether a host is overutilized de-
pends on if the current host CPU utilization is higher than that
of the highest preferred gear or not. Therefore, if the number of
preferred gears is set large enough, the gear 10 (the highest gear)
may be included in the preferred gears. Then the PPRGear will
not migrate VMs for the overutilization case since there will be
no hosts to be considered as overutilized. Second, for each host h
in Hover , PPRGear puts all migratable VMs in to list VMh then sort
the list in descending order on utilization. Third, find the VM(s)
to migrate out in order to reduce the host utilization as close to
the best gear utilization as possible. Then add the VM(s) in the list
Vmigrate for migration. When Algorithm 3 finishes, Vmigrate contains
the VMs to migrate out. Then, PPRGear calls Algorithm 2 to find
appropriate destination hosts for VMs in the list Vmigrate.

5.3.2. Underutilized hosts detection and VM selection
Underutilized Hosts Detection checks whether a host’s current

utilization level is lower than that of the lowest preferred gear. If
the number of preferred gears is set large enough, PPRGear may
not be able to find any underutilized hosts for migration due to
the wide range of preferred gears.

Unlike the case of overutilized hosts, when migrating VMs
from underutilized hosts, the destination hosts, which were also
underutilized hosts, may turn in to the hosts that work at the
preferred gears. In other words, some underutilized hosts could
turn in to well utilized hosts after migrating VMs in from previous
underutilized hosts. This type of hosts will be removed from the

Algorithm 3 VM Selection on Overutilized Hosts for Migration

1: input: Hlist : all hosts
2: output: Vmigrate: selected VMs for migration
3: Hover ← φ

4: Vmigrate ← φ

5: for each h in Hlist do
6: utilization← 0
7: VMh ← All Virtual Machines on h
8: for each vm in VMh do
9: utilization← utilization + vm.utilization

10: end for
11: if utilization > utilization of highest preferred gear then
12: Hover ← h
13: end if
14: end for
15: for each h in Hover do
16: VMh ← Migratable Virtual Machines on h
17: Sort VMh in descending order on utilization
18: utilization← 0
19: V ← null
20: while h is overutilized do
21: for each vm in VMh do
22: if migrating out vm can make host utilization closer

to the best gear utilization then
23: V← vm
24: end if
25: end for
26: end while
27: Vmigrate ← V
28: end for
29: return Vmigrate

underutilized host list. Therefore, underutilized host list Hunder
needs to be updated after each VM migration operation. Further-
more, the order of underutilized hosts to migrate VMs does affect
the results since the destination hosts status may change during
migration. VM selection for underutilized hosts is simpler than
that of overutilized hosts. Once PPRGear decides to migrate VMs
from an underutilized host, all VMs will migrate out. Then the
host will be shut down after migration.

Algorithm 4 presents the algorithm to look for VMs to migrate
out from the underutilized hosts. First, if the utilization of a host
is lower than the lowest preferred gear utilization, then the host
is put in the list Hunder . Second, PPRGear sorts Hunder in ascending
order on utilization. Last, PPRGear migrates all VMs out from
the host with the lowest utilization. Destination hosts utilization
must be updated before migrating VMs from next host in Hunder .

5.3.3. Complexity analysis
Suppose N and M represent the total number of VMs and

hosts, respectively, in the cloud and ni is the number of VMs
on the ith host. The time complexity of Algorithm 2, VM Place-
ment Algorithm, is O(

∑M
i=1 ni) = O(N) since the Algorithm 2

traverses all VMs on each host. Time complexity of Algorithm
3 is O(

∑M
i=1 ni) + O(

∑M
i=1 nilog2(ni)) + O(

∑M ′
i=1 ni) = O(Nlog2(N))

where M ′ is the number of overutilized hosts. Time complexity of
Algorithm 4 is O(

∑M
i=1 ni)+O(M ′′log2M ′′)+O(M ′′) = O(Nlog2(N))

where M ′′ denotes the number of underutilized hosts. Note that
since the utilization monitoring and sorting jobs can be done
locally on hosts, the efficiency of the proposed algorithms can be
further improved by distributing the utilization monitoring job to
host computers.
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Algorithm 4 VM Selection on Underutilized Hosts for Migration

1: input: Hlist : all hosts
2: output: null
3: Hunder ← φ

4: Vmigrate ← φ

5: for each h in Hlist do
6: utilization← 0
7: VMh ← All Virtual Machines on h
8: for each vm in VMh do
9: utilization← utilization + vm.utilization

10: end for
11: if utilization < utilization of lowest preferred gear then
12: Hunder ←

13: end if
14: end for
15: Sort Hunder in ascending order on utilization
16: for each h in Hunder do
17: if h is underutilized then
18: Vmigrate ← all virtual machines on h
19: end if
20: call Algorithm 2 to allocate Vmigrate
21: end for

6. Performance evaluation

To demonstrate the performance and energy-efficiency of
PPRGear, we evaluated the performance of PPRGear on four
different host models under different workloads in terms of en-
ergy consumption, Service-Level Agreement (SLA) violation, shut-
down times, and migration times by using CloudSim 3.0.3 [18].
CloudSim 3.0.3 is an event-driven simulator that is used to sim-
ulate infrastructures and application services in cloud computing
with customizable policies of virtual machine selection, alloca-
tion, migration, and provisioning on configurable host models.
We implemented PPRGear in CloudSim 3.0.3 with real-world host
models.

Based on our simulation results, compared with energy-
efficient VM migration baseline algorithms ThrRs, MadMmt, and
IqrMc [19], PPRGear reduced energy consumption up to 69.31%
with fewer migration and shutdown times. Compared with DVFS,
a non-migration power efficient strategy for processors, PPRGear
significantly reduced power consumption up to 95.3% under light
workloads with little Service-Level Agreement violation. When
the workload was extremely high, the SLA violation of PPRGear
was almost the same as that of baseline algorithms and DVFS.

6.1. Experimental setup

We simulated a cloud computing center with 800 homoge-
neous host computers in four different models: Fujitsu Primergy
RX1330 M1, Inspur NF5280M4, Dell PowerEdge R820, and IBM
NeXtScale nx360 M4. Table 1 presents the specifications of four
models among which Inspur NF5280M4 is equipped with the
largest capacity of memory (64 GB), while Dell PowerEdge R820
is equipped with the most computing cores (40). The power
consumption and performance data of all four host models were
collected in the middle of year 2014 by host manufactures using
benchmark suite SPEC power_ssj2008 [20].

We assume that all virtual machines are configured in the
same specification as presented in Table 2. VM’s MIPS are mapped
from host computers’ CPU frequency to quantitatively evaluate
CPU utilization [19]. MIPS, processing element amount, memory,
and VM size decide the sources requested from the host com-
puter. Bandwidth and VM size decide the VM migration cost as

Table 2
Virtual machine configuration in our experiments.
Configuration parameters Default value

MIPS 2000
Processing element 2
Memory 1 GB
Bandwidth 100 Mbit/s
VM size 2.5 GB
VM CPU utilization 0%–100%
Workload coefficient 0.1x–4x

Migration_time = VM_size/Bandwidth. Notice that although the
default MIPS of each VM is 2000, the actual amount of requested
MIPS varies depending on the utilization specified in the work-
load. The actual MIPS required by a VM in a time interval can be
estimated as 2000× utilization and varies over time.

Note that the performance degradation and service down-
time were also considered in our experiments in CloudSim by
adding 10% of the CPU utilization. Voorsluys et al. found that
both performance degradation and downtime depend on appli-
cation behaviors [27]. When the cloud is running applications
with variable workloads, the average performance degradation
and downtime can be approximately estimated as 10% of the CPU
utilization [19].

6.2. Workloads

We adopted PlanetLab [28] workload in our study. In order
to investigate the performance of PPRGear, all VMs were evenly
allocated to 800 host computers at the beginning of our exper-
iments. Then, PPRGear starts to manage VMs by migrating VMs
and allocating host computer resource. The PlanetLab workload in
our experiments is a list of VM CPU utilization percentage values
collected on March 3rd, 2011. Each workload is 24-hour long and
the interval of utilization measurement is 300 s.

In addition to using the original PlanetLab workload, we varied
the volume of the original workload from 10% (0.1×) to 400%
(4×) to investigate its impact on our proposed framework.

6.3. The baseline algorithms

In order to investigate the energy-efficiency improvement and
performance impact, PPRGear is compared with three energy-
efficient VM allocation and selection algorithms: IqrMc, MadMmt,
and ThrRs [19] which use different policies to select hosts and
VMs for migration. Each of those three algorithms has two core
steps. First step is deciding whether the current host is overuti-
lized based on utilization threshold. The utilization threshold is
either configured as a constant value before experiments or is
generated dynamically based on historical utilization information.
Second, the algorithm selects an appropriate VM from a host
for migration if the host is currently overutilized. VM selection
algorithm will repeat until the host is not overutilized.

• Static Threshold VM allocation policy and Random Selec-
tion VM selection policy, or ThrRs, uses a static utilization
threshold instead of generating one in real time. In our
experiments, utilization threshold is constantly set to 0.8.
When a host is overutilized, ThrRs randomly selects a VM
for migration regardless of the VM’s performance impact on
the host. ThrRs is a primitive energy-efficient VM allocation
and selection algorithm.
• Median Absolute Deviation VM allocation policy and Mini-

mum Migration Time VM selection policy, or MadMmt, uses
a robust statistic Median Absolute Deviation to calculate
historical data’s median for utilization threshold. According
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to this dynamic utilization threshold, if a host is overuti-
lized, MadMmt selects a VM that takes the least time for
migration.
• Interquartile Range VM allocation policy and Maximum Cor-

relation VM selection policy, or IqrMc, uses another ro-
bust statistic Interquartile Range to analyze historical uti-
lization. IqrMc selects the most correlated VM to CPU for
migration [29].

Note that we also compared PPRGear with a popular non-VM-
Migration energy-efficient algorithm DVFS (Dynamic Voltage and
Frequency Scaling) [30] for SLA violations. Since DVFS is designed
to adapt to CPU utilization, it does not delay execution. Hence,
DVFS was used as the performance baseline in our experiments
for SLA violations.

6.4. Preferred number of gears and best gear

In Section 3, we present exact and efficient calculations for
PPRGear. Although exact calculation is the most accurate way
to apply PPRGear, it requires a large amount of work to collect
performance and power data and conclude them as a function
corresponding to utilization. Therefore, we use efficient calcula-
tion in our experiments. According to the experimental results,
the efficient calculation based PPRGear performs effectively on
both energy and SLA. And it is only required to collect perfor-
mance and power data for 11 utilization levels on each type of
host computer.

The preferred gears are the top n highest PPR gears. Number of
preferred gears is used to judge whether a host is overutilized or
underutilized. If current host utilization is higher than the highest
utilization of preferred gears, then the current host is overutilized.
If the current host utilization is lower than the lowest utilization
of preferred gears, then the current host is underutilized.

The best gear is the gear with the highest PPR value. In other
words, the host computer achieves the most power-efficient uti-
lization level while working at the best gear. Best gear is used
when migrating and allocating VMs. When migrating VMs from
other hosts or allocating newly created VMs, PPRGear attempts to
make the targeted host computing work as close to the best gear
utilization as possible.

Note that there is always one best gear in one host computer
and the best gear is also one of the preferred gears. The number
of preferred gears is set by cloud administrators and has sig-
nificant performance impact on PPRGear. When the number of
preferred gears is set small, the cloud works energy-efficiently
but it could also lead to highly frequent VM migrations and host
shutdowns which will be harmful to host computers’ reliability.
If the number of preferred gears is too large, PPRGear does not
work energy-efficiently since there are too many preferred gears.
Therefore, overutilized hosts and underutilized hosts will be very
rare and few migrations will be triggered in PPRGear.

6.5. Impact of workloads

6.5.1. Impact of workloads on energy consumption
Fig. 4 presents the energy consumption of various host types

under different workloads. Host models of Figs. 4(a), 4(b), 4(c),
4(d) are Fujitsu Primergy RX1330 M1, Inspur NF5280M4, Dell
PowerEdge R820, and IBM NeXtScale nx360 M4, respectively. The
corresponding performance-to-power ratios and average active
power are presented in Table 3. Server Side Java Operations
(ssj_ops) are presented in Table 4. There are various metrics that
could be used to assess a host computer’s performance. Since both
Hadoop and Spark depend on Java Virtual Machine, we use Server
Side Java Operations to evaluate a host computer’s computing
performance in this paper.

In our experiments, a host’s utilization is calculated based on
all VMs allocated on the host. VM utilization is stated in workload
trace file with 300 s interval between each measurement. In
order to test PPRGear under different workloads, the original VM
utilization is also manipulated by multiplying a control factor
between 0.1 to 4 in experiments. In all four subfigures of Fig. 4,
energy consumption increases as workload increases.

According to Figs. 4(a), 4(b), 4(c), and 4(d), the two PPRGear
algorithms, with number of preferred gears 1 and 2, consume
significantly less energy. The figures also indicate that PPRGear’s
energy conservation rate is higher when workload is lower. When
workload is extremely high (4x), the total energy consumption
of PPRGear is very close to the other algorithms. When work-
load increases, the energy conservation rate decreases in all host
models.

6.5.2. Impact of workloads on SLA
Service-Level Agreement (SLA) describes the Quality of Service

(QoS) of cloud services between cloud service providers and
customers. In other words, SLA is the promise made by cloud
service providers about the computing resource offered to cus-
tomers. If SLA is violated, cloud service providers usually refund
some money back to customers. Our method was proposed as
a live migration strategy and therefore we use SLA violation to
quantitatively measure the negative impact on performance.

In our experiments, we adopted CloudSim’s default SLA [18].
We use overall SLA violation rate, or SLAVRoverall, to evaluate the
quality of the services provided at the cloud end, which can be
calculated using Eq. (5). In Eq. (5), mr

i means the MIPS requested
by Virtual Machine i during the whole process while ma

i denotes
the total MIPS that are actually allocated to Virtual Machine
i, assuming that there are n virtual machines in total. Eq. (6)
indicates that the violation rate is positive when mr

i is greater
than ma

i since the SLA is not met due to lack of available MIPS
on the host computer; and the violation rate is zero as long as
ma

i is greater or equal to mr
i .

SLAVRoverall =

∑n
i=1 d(i)∑n
i=1 m

r
i

(5)

where

d(i) =
{
mr

i −ma
i if mr

i > ma
i

0 otherwise (6)

As shown in Fig. 5, when the workload exceeded the capacity
of the cloud computing system (i.e., the workload was higher than
1x), the performance of all the investigated methods started to
deteriorate accordingly in terms of SLA violation.

According to Figs. 5(a), 5(b), 5(c), and 5(d), the SLAs of PPRGear
were either very close or almost the same as that of ThrRs, Mad-
Mmt, IqrMc, and DVFS under different workloads and number of
preferred gears. In other words, PPRGear does not compromise
system performance or capacity of the cloud for higher energy
efficiency.

6.5.3. Impact of workloads on migration times
When workload gets heavier, a smaller number of preferred

gears may cause more migration and shutdown times. Fig. 7
presents the impact of workloads on migration for all four types
of hosts. Fig. 7(a) shows that PPRGear (the numbers of preferred
gears is 1 and 2, respectively) causes fewer migration times
compared with other baseline algorithms when workload is less
than or equal to 1.5x. Yet, when the workload is higher, the
migration times of PPRGear will surpass baseline algorithms in
Fig. 7(a) (Fujitsu Primergy RX1330 M1). However, Fig. 7(c) (Dell
PowerEdge R820) shows that the number of migration is always
less when using PPRGear. The reason is that Dell PowerEdge
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Table 3
Performance-to-power ratio of gears [23–26].
Gear level: Gear0 Gear1 Gear2 Gear3 Gear4 Gear5 Gear6 Gear7 Gear8 Gear9 Gear10

Utilization: 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Host model Performance-to-power ratio values

Fujitsu Primergy RX1330 M1 0 2425 4281 5857 6991 7821 8467 8540 8410 8231 8041
Inspur NF5280M4 0 3796 6295 8063 9385 10590 11519 11536 11570 11198 10441
Dell PowerEdge R820 0 2599 4538 5995 7130 8050 8705 9194 9533 10013 9372
IBM NeXtScale nx360 M4 0 2589 4445 5858 6965 7849 8477 8952 9070 9012 8731

Host model Average active power (Watt)

Fujitsu Primergy RX1330 M1 13.8 20.8 23.9 26.3 29.1 32.6 36.2 42.0 48.6 55.9 63.7
Inspur NF5280M4 44.4 83.3 101 118 135 146 161 190 218 255 301
Dell PowerEdge R820 71.8 135 156 176 198 219 243 269 297 318 374
IBM NeXtScale nx360 M4 497 814 947 1079 1211 1344 1493 1648 1863 2108 2414

Fig. 4. Energy consumption of various host types under varying workloads.

R820 has 40 cores which is 10 times more than Fujitsu Primergy
RX1330 M1’s 4 cores. Therefore, the higher capacity of the host
computer, the heavier workload it is able to handle with fewer
migrations.

It may seem at the first glance that having a higher number
of the preferred gears will result in less migration. However, it is
not always the case. The actual number of migration occurrences
can be also affected by the workload. For example, given a very
high workload, having fewer preferred gears may lead to more
overutilized hosts. That will make it more difficult to locate an
underutilized host as the target machine to receive the ‘‘migrate-
out’’ VMs. If an available host cannot be found, the migration does
not occur actually. In Fig. 7, under a high workload, setting the
number of the preferred gears to 1 resulted in most of hosts being
overutilized. Consequently, fewer migrations can be made, due to
the failure of finding a target host for a migration attempt.

6.5.4. Impact of workloads on shutdown times
Fig. 8 presents the numbers of shutdowns for all four hosts. In

our experiments, when a host is working at utilization level 0%,

we say it is shutdown. Similarly to the number of migration, the
fewer cores of a host computer, the more sensitive the host is to
workloads. In most cases, PPRGear performs with fewer or similar
number of shutdowns.

6.6. Impact of the number of preferred gears

Fig. 6 show the impact of number of preferred gears on en-
ergy consumption, migration and shutdown times under various
workloads. Figs. 6(a), 6(d), and 6(g) show the impact of the num-
ber of preferred gears on energy cost under workloads of 0.5x, 1x,
and 2x the original workload, respectively. Energy conservation
rate is significant when the number of preferred gears is small.
When the number of preferred gears is large enough, the energy
consumption will be the same as that of DVFS. The reason is
that when the number of preferred gears is set to be large, the
host computer will be mostly working at the utilization levels of
preferred gears. The migration times will reduce, and so will the
effectiveness of PPRGear. PRRGear also uses DVFS on individual
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Fig. 5. SLA violation rate.

host computers. Therefore, if the number of preferred gears is
large enough, PPRGear will work exactly the same as DVFS since
DVFS does not migrate virtual machines.

Figs. 6(b), 6(e), and 6(h) show the impact of the number of
preferred gears on the number of migrations under workloads of
0.5x, 1x, and 2x the original workload, respectively. They indicate
that when the number of preferred gears increases, the number of
migrations reduces correspondingly in most of the cases because
the host computer allows a larger number of preferred gears. But
the workload pattern may also affect migration, so occasionally,
the number of migration may be higher when the number of
preferred gears is higher (In Fig. 6(b), the number of preferred
gears is 2).

Figs. 6(c), 6(f), and 6(i) show the impact of the number of
preferred gears on the number of migrations under workloads
of 0.5x, 1x, and 2x the original workload, respectively. The num-
ber of shutdowns will reduce as the number of preferred gears
increases.

One interesting observation is that with the increase in the
number of preferred gears, Fujitsu Primergy RX1330 M1 kept sig-
nificant energy conservation rates until the number of preferred
gears was 4, and Inspur NF5280M4 and IBM NeXtScale nx360 M4
kept a significant energy conservation rates until the number of
preferred gears was 3. However, Dell PowerEdge R820 only kept
good energy conservation rates until the number of preferred
gears was 2. This observation indicates that the effective number
of preferred gears depends on the number of cores that each host
has. The more cores a host has, the more VMs a host can execute.

Fig. 6(e) shows the impact of the number of preferred gears on
migration under the original workload 1x. According to Fig. 6(e),
the more cores that a host has, the fewer migrations will occur in
the cloud due to the greater computing capacity. Fig. 6(f) reveals
the impact of the number of preferred gears on the number of
shutdowns under the original workload 1x. The impact fades

Table 4
Computing performance of host models in ssj_ops [23–26].
Host Fujitsu Primergy Inspur Dell PowerEdge IBM NeXtScale
model RX1330 M1 NF5280M4 R820 nx360 M4

Gear0 0 0 0 0
Gear1 50,359 316,136 350,153 2,107,446
Gear2 102,370 636,228 707,185 4,209,415
Gear3 154,189 950,734 1,056,794 6,320,782
Gear4 203,541 1,268,612 1,411,080 8,434,615
Gear5 254,724 1,546,604 1,765,011 10,549,056
Gear6 306,424 1,857,279 2,118,458 12,656,161
Gear7 358,373 2,193,932 2,472,450 14,752,896
Gear8 408,824 2,525,204 2,827,529 16,897,410
Gear9 460,101 2,852,241 3,183,264 18,997,296
Gear10 512,425 3,145,159 3,508,442 21,076,634

when the number of preferred gears gets larger according to
Fig. 6(f).

7. Related work

An important aspect of energy-efficiency clouds is accom-
plishing more jobs with less power. In energy-efficient clouds,
power consumption is measured at computing node level since
different components, like processors, memory, and second-level
storage [31], have different power consumption models. It is in-
direct and difficult to measure power consumption for individual
components in order to evaluate overall power consumption.
According to recent studies, although DVFS demonstrates that the
relationship of CPU power consumption and utilization is expo-
nential, the relationship of overall power consumption and CPU
utilization is nearly linear [21,22,32]. Based on this conclusion, a
lot of research about energy-efficient clouds was conducted on
Virtual Machine level.
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Fig. 6. Impact of number of preferred gears on energy consumption, migration and shutdown times under the 0.5x, 1x, and 2x of the original workload.

Virtual Machine allocation, migration, and consolidation have
been explored for both performance [40] and energy efficiency
based on different strategies. Power-aware VM consolidation
saves significant amount of energy in clouds but may cause
noteworthy performance degradation. Beloglazov et al. analyzed
the energy-performance tradeoff for energy and performance
efficient dynamic VM consolidation [19]. Consolidation can be
triggered by conditions based on different policies. Agrawal et al.
proposed pSciMapper, a power-aware consolidation framework
based on the characteristics of scientific workloads [11]. Xu et al.
designed algorithms to consolidate workload with minimizing
both energy consumption and network workloads [12]. Assum-
ing all VMs have been placed on physical hosts, VMs will be
reassigned again with both energy consumption and network
overhead concerns. Kim et al. proposed a strategy of VM place-
ment based on correlation information of core utilization [33].
Kansal et al. proposed an energy-aware virtual machine migra-
tion technique based on the Firefly algorithm [34]. Farahnakian
et al. proposed an Ant Colony System-based VM Consolidation

approach that finds a near-optimal solution based on a specified
objective function [35]. The strategy proposed by Mosa et al.
dynamically assigns VMs to Physical Machines to co-optimizes
energy consumption and service level agreement (SLA) violations
while the primary goal of PPRGear is to optimize the energy
consumption [36]. Portaluri et al. studied VM placement strate-
gies to take advantage of Software Defined Network to reduce
power consumption in cloud computing data centers [37]. Zhao
et al. proposed a power-aware and performance-guaranteed VM
placement strategy that applies Ant Colony Optimization [41]. In
order to reduce both energy consumption and network overhead,
Xu et al. applied VM packing algorithms and interesting trade-
offs have been found between energy consumption and network
overhead [12]. Verma et al. presented pMapper which places
applications in virtualized systems with power and migration cost
awareness [38]. Ghribi et al. explored VM placement problem and
used exact algorithms for both VM placement and workload con-
solidation to reduce energy consumption [42]. When workload
is extremely low (utilization<10%), it is hard to conserve energy
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Fig. 7. Migration #.

Fig. 8. Shutdown #.
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Table 5
Related work comparison table.
Work name PPR aware Online algorithm VM placement Live migration Notes

PPRGear Y Y Y Y The presented work
ThrRs [19] N Y Y Y Randomly select VM for migration
MadMmt [19] N Y Y Y Needs to collect historical data
IqrMc [19] N Y Y Y Needs to collect historical data
DVFS N Y N N Local algorithm

pSciMapper [11] N N N N Designed for scientific work flow (DAG-based
computation),56% energy efficiency but 15%
slow down. Offline analysis is required.

Correlation-aware VM
allocation [33]

N Y Y N Only about the initial VM placement, need to
collect correlation data first

Firefly [34] N N N Y Need to know workload

ACS-VMC [35] N Y Y Y VM consolidation based on Ant Colony
Optimization. Complex mathematic model.

Utility functions [36] N Y Y Y Reduce some energy cost but mainly SLA
violations

PPVMP [37] N Y Y N Static VM placement

Pmapper [38] N Y N N Application level algorithm instead of VM level

Dynamic resource
allocation with
prediction [39]

N Y Y Y Focus on workload balance but energy
conservation

since there is not much room to further reduce utilization to
conserve energy (DVFS strategy). Hence, Wang et al. proposed
request batching [14] to group received requests in batches. The
requests are served in batches and hosts are shut down between
batches. Xiao et al. used VM to allocate system resource based on
skewness to conserve energy conservation [39].

As an extension of [43], this paper presents exact and approx-
imate calculation of the best gear and extensive experimental
simulations under different settings. Table 5 summarizes some
of the above-mentioned related work. Note that we chose IqrMc,
MadMmt, and ThrRs as comparison baselines because they are
the most comparable works to PPRGear. PPRGear takes into ac-
count the performance-to-power ratio as a key factor in order to
make VM placement and migration decisions without negative
performance impact.

Compared with all the aforementioned works, our strategy
does not require any extra information for scheduling. Specif-
ically, it does not need to know the correlated information of
core utilization or the workload patterns of computing nodes over
the underlying networks. In other words, our strategy only relies
on host utilization to conserve overall energy consumption. As
a result, our strategy can be implemented on the VM scheduler
level directly, leading to lower energy cost.

8. Conclusion

Energy consumption has become a big concern in the last
decade since cloud data centers consumed significant power and
generated giant power bills. In a cloud computing environment,
computing resources are allocated to virtual machines that are
generated for customers. The placement and migration of vir-
tual machines have significant impact on both performance and
energy cost. In this paper, we presented PPRGear, an energy-
efficient virtual machine allocation and migration framework for
energy-efficient clouds. To the best of our knowledge, our work
is the first to leverage the performance-to-power ratio of com-
puting nodes in virtual machine allocation and migration for
energy-efficient cloud solution. By achieving the optimal balance
between host utilization and energy consumption, PPRGear is
able to guarantee that host computers run at the most power-
efficient levels, i.e., the levels with highest Performance-to-Power

ratios, so that the energy consumption can be tremendously
reduced without much sacrifice of the computing performance.
Our extensive experiments with real world traces show that
compared with the state-of-the-art approaches, PPRGear is able
to reduce up to 69.31% of the energy consumption compared
with IqrMc, MadMmt, and ThrRs, as well as leading to fewer VM
migrations and shutdowns.
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