

Abstract— Cloud storage and Online database services allow

information to be accessed from virtually any location around the

world with Internet access. While this makes information readily

accessible and shareable, it also exposes data to the hostile

environment that is the Internet, rendering it vulnerable to

malicious attackers. Credit card information is one type of data

that can be targeted by malicious attackers. This paper proposes

an implementation that could store credit card information

securely on a multi-provider cloud architecture by using Shamir

secret sharing as the foundation and alternative to traditional

encryption. The primary objective of this work is to implement

the Shamir secret sharing algorithm in multi-provider cloud

architecture. The Java programming language is used to

implement a proof-of-concept application that connects to

Amazon RDS and Google SQL databases. Performance analysis

of the implementation is discussed, demonstrating its efficiency

and revealing where bottlenecks may be encountered when

processing credit card numbers. Finally, some remarks are made

regarding the evolution of the implementation throughout the

undertaking of the project, and additional improvements to the

mechanisms are proposed.

I. INTRODUCTION

Cloud storage brings a competitive advantage to smaller

businesses that are constrained by a limited budget and

employees as a cost-efficient means of competing [1].

Advances in cloud storage services such as Amazon RDS [2]

or Google Cloud SQL [3] among others, along with the ever-

growing market of cloud-storage solutions [4], gives smaller

businesses the flexibility to choose between different service

providers.

Customer credit card information is an example of sensitive

data which is often transmitted over the Internet, whether

while shopping Online, transferring funds to and from virtual

wallets [5], or paying with a smart phone at a checkout

counter [6]. Not only are there third parties which provide

businesses with a service to handle credit card transactions [7],

a security standards council [8] also exists that develops

various standards related to data security and payment

applications. However, there have been doubts as to the

effectiveness of this council itself [9], which would have a

significant impact on not only how users shop, but also how

businesses and banks handle monetary transactions.

Instead of trusting a single entity with credit card

information, said information could be split into multiple

pieces and stored across multiple database service providers.

In this scenario, small businesses not only use cloud services

as a cost-effective competitive advantage [1], but also decide

who to trust with storing their customer's credit card

information.

Traditional encryption is computationally expensive [10], so

to counter that cost this implementation suggests an alternative

solution. It is both based on work in [10][11], which serve as a

foundation to store credit card information securely by means

of the Shamir secret sharing scheme [11] in a multi-provider

cloud architecture. This implementation takes a credit card

number as input, generates multiple pieces called shares, and

stores those shares across multiple databases from multiple

cloud providers. In doing so, it is capable of eliminating the

informational value of any given share should there be a

security breach at any of the database service providers’

location.

Section II of this paper addresses obstacles that may be

encountered regarding the storage of sensitive data. Section III

will discuss the method of creating shares as a form of

encryption, presenting the general idea behind secret sharing.

Section IV will highlight the details of how the methods were

implemented, and provide the reasoning behind the decisions.

Section V will present performance analysis comparing

different numbers of shares. Section VI highlights changes

made to the implementation during the undertaking of the

project, and includes remarks as to what aspects of the

implementation may be improved. Section VII concludes with

final remarks on the project.

II. TRADITIONAL ENCRYPTION VS. SECRET SHARING

Businesses may sometimes opt for some form of traditional

encryption when storing data on local databases, especially

those containing customer information that includes credit

card numbers. However, doing so may sometimes require

special hardware such as Hardware Security Modules, and

traditional methods of encryption can be computationally

expensive [10].

Attackers often need to breach just a single entity to obtain

customer data, but any one of these breaches can prove to be

disastrous: Heartland Payment Systems-134 million cards

exposed[9][12]; TJX Companies Inc.-94 million card numbers

exposed[13]; Card Systems Solutions-40 million card

accounts exposed[12]. While these statistics only mention

large entities, smaller entities are just as vulnerable to attacks,

especially if all the required information is stored in a single

provider location, let alone locally in a single database.

Storing Credit Card Information Securely using

Shamir Secret Sharing in a Multi-Provider

Cloud Architecture
Levent Ertaul, William Marques Baptista, Rishi Maram

CSU East Bay, Hayward, CA, USA.

levent.ertaul@csueastbay.edu, william.marquesbaptista@gmail.com,

rmaram2@horizon.csueastbay.edu

mailto:levent.ertaul@csueastbay.edu

 An alternative solution would be to store data remotely

across multiple providers vs. locally. This would increase the

number of targets an attacker would have to breach to obtain

the desired data. A secret sharing scheme [11] could be used

to break credit card information into multiple pieces and store

those pieces at different locations. Ideally, different providers

would be used to further reinforce the concept of mutually

suspicious entities with conflicting interests [11].

Fig. 1. A secret is split into shares, and distributed to different database service

providers (DBSP).

Figure 1 depicts an example of what our implementation

accomplishes. This implementation takes a credit card number

and splits it into multiple shares by means of a secret sharing

scheme [11]. The shares are then stored across different cloud

databases obtained from different service providers. The

greatest strength of our implementation is that an attacker

must know a) how many shares a particular secret has, b)

where these shares have been stored and have access to them,

c) the corresponding pairs of each share and how they are

calculated, d) the secret prime used during the initial

computation, and e) parameters specific to the polynomial

used to produce the shares. It becomes clear when presented

with these obstacles that a secret sharing scheme can be an

effective solution in securing credit card information.

III. SHAMIR SECRET SHARING

In [11] Shamir proposes a mechanism for robust key

management schemes, where a numerical value is split into

pieces, and can be easily reconstructed with a subset of those

pieces. This is known as a threshold scheme [11] where a

subset k of n total pieces is required to reconstruct the original

secret. The implementation in this paper requires that all n

pieces be available to reconstruct the original secret, in other

words, as opposed to a (k, n) threshold scheme, this

implementation is a (n, n) scheme.

A. Creating the Shares

To create the shares, let k represent the number of pieces, or

shares, to be produced where k=n total pieces. Then, a prime

P must be chosen where P>M and where M is the numerical

value or secret being split into shares. A polynomial of k-1

degree is then constructed with k-1 random coefficients C,

where P>C>0.

𝑓(𝑥) = 𝑀 + 𝐶(1)𝑥
(1) + 𝐶(2)𝑥

(2)+. . . +𝐶(𝑘−1)𝑥
(𝑘−1)

(1)

Polynomial (1) is the result of this construction, where the

secret M is the term C0x0, each C is a randomly generated

coefficient, and substituting 0 for x in the polynomial returns

this secret value M. Pairs are created as an x input into (1)

resulting in the corresponding output share f(x), thus forming

the pair (x, f(x)). Any number of pairs can be produced or even

replace existing pairs. Once the shares have been created, we

no longer have use for the random coefficients as they are

randomly chosen for every secret. The resulting pairs and the

prime used to select random coefficients are the only

information needed to be recorded at this time.

B. Reconstructing the Secret

 All k pairs (x, f(x)) are required to reconstruct the secret

using Lagrange polynomial interpolation [11][14].

𝑀 =∑𝑦(𝑘) ∏
−𝑥(𝑖)

𝑥(𝑘) − 𝑥(𝑖)
𝑚𝑜𝑑𝑃

𝑛

𝑖=1,𝑖≠𝑘

𝑛

𝑘=1

(2)

We then expand (2) using the pairs that were originally

created to recover the secret.

C. Unrecoverable Secret:

We should note that, as mentioned in the beginning of this

section, we need all pieces to reconstruct the secret. If, for

instance, we were missing one or more pairs, our result would

be quite different. Some alternatives to this limitation are

suggested in section VII.

IV. IMPLEMENTATION METHODS AND REASONING

This project was implemented on a notebook computer with

a 1.6GHz quad core processor, 8 GB of RAM, and running a

GNU/Linux OS [15] with kernel version 3.13.0-46-generic.

NetBeans 8.0.2 [16] integrated development environment

(IDE) was used to implement the project using the Java [17]

programming language. The IDE was used to create a proof-

of-concept Swing GUI application, taking advantage of an

integrated profiler for performance analysis. The profiler

allows us to monitor the performance characteristics of

different methods in the implementation without making

changes to the original source code.

Eleven databases were created, 5 on Amazon RDS [2] using

MySQL 5.6.22 [18], and six on Google Cloud SQL [3] using

MySQL 5.5 [18]. A MySQL JDBC Driver library [19] was

used to interface between the proof-of-concept application and

the remote cloud databases. Each database contains one table,

and a user was specifically created to access these databases

with SELECT, INSERT and DELETE privileges.

As opposed to [10], there is no need to evaluate max/min

values, or perform calculations on ranges of values stored in

the databases. Apart from the GUI-related code, there are four

prominent code portions categorized as 1) global variables and

structures, 2) generators and equations, 3) database operations,

and 4) additional methods.

A. Global Variables and Structures

 The global variables in the implementation are the

username and password information to access the different

databases, a prime P, the number of shares K, and the database

IP addresses. There are also three array list structures: a

database address array list, a coefficient array list, and a share

array list.

 The database username and password information was hard-

coded to facilitate the interaction between the proof-of-

concept application and the databases. As a security

precaution, these credentials should not be stored within a

production version of this proof of concept, but instead an

alternative method of authenticating a user or application with

the different databases should be implemented. That, however,

is outside the scope of this project.

 The prime number was implemented as a BigInteger, which

allows the use of integers larger than the 64-bit limitations of

the long data type [20]. It was hard-coded as a 2048-bit value

for the purpose of this work, but should be kept secret at all

times. This large prime ensures that the coefficients generated

are also very large, making it difficult for an attacker to

recover the secret due to the discrete logarithm problem [21].

How the prime number should be securely stored, encrypted,

or recovered in a production implementation is outside the

scope of this paper, as that may vary from one application to

another.

The number of shares K denotes how many shares a secret

will be divided into. This variable is also used throughout the

application as an iterative loop parameter for database

connections and generation of the various lists.

The coefficient array list stores randomly generated

numbers and is accessed during share generation. After

generating all shares, this list is no longer needed, so the

contents can be overwritten if another secret is being

processed.

The share array list is populated during the generation of

shares and used to commit records on the different databases.

It is cleared and re-populated during the recovery process of a

secret as shares are collected from the different databases.

The database address list contains addresses to the different

databases, and they are also used as one of the parameters to

create record name fields for each database’s respective share.

B. Generators and Equations

 The three generators in this implementation are the

database address generator, the secure random coefficient

generator [22], and the share generator. The database address

generator runs only once, whereas the remaining two run once

for every secret that is processed.

1) Database Address Generator
private static void enumDBList() {

 int i, n;

 if (K % 2 == 0) {

 n = K/2;

 } else {

 n = K/2+1;

 }

 for (i = 0; i < K; i++) {

 if (i<n) {

 dbList.add(dbGoogle + (i+1));

 } else {

 dbList.add(dbAmazon + (i+1-n));

 }

 }

 }

 The database address generator is a simple algorithm that

enumerates the database address list, and is directly dependent

on the number of shares. The database names used at both

service provider locations are named from secsharedb1 to

secsharedb5 for Amazon RDS [2], and secsharedb1 to

secsharedb6 for Google SQL [3], for a total of eleven

databases. The IP addresses are hardcoded global variables

with the first portion of the database name. They are then

referenced using the variables dbGoogle and dbAmazon for

short while the database numbers are concatenated at the end

of the string within the algorithm’s iterative loop.

We wanted to make sure that both providers were always

used, so this algorithm distributes the number of databases

based on the value of shares K: for an even number of shares,

the same number of databases is used at each provider

location; for an odd number of shares, there is one more

database used at Google’s location. There is no particular

reason for choosing a Google database over an Amazon

database other than to fill the gap. Although a seemingly

simple and innocuous algorithm, it is safe to say that this is

what controls which databases are being accessed in the

different provider locations. More on this algorithm is

discussed in Section VI.

2) Random Coefficient Generator
private void genCoefs(int shares) {

 BigInteger r;

 coefs.clear();

 int i;

 for (i = 0; i < shares - 1; i++) {

 r = new BigInteger(2047, new SecureRandom());

 if (r == BigInteger.ZERO) {

 r = r.add(BigInteger.ONE);

 }

 coefs.add(r);

 }

 }
The coefficient generator above is used to generate K-1

2047-bit cryptographic-strength pseudo random numbers [22],

and this process is repeated for every secret being split into

shares. More on the decision for its size is discussed in section

VII. During the test, smaller coefficients were used, and we

noticed that there were times where a zero was returned as a

secure random number. This would have changed an entire

term to zero during multiplication, so a check was added to

add the value one to the secure random number when this was

the case. The coefficients are stored in the coefficient array list

and only accessed when generating shares, after which they

are no longer useful since a different set of coefficients will be

generated when processing another secret.

3) Secret Share Generator
private void genShares(int shares) {

 long secret = Long.parseLong(jTextField2.getText());

 BigInteger coef, term, result;

 secShares.clear();

 int i, j;

 for (i = 0; i < shares; i++) {

 result = BigInteger.ZERO;

 for (j = 0; j < shares-1; j++) {

 coef = (BigInteger) coefs.get(j);

 term = (BigInteger.valueOf(i+1)).pow(j+1);

 result = result.add(coef.multiply(term));

 }

 result = result.add(BigInteger.valueOf(secret));

 secShares.add(result);

 }

 }

The share generator above produces shares corresponding to

each x input. It uses a polynomial such as (1) using the

generated coefficients mentioned earlier, and produces as

many shares as indicated by the global variable k. In this

implementation, the x values are generated incrementally with

a loop, and more remarks regarding this process will be

mentioned in section VI. The resulting shares vary in size,

depending on the number of shares being produced, but their

sizes increase as the number of shares increase. The shares

were also implemented as a BigInteger, again due to the 64-bit

limitations of the long data type [20].

4) Secret Recovery Algorithm – summation portion
private void secRecover() {

 BigInteger pair, term;

 lagSum = BigInteger.ZERO;

 int i;

 for (i = 0; i<K; i++) {

 pair = (BigInteger) secShares.get(i);

 term = pair.multiply(lagrange(i+1));

 lagSum = lagSum.add(term.mod(P));

 }

 if ((K % 2) == 0) {

 jTextArea1.append("M: " +

P.subtract(lagSum.mod(P)) + "\n");

 } else {

 jTextArea1.append("M: " + lagSum.mod(P)+ "\n");

 }

 }

The secret recovery algorithm above was implemented

iteratively as it was the simplest implementation method at the

time. A recursive method was not tested. This first algorithm

implements the summation portion of the terms in (2). During

the test trials, we noticed that for an even number of shares,

the result resembled the prime rather than the secret. After

closer inspection, when using an even number of shares the

summation result has to be subtracted from the prime to obtain

the secret back. For this reason a test is performed where if k

mod 2 is 0, then the summation result is subtracted from the

prime to obtain the secret.

5) Secret Recovery Algorithm – cross product portion
private BigInteger lagrange(int curShare) {

 BigInteger numer = BigInteger.ONE;

 BigInteger denom = BigInteger.ONE;

 BigInteger result;

 int i;

 for (i = 1; i < K+1; i++) {

 if (i != curShare) {

 numer = numer.multiply(BigInteger.valueOf(i));

 denom = denom.multiply(BigInteger.valueOf(curShare-i));

 }

 }

 result = numer.multiply(denom.modInverse(P));

 return result;

}

An important component of the secret recovery algorithm is

the cross product portion of (2) which is implemented as a

sub-method and called within an iterative loop. This decision

made it easier to read the code in terms of the summation and

cross product portions of (2). Both the summation and cross

product portions take advantage of the iterative loop used to

generate the corresponding f(x) share for a given x value. This

simplifies the code implementation. However, doing so raises

issues which will be covered in section VI.

C. Database Operations

 This portion of the code consists of 5 methods, of which 4

are basic database operations that could be implemented in a

production environment. The operations are responsible for

committing a record, fetching a record, deleting a record, and

deleting all records.

 Figure 2 below depicts the “add” button, which ensures that

neither the name field nor the credit card number field is

empty before proceeding. It then triggers the random

coefficient generator, the share generator, and finally calls the

record commitment method which is one of the 4 database

operations. As mentioned previously in this section, x values

for (1) is generated incrementally within a loop. For this

reason, the databases are accessed in the same order every

time. More remarks on this mechanism are found in section

VI.

Fig. 2. Proof of concept Application depicting some of the control buttons.

Add, Delete, Recover Secret, and Loop all operate on the databases, while the

independent local controls do not interact with any database, and are used for
debugging.

The record commitment method stores the various shares in

the different databases. First, an SQL command is built, and a

hash along with the corresponding share are concatenated to

the SQL command. This command is then executed within a

loop, where a different database is accessed, on each iteration.

If a duplicate name field is found in the database, then the

error is caught and signaled as an output in the DB Operations

output area whose tab is shown in figure 2. Additional remarks

on how x value generation may be improved are discussed in

section VI.

 Fetching a record works similarly as the record commitment

function, where each database is accessed incrementally by

means of a loop. Because every table only has 2 fields, name

and share, the name field is used to search a corresponding

share. For this work, the name field is built as a hash of the

customer name times the hash of a password times the hash of

the database where the corresponding share is to be fetched.

More remarks on how the record name field is created are

made in section VI. As the shares are fetched, they are placed

in the share list to be used during the secret recovery step. If a

record is not found, the error is caught and fetching the record

fails.

 Deleting a record works similarly as the record commitment

method in that each database is accessed incrementally within

a loop. The record name field is searched by calculating the

hash of the customer name times the hash of a password times

the hash of the database name where the corresponding share

is being searched, and once found, the record entry is deleted.

 Deleting all records in all databases is trivial, where every

database is accessed and data in their respective tables is

dropped. While this wouldn't seem to be a necessary or routine

part of the implementation, this procedure may be used as part

of a kill-switch in case of emergencies.

D. Additional Methods

 The remaining methods in the code consist of the detection

of a duplicate entry when committing a record, a function that

checks for valid input, a function that creates the name fields

for each share using hashes of different data, and a test method

that was used during the performance analysis. Details on the

performance of the implementation will be reviewed in section

V.

V. PERFORMANCE ANALYSIS AND RESULTS

The code was implemented in Java [17] using NetBeans

8.0.2 [16] as the integrated development environment. The

reasoning behind this decision was that the profiler available

in NetBeans was the least intrusive means to measure the

performance of the individual methods, capable of collecting

CPU timing information at a fine granularity with no changes

to the original code. The average CPU times in establishing

connections are times to connect to the set of Amazon RDS [2]

and Google SQL [3] databases as dictated by the number of

shares k.

 A test button was implemented which loops through 3

principle methods: addRecord(); getRecord(); secRecover();.

Of these three, we will focus on two, namely addRecord() and

secRecover(), since these include the sub-methods and results

we are more interested in.

 As mentioned earlier in section IV, the addRecord() method

is responsible for generating secure random coefficients[10],

generating shares using a corresponding x value for each

database, and committing the changes to the databases. There

were 8 runs of the test loop to gather data on the generation of

coefficients and pairs, each run executing the three methods

stated earlier once. The times were then recorded and averaged

on a spreadsheet.

Fig. 3 Average CPU time to generate secure random coefficients. The number

of coefficients generated per group of shares is (number of shares-1).

 In figure 3, we can observe the performance results for the

generation of secure random coefficients. On average, it took a

mere 4.96ms to generate eleven 2047-bit secure random

numbers. The fastest time was recorded at 3.93ms, whereas

the slowest was 5.91ms. The results for any given number of

shares will tend to vary slightly depending on the availability

of resources on the test notebook computer; however, we can

observe a clear trend that as the number of shares increase, the

time it takes to generate secure random coefficients increases

almost linearly.

Fig. 4 Average CPU time to generate shares.

In figure 4 above, we can clearly observe that as the number of

shares generated increase, the time to generate said shares

increases exponentially. This is due to the fact that, because

we are implementing [10][11] as a (n, n) scheme where k=n,

the polynomial used to generate a corresponding share will

increase in degree for every additional share k. No tests were

performed with methods using a fixed-sized polynomial, as

that would counter our implementation of a (n, n) scheme.

During the tests, eleven shares were produced at a mere

2.11ms at its fastest, compared to 6.10ms at its slowest which

is more than double the fastest time. These results also vary

due to the availability of resources on the notebook computer.

 During these tests, the results that stood out the most were

the database connection times. The addRecord() method

contains three sub-methods: genCoefs() which generates the

secure random coefficients; genPairs() which generates the

corresponding shares to an x input; and commitRecord() to

establish the database connections and store the information.

Fig. 5 Average CPU time to add a record ‘A.’ vs. portion of time spent

establishing database connections ‘C.’ per number of shares.

In figure 5, we can observe how much time the

commitRecord() method takes in the process of adding

records to the databases. For each set of shares, the left

column denoted by ‘A.x’ shows the average CPU time spent

executing the three sub-methods, while the right column ‘C.x’

shows what portion of that time is spent establishing the

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

3 5 7 9 11

A
V

G
.

C
P

U
 T

im
e

(m
s)

Number of shares

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3 5 7 9 11

A
v
g
.

C
P

U
 T

im
e

(m
s)

Number of shares

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

A.3 C.3 A.5 C.5 A.7 C.7 A.9 C.9 A.11 C.11

A
V

G
. C

P
U

 T
im

e
(m

s)

Number of shares

connection and sending the SQL INSERT command. From

figure 5 we can conclude that the numbers of shares, and

consequently the number of database connections being

established, tend to have a more significant impact with

respect to time than the methods involved in generating the

secure random coefficients, and generating shares.

The objective in the following test was to analyze the

average CPU time it took to recover a secret based on the

number of shares used. The secret recovery method produces

the summation of the f(x) terms multiplied by the cross

product performed in the sub-method. This was done by

means of an iterative loop, which called the sub-method at

each iteration.

Fig. 6 Average CPU time to recover a secret per number of shares.

As we can observe in figure 6 above, the average CPU

times to compute the secret increases as the number of shares

increase. During the tests, it took 78.50ms at best to recover

the secret for eleven shares, compared 90.60ms at its slowest.

While these results are for almost four times the number of

shares as the test for three shares, we can also observe that

there is not a significant impact on the average CPU time to

recover a secret based on the number of shares. For three

shares, it took an average of 35.48ms to recover the secret,

whereas for eleven shares it took an average CPU time of

83.68ms, which is a ratio of ~1:2.3.

Fig. 7 Average CPU time to fetch shares denoted by ‘G.’ vs. average CPU

time to recover secret denoted by ‘S.’.

In figure 7 above, we can observe that the average CPU

time to recover a secret denoted by ‘G.x’ does not produce as

much of an impact as does the average CPU time spent

establishing a connection denoted ‘S.x’ to recover the shares

from the different databases. For example, using three shares

as the data with the smallest gap, it took an average CPU time

of 144.72ms to fetch all shares from the different databases,

compared to an average CPU time of 35.48ms to recover the

secret. In other words, it took roughly 25% of the average

CPU time to recover the secret than it did to retrieve all shares

from the different databases.

 While the average CPU times during these tests were

calculated by making connections to eleven databases across

two providers as stated in the implementation details in section

IV, these times may be expected to be different if the

connections were to be made to more databases and providers

around the world. In that case, we would mostly be concerned

with the database connection times to recover the different

shares, whereas the process to create the different shares or to

recover the original secret would remain relatively

insignificant in comparison.

VI. SUGGESTED IMPROVEMENTS

A. Generating x Inputs

 Generating x values for (1) were fairly simple as they were

generated by means of a loop, generating incremental values

of x from 1 to k. A security improvement to this method would

be to use larger values of x which are either database or

service provider-specific. Using this method would not only

allow databases to be accessed randomly, it would also reduce

the correlation between different databases in terms of the

order in which they are accessed.

B. Generating Secure Random Coefficients

Initially, 2048-bit coefficients were being generated. This

quickly proved to be problematic since there may be times at

which the coefficients were larger than the prime being used,

which would violate the rule in [11] of P>C>0. A check was

then implemented to compare the size of the prime and the

coefficient, where coefficients would be regenerated if they

were larger than the prime. This additional step was deemed

unnecessary, resulting in the decision of removing it altogether

and simply generating 2047-bit coefficients. This large

coefficient still enforces the discrete logarithm problem [21].

C. Generating Record Name Fields

 For the purpose of this paper, the record name field is built

as a hash of the customer name times a hash of the customer

password times a hash of the database address where the

particular share is being stored. This was done in an effort to

suggest that the correlation between record name fields for a

particular secret across all databases be reduced, or different

for every database. However, this particular method is not

sufficient since customers may have several credit cards

whose shares may be stored in a particular database. A

solution would be to also include a hash of some combination

of numbers from a specific card. For the purpose of this paper

it was enough to show that shares for a particular secret need

not have the same identifying fields across all databases,

however, a better mechanism should be used to enable a

customer to have multiple credit card shares stored in the same

database without record name field conflicts.

D. Shuffling Records

An additional security measure would be to shuffle the

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

3 5 7 9 11

A
V

G
.

C
P

U
 T

im
e

(m
s)

Number of shares

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

G.3 S.3 G.5 S.5 G.7 S.7 G.9 S.9 G.11 S.11

A
V

G
. C

P
U

 T
im

e
(m

s)

Number of shares

records in any one of the databases to reduce the correlation

among records across different databases. If records

corresponding to a same secret are located in the same region

or have the same order in any particular database, and the

number of shares needed to reconstruct the secret is known,

and the respective databases are known, then it would be

easier for an attacker to assemble the required shares in

attempt to reconstruct a secret. The task would still be very

difficult, but this additional layer of security in just one of the

databases would be enough to render the task even more

difficult.

E. Diversity in Providers

This project advocates the use of multiple providers in

effort to not only reduce the risks associated with a breach, but

also to ensure availability. Although only two providers were

used in this implementation, more could be used if desired,

which would also afford new availability features. More on

availability will be explained later in this section.

Additionally, as suggested by [11], we would like to view

providers as mutually suspicious with conflicting interests,

which is why we do not want to store all shares for a particular

secret within one same provider.

F. Planning For Redundancy

Although this implementation isn't a traditional (k, n)

threshold scheme, that concept may be extended to the number

of providers. For instance, for a secret that is split into fifteen

shares and stored across three different databases or providers,

it only takes one of those databases or providers to be

unavailable for the secret to be unrecoverable. Instead, a

threshold implementation would maybe create thirty shares to

be spread over five providers for instance, and randomly

accessing any combination of three providers would be

enough to recover a secret. Together with the suggestion in

‘F.’, whenever the number of shares needed to reconstruct the

secret is reached, all other connection attempts can be aborted.

Additionally, having shares across different providers ensures

that not all shares required to recover a secret are stored within

one same provider.

VII. CONCLUSION

We have shown that implementing Shamir’s secret sharing

scheme to store credit card information on a multi-provider

cloud architecture can be a viable solution. The performance

tests show that the process of generating shares and recovering

the secret is relatively fast and efficient when compared to the

time spent establishing database connections, and this is valid

for any application needing to connect to remote databases.

The security feature of not being able to recover credit card

information should any of the databases be breached brings an

advantage that single-provider or singe local databases do not.

This paper has shown that the Shamir secret sharing scheme is

fast, reliable and secure, but most importantly that it is

applicable. The suggested improvements in section VI along

with additional contributions could produce a more secure and

production-ready implementation for multiple environments.

VIII. REFERENCES

[1] K. Bessai, S. Yousef, A. Oulamara, C. Godart, S. Nurcan, “Scheduling

Strategies for Business Process Applications in Cloud Environments,”

International Journal of Grid and High Performance Computing, Volume

5 Issue 4, pp. 65-78 October 2013.

[2] Amazon RDS: Relational Database Service.
https://aws.amazon.com/rds/

[3] Google Cloud SQL. https://cloud.google.com/sql/docs

[4] Sage, Cloud Storage Market to Grow by 2019.
http://na.sage.com/us/articles/technology/cloud-storage-market

[5] The PNC Financial Services Group, Inc. Virtual wallets.

https://www.pnc.com/en/personal-banking/banking/checking/virtual-
wallet.html

[6] Anonymous, “Young People in Particular are Annoyed by Queues at the

Cash Register - Germans are Open to Paying by Smartphone,” PR
Newswire Association LLC, 01 Jul 2014, ProQuest Newsstand, 01 Jul

2014.

[7] Anonymous, “USA ePay Joins the Secure Vault Payments Network,”
Business Wire, 16 Nov 2010, ProQuest Newsstand, 16 Nov 2010.

[8] The PCI Security Standards Council, “Verify PCI Compliance,

Download Data Security and Credit Card Security Standards,”

Accessed 15 Mar 2015,

https://www.pcisecuritystandards.org/organization_info/index.php

[9] D. Wolfe, “Breach Revives Doubts About Card Industry Security
Standard,” American Banker, 03 Apr 2012, ProQuest Newsstand, 17

Apr 2012

[10] D. Agrawal, A. El Abbadi, F. Emekci, A. Metwally, “Database
Management as a Service: Challenges and Opportunities,” IEEE 25th

Int’l Conf. Data Engineering (ICDE 09), IEEE CS Press, 2009, pp.

1709–1716.
[11] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.

612–613, 1979.

[12] B. Krebs, “Payment Processor Breach May Be Largest Ever,” The
Washington Post, 20 Jan 2009, Accessed 15 Mar 2015.

http://voices.washingtonpost.com/securityfix/2009/01/payment_process

or_breach_may_b.html
[13] T. Armerding, “The 15 worst data security breaches of the 21st

Century,” CSOOnline, IDG Enterprise, 15 Feb 2012, Accessed 15

March 2015. http://www.csoonline.com/article/2130877/data-

protection/the-15-worst-data-security-breaches-of-the-21st-century.html

[14] Lagrange polynomial interpolation.

http://www2.lawrence.edu/fast/GREGGJ/Math420/Section_3_1.pdf
[15] Free Software Foundation. What’s in a Name?

https://www.gnu.org/gnu/why-gnu-linux.en.html

[16] Oracle Corporation, NetBeans. https://netbeans.org/about/index.html
[17] Oracle Corporation, Java. https://www.oracle.com/java/index.html

[18] Oracle Corporation, MySQL. http://www.mysql.com/

[19] Oracle Corporation, MySQL JDBC Driver.
http://www.mysql.com/products/connector/

[20] D. Flanigan, Java in a nutshell: a desktop quick reference. BigInteger

subclass, Sebastopol, CA: O'Reily Media, Inc. Mar 2005, pp. 546.
[21] R. Barbulescu et al., in A Heuristic Quasi-Polynomial Algorithm for

Discrete Logarithm in Finite Fields of Small Characteristic, 33rd Annual
International Conference on the Theory and Applications of

Cryptographic Techniques, Copenhagen, 2014 © International

Association for Cryptologic Research. Doi: 10.1007/978-3-642-55220-
5_1

[22] D. Flanigan, Java in a nutshell: a desktop quick reference.

SecureRandom subclass, Sebastopol, CA: O'Reily Media, Inc. Mar
2005, pp. 639

[23] B. M. Brosgol, “A Comparison of the Mutual Exclusion Features in Ada

and the Real-Time Specification for Java,”
http://www.adacore.com/uploads/technical-papers/MutEx-Ada-RTSJ-

paper.pdf

http://www.csoonline.com/article/2130877/data-protection/the-15-worst-data-security-breaches-of-the-21st-century.html
http://www.csoonline.com/article/2130877/data-protection/the-15-worst-data-security-breaches-of-the-21st-century.html
http://www2.lawrence.edu/fast/GREGGJ/Math420/Section_3_1.pdf
https://www.gnu.org/gnu/why-gnu-linux.en.html
https://www.oracle.com/java/index.html

