
 

Abstract— Cloud storage and Online database services allow 

information to be accessed from virtually any location around the 

world with Internet access. While this makes information readily 

accessible and shareable, it also exposes data to the hostile 

environment that is the Internet, rendering it vulnerable to 

malicious attackers. Credit card information is one type of data 

that can be targeted by malicious attackers. This paper proposes 

an implementation that could store credit card information 

securely on a multi-provider cloud architecture by using Shamir 

secret sharing as the foundation and alternative to traditional 

encryption. The primary objective of this work is to implement 

the Shamir secret sharing algorithm in multi-provider cloud 

architecture. The Java programming language is used to 

implement a proof-of-concept application that connects to 

Amazon RDS and Google SQL databases.  Performance analysis 

of the implementation is discussed, demonstrating its efficiency 

and revealing where bottlenecks may be encountered when 

processing credit card numbers. Finally, some remarks are made 

regarding the evolution of the implementation throughout the 

undertaking of the project, and additional improvements to the 

mechanisms are proposed. 

I. INTRODUCTION 

Cloud storage brings a competitive advantage to smaller 

businesses that are constrained by a limited budget and 

employees as a cost-efficient means of competing [1]. 

Advances in cloud storage services such as Amazon RDS [2] 

or Google Cloud SQL [3] among others, along with the ever-

growing market of cloud-storage solutions [4], gives smaller 

businesses the flexibility to choose between different service 

providers. 

Customer credit card information is an example of sensitive 

data which is often transmitted over the Internet, whether 

while shopping Online, transferring funds to and from virtual 

wallets [5], or paying with a smart phone at a checkout 

counter [6]. Not only are there third parties which provide 

businesses with a service to handle credit card transactions [7], 

a security standards council [8] also exists that develops 

various standards related to data security and payment 

applications. However, there have been doubts as to the 

effectiveness of this council itself [9], which would have a 

significant impact on not only how users shop, but also how 

businesses and banks handle monetary transactions. 

Instead of trusting a single entity with credit card 

information, said information could be split into multiple 

pieces and stored across multiple database service providers. 

In this scenario, small businesses not only use cloud services 

as a cost-effective competitive advantage [1], but also decide 

who to trust with storing their customer's credit card 

information. 

Traditional encryption is computationally expensive [10], so 

to counter that cost this implementation suggests an alternative 

solution. It is both based on work in [10][11], which serve as a 

foundation to store credit card information securely by means 

of the Shamir secret sharing scheme [11] in a multi-provider 

cloud architecture. This implementation takes a credit card 

number as input, generates multiple pieces called shares, and 

stores those shares across multiple databases from multiple 

cloud providers. In doing so, it is capable of eliminating the 

informational value of any given share should there be a 

security breach at any of the database service providers’ 

location. 

Section II of this paper addresses obstacles that may be 

encountered regarding the storage of sensitive data. Section III 

will discuss the method of creating shares as a form of 

encryption, presenting the general idea behind secret sharing. 

Section IV will highlight the details of how the methods were 

implemented, and provide the reasoning behind the decisions. 

Section V will present performance analysis comparing 

different numbers of shares. Section VI highlights changes 

made to the implementation during the undertaking of the 

project, and includes remarks as to what aspects of the 

implementation may be improved. Section VII concludes with 

final remarks on the project. 

II. TRADITIONAL ENCRYPTION VS. SECRET SHARING 

Businesses may sometimes opt for some form of traditional 

encryption when storing data on local databases, especially 

those containing customer information that includes credit 

card numbers. However, doing so may sometimes require 

special hardware such as Hardware Security Modules, and 

traditional methods of encryption can be computationally 

expensive [10]. 

Attackers often need to breach just a single entity to obtain 

customer data, but any one of these breaches can prove to be 

disastrous: Heartland Payment Systems-134 million cards 

exposed[9][12]; TJX Companies Inc.-94 million card numbers 

exposed[13]; Card Systems Solutions-40 million card 

accounts exposed[12]. While these statistics only mention 

large entities, smaller entities are just as vulnerable to attacks, 

especially if all the required information is stored in a single 

provider location, let alone locally in a single database. 
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 An alternative solution would be to store data remotely 

across multiple providers vs. locally. This would increase the 

number of targets an attacker would have to breach to obtain 

the desired data. A secret sharing scheme [11] could be used 

to break credit card information into multiple pieces and store 

those pieces at different locations. Ideally, different providers 

would be used to further reinforce the concept of mutually 

suspicious entities with conflicting interests [11]. 

 

Fig. 1. A secret is split into shares, and distributed to different database service 

providers (DBSP). 

Figure 1 depicts an example of what our implementation 

accomplishes. This implementation takes a credit card number 

and splits it into multiple shares by means of a secret sharing 

scheme [11]. The shares are then stored across different cloud 

databases obtained from different service providers. The 

greatest strength of our implementation is that an attacker 

must know a) how many shares a particular secret has, b) 

where these shares have been stored and have access to them, 

c) the corresponding pairs of each share and how they are 

calculated, d) the secret prime used during the initial 

computation, and e) parameters specific to the polynomial 

used to produce the shares. It becomes clear when presented 

with these obstacles that a secret sharing scheme can be an 

effective solution in securing credit card information. 

III. SHAMIR SECRET SHARING 

In [11] Shamir proposes a mechanism for robust key 

management schemes, where a numerical value is split into 

pieces, and can be easily reconstructed with a subset of those 

pieces. This is known as a threshold scheme [11] where a 

subset k of n total pieces is required to reconstruct the original 

secret. The implementation in this paper requires that all n 

pieces be available to reconstruct the original secret, in other 

words, as opposed to a (k, n) threshold scheme, this 

implementation is a (n, n) scheme. 

A. Creating the Shares 

To create the shares, let k represent the number of pieces, or 

shares, to be produced where k=n total pieces. Then, a prime 

P must be chosen where P>M and where M is the numerical 

value or secret being split into shares. A polynomial of k-1 

degree is then constructed with k-1 random coefficients C, 

where P>C>0. 

𝑓(𝑥) = 𝑀 + 𝐶(1)𝑥
(1) + 𝐶(2)𝑥

(2)+. . . +𝐶(𝑘−1)𝑥
(𝑘−1) 

(1) 

Polynomial (1) is the result of this construction, where the 

secret M is the term C0x0, each C is a randomly generated 

coefficient, and substituting 0 for x in the polynomial returns 

this secret value M. Pairs are created as an x input into (1) 

resulting in the corresponding output share f(x), thus forming 

the pair (x, f(x)). Any number of pairs can be produced or even 

replace existing pairs. Once the shares have been created, we 

no longer have use for the random coefficients as they are 

randomly chosen for every secret. The resulting pairs and the 

prime used to select random coefficients are the only 

information needed to be recorded at this time. 

B. Reconstructing the Secret 

 All k pairs (x, f(x)) are required to reconstruct the secret 

using Lagrange polynomial interpolation [11][14]. 

𝑀 =∑𝑦(𝑘) ∏
−𝑥(𝑖)

𝑥(𝑘) − 𝑥(𝑖)
𝑚𝑜𝑑𝑃

𝑛

𝑖=1,𝑖≠𝑘

𝑛

𝑘=1

 

(2) 

We then expand (2) using the pairs that were originally 

created to recover the secret. 

C. Unrecoverable Secret: 

We should note that, as mentioned in the beginning of this 

section, we need all pieces to reconstruct the secret. If, for 

instance, we were missing one or more pairs, our result would 

be quite different. Some alternatives to this limitation are 

suggested in section VII. 

IV. IMPLEMENTATION METHODS AND REASONING 

This project was implemented on a notebook computer with 

a 1.6GHz quad core processor, 8 GB of RAM, and running a 

GNU/Linux OS [15] with kernel version 3.13.0-46-generic. 

NetBeans 8.0.2 [16] integrated development environment 

(IDE) was used to implement the project using the Java [17] 

programming language. The IDE was used to create a proof-

of-concept Swing GUI application, taking advantage of an 

integrated profiler for performance analysis. The profiler 

allows us to monitor the performance characteristics of 

different methods in the implementation without making 

changes to the original source code. 

Eleven databases were created, 5 on Amazon RDS [2] using 

MySQL 5.6.22 [18], and six on Google Cloud SQL [3] using 

MySQL 5.5 [18]. A MySQL JDBC Driver library [19] was 

used to interface between the proof-of-concept application and 

the remote cloud databases. Each database contains one table, 

and a user was specifically created to access these databases 

with SELECT, INSERT and DELETE privileges. 

As opposed to [10], there is no need to evaluate max/min 

values, or perform calculations on ranges of values stored in 

the databases. Apart from the GUI-related code, there are four 

prominent code portions categorized as 1) global variables and 

structures, 2) generators and equations, 3) database operations, 

and 4) additional methods. 

A. Global Variables and Structures 

 The global variables in the implementation are the 

username and password information to access the different 

databases, a prime P, the number of shares K, and the database 

IP addresses. There are also three array list structures: a 



 

database address array list, a coefficient array list, and a share 

array list. 

 The database username and password information was hard-

coded to facilitate the interaction between the proof-of-

concept application and the databases. As a security 

precaution, these credentials should not be stored within a 

production version of this proof of concept, but instead an 

alternative method of authenticating a user or application with 

the different databases should be implemented. That, however, 

is outside the scope of this project. 

 The prime number was implemented as a BigInteger, which 

allows the use of integers larger than the 64-bit limitations of 

the long data type [20]. It was hard-coded as a 2048-bit value 

for the purpose of this work, but should be kept secret at all 

times. This large prime ensures that the coefficients generated 

are also very large, making it difficult for an attacker to 

recover the secret due to the discrete logarithm problem [21]. 

How the prime number should be securely stored, encrypted, 

or recovered in a production implementation is outside the 

scope of this paper, as that may vary from one application to 

another. 

The number of shares K denotes how many shares a secret 

will be divided into. This variable is also used throughout the 

application as an iterative loop parameter for database 

connections and generation of the various lists. 

The coefficient array list stores randomly generated 

numbers and is accessed during share generation. After 

generating all shares, this list is no longer needed, so the 

contents can be overwritten if another secret is being 

processed. 

The share array list is populated during the generation of 

shares and used to commit records on the different databases. 

It is cleared and re-populated during the recovery process of a 

secret as shares are collected from the different databases. 

The database address list contains addresses to the different 

databases, and they are also used as one of the parameters to 

create record name fields for each database’s respective share. 

B. Generators and Equations 

  The three generators in this implementation are the 

database address generator, the secure random coefficient 

generator [22], and the share generator. The database address 

generator runs only once, whereas the remaining two run once 

for every secret that is processed. 

1) Database Address Generator 
private static void enumDBList() { 

        int i, n; 

        if (K % 2 == 0) { 

            n = K/2; 

        } else { 

            n = K/2+1; 

        } 

        for (i = 0; i < K; i++) { 

            if (i<n) { 

                dbList.add(dbGoogle + (i+1)); 

            } else { 

                dbList.add(dbAmazon + (i+1-n)); 

            } 

        } 

    } 

 The database address generator is a simple algorithm that 

enumerates the database address list, and is directly dependent 

on the number of shares. The database names used at both 

service provider locations are named from secsharedb1 to 

secsharedb5 for Amazon RDS [2], and secsharedb1 to 

secsharedb6 for Google SQL [3], for a total of eleven 

databases. The IP addresses are hardcoded global variables 

with the first portion of the database name. They are then 

referenced using the variables dbGoogle and dbAmazon for 

short while the database numbers are concatenated at the end 

of the string within the algorithm’s iterative loop. 

We wanted to make sure that both providers were always 

used, so this algorithm distributes the number of databases 

based on the value of shares K: for an even number of shares, 

the same number of databases is used at each provider 

location; for an odd number of shares, there is one more 

database used at Google’s location. There is no particular 

reason for choosing a Google database over an Amazon 

database other than to fill the gap. Although a seemingly 

simple and innocuous algorithm, it is safe to say that this is 

what controls which databases are being accessed in the 

different provider locations. More on this algorithm is 

discussed in Section VI. 

2) Random Coefficient Generator 
private void genCoefs(int shares) { 

        BigInteger r; 

        coefs.clear(); 

        int i; 

        for (i = 0; i < shares - 1; i++) { 

            r = new BigInteger(2047, new SecureRandom()); 

            if (r == BigInteger.ZERO) { 

                r = r.add(BigInteger.ONE); 

            } 

            coefs.add(r); 

        } 

    } 
The coefficient generator above is used to generate K-1 

2047-bit cryptographic-strength pseudo random numbers [22], 

and this process is repeated for every secret being split into 

shares. More on the decision for its size is discussed in section 

VII. During the test, smaller coefficients were used, and we 

noticed that there were times where a zero was returned as a 

secure random number. This would have changed an entire 

term to zero during multiplication, so a check was added to 

add the value one to the secure random number when this was 

the case. The coefficients are stored in the coefficient array list 

and only accessed when generating shares, after which they 

are no longer useful since a different set of coefficients will be 

generated when processing another secret. 

3) Secret Share Generator 
private void genShares(int shares) { 

        long secret = Long.parseLong(jTextField2.getText()); 

        BigInteger coef, term, result; 

        secShares.clear(); 

        int i, j; 

        for (i = 0; i < shares; i++) { 

            result = BigInteger.ZERO; 

            for (j = 0; j < shares-1; j++) { 

                coef = (BigInteger) coefs.get(j); 

                term = (BigInteger.valueOf(i+1)).pow(j+1); 

                result = result.add(coef.multiply(term)); 

            } 



 

            result = result.add(BigInteger.valueOf(secret)); 

            secShares.add(result); 

        } 

    } 

The share generator above produces shares corresponding to 

each x input. It uses a polynomial such as (1) using the 

generated coefficients mentioned earlier, and produces as 

many shares as indicated by the global variable k. In this 

implementation, the x values are generated incrementally with 

a loop, and more remarks regarding this process will be 

mentioned in section VI. The resulting shares vary in size, 

depending on the number of shares being produced, but their 

sizes increase as the number of shares increase. The shares 

were also implemented as a BigInteger, again due to the 64-bit 

limitations of the long data type [20]. 

4) Secret Recovery Algorithm – summation portion 
private void secRecover() { 

        BigInteger pair, term; 

        lagSum = BigInteger.ZERO; 

        int i; 

        for (i = 0; i<K; i++) { 

            pair = (BigInteger) secShares.get(i); 

            term = pair.multiply(lagrange(i+1)); 

            lagSum = lagSum.add(term.mod(P)); 

        } 

        if ((K % 2) == 0) { 

            jTextArea1.append("M: " + 

P.subtract(lagSum.mod(P)) + "\n"); 

        } else { 

            jTextArea1.append("M: " + lagSum.mod(P )+ "\n"); 

        } 

    } 

 

The secret recovery algorithm above was implemented 

iteratively as it was the simplest implementation method at the 

time. A recursive method was not tested. This first algorithm 

implements the summation portion of the terms in (2). During 

the test trials, we noticed that for an even number of shares, 

the result resembled the prime rather than the secret. After 

closer inspection, when using an even number of shares the 

summation result has to be subtracted from the prime to obtain 

the secret back. For this reason a test is performed where if k 

mod 2 is 0, then the summation result is subtracted from the 

prime to obtain the secret. 

5) Secret Recovery Algorithm – cross product portion 
private BigInteger lagrange(int curShare) { 

 BigInteger numer = BigInteger.ONE; 

 BigInteger denom = BigInteger.ONE; 

 BigInteger result; 

 int i; 

 for (i = 1; i < K+1; i++) { 

  if (i != curShare) { 

   numer = numer.multiply(BigInteger.valueOf(i)); 

   denom = denom.multiply(BigInteger.valueOf(curShare-i)); 

  } 

 } 

 result = numer.multiply(denom.modInverse(P)); 

 return result; 

} 

An important component of the secret recovery algorithm is 

the cross product portion of (2) which is implemented as a 

sub-method and called within an iterative loop. This decision 

made it easier to read the code in terms of the summation and 

cross product portions of (2). Both the summation and cross 

product portions take advantage of the iterative loop used to 

generate the corresponding f(x) share for a given x value. This 

simplifies the code implementation. However, doing so raises 

issues which will be covered in section VI. 

C. Database Operations 

 This portion of the code consists of 5 methods, of which 4 

are basic database operations that could be implemented in a 

production environment. The operations are responsible for 

committing a record, fetching a record, deleting a record, and 

deleting all records. 

 Figure 2 below depicts the “add” button, which ensures that 

neither the name field nor the credit card number field is 

empty before proceeding. It then triggers the random 

coefficient generator, the share generator, and finally calls the 

record commitment method which is one of the 4 database 

operations. As mentioned previously in this section, x values 

for (1) is generated incrementally within a loop. For this 

reason, the databases are accessed in the same order every 

time. More remarks on this mechanism are found in section 

VI. 

 

Fig. 2. Proof of concept Application depicting some of the control buttons. 

Add, Delete, Recover Secret, and Loop all operate on the databases, while the 

independent local controls do not interact with any database, and are used for 
debugging. 

The record commitment method stores the various shares in 

the different databases. First, an SQL command is built, and a 

hash along with the corresponding share are concatenated to 

the SQL command. This command is then executed within a 

loop, where a different database is accessed, on each iteration. 

If a duplicate name field is found in the database, then the 

error is caught and signaled as an output in the DB Operations 

output area whose tab is shown in figure 2. Additional remarks 

on how x value generation may be improved are discussed in 

section VI.  

 Fetching a record works similarly as the record commitment 

function, where each database is accessed incrementally by 

means of a loop. Because every table only has 2 fields, name 

and share, the name field is used to search a corresponding 

share. For this work, the name field is built as a hash of the 

customer name times the hash of a password times the hash of 

the database where the corresponding share is to be fetched. 

More remarks on how the record name field is created are 

made in section VI. As the shares are fetched, they are placed 

in the share list to be used during the secret recovery step. If a 

record is not found, the error is caught and fetching the record 

fails. 

 Deleting a record works similarly as the record commitment 

method in that each database is accessed incrementally within 

a loop. The record name field is searched by calculating the 



 

hash of the customer name times the hash of a password times 

the hash of the database name where the corresponding share 

is being searched, and once found, the record entry is deleted. 

 Deleting all records in all databases is trivial, where every 

database is accessed and data in their respective tables is 

dropped. While this wouldn't seem to be a necessary or routine 

part of the implementation, this procedure may be used as part 

of a kill-switch in case of emergencies. 

D. Additional Methods 

 The remaining methods in the code consist of the detection 

of a duplicate entry when committing a record, a function that 

checks for valid input, a function that creates the name fields 

for each share using hashes of different data, and a test method 

that was used during the performance analysis. Details on the 

performance of the implementation will be reviewed in section 

V. 

V. PERFORMANCE ANALYSIS AND RESULTS 

The code was implemented in Java [17] using NetBeans 

8.0.2 [16] as the integrated development environment. The 

reasoning behind this decision was that the profiler available 

in NetBeans was the least intrusive means to measure the 

performance of the individual methods, capable of collecting 

CPU timing information at a fine granularity with no changes 

to the original code. The average CPU times in establishing 

connections are times to connect to the set of Amazon RDS [2] 

and Google SQL [3] databases as dictated by the number of 

shares k. 

 A test button was implemented which loops through 3 

principle methods: addRecord(); getRecord(); secRecover();. 

Of these three, we will focus on two, namely addRecord() and 

secRecover(), since these include the sub-methods and results 

we are more interested in. 

 As mentioned earlier in section IV, the addRecord() method 

is responsible for generating secure random coefficients[10], 

generating shares using a corresponding x value for each 

database, and committing the changes to the databases. There 

were 8 runs of the test loop to gather data on the generation of 

coefficients and pairs, each run executing the three methods 

stated earlier once. The times were then recorded and averaged 

on a spreadsheet.  

 

Fig. 3 Average CPU time to generate secure random coefficients. The number 

of coefficients generated per group of shares is (number of shares-1). 

 In figure 3, we can observe the performance results for the 

generation of secure random coefficients. On average, it took a 

mere 4.96ms to generate eleven 2047-bit secure random 

numbers. The fastest time was recorded at 3.93ms, whereas 

the slowest was 5.91ms. The results for any given number of 

shares will tend to vary slightly depending on the availability 

of resources on the test notebook computer; however, we can 

observe a clear trend that as the number of shares increase, the 

time it takes to generate secure random coefficients increases 

almost linearly. 

 

Fig. 4 Average CPU time to generate shares. 

In figure 4 above, we can clearly observe that as the number of 

shares generated increase, the time to generate said shares 

increases exponentially. This is due to the fact that, because 

we are implementing [10][11] as a (n, n) scheme where k=n, 

the polynomial used to generate a corresponding share will 

increase in degree for every additional share k. No tests were 

performed with methods using a fixed-sized polynomial, as 

that would counter our implementation of a (n, n) scheme. 

During the tests, eleven shares were produced at a mere 

2.11ms at its fastest, compared to 6.10ms at its slowest which 

is more than double the fastest time. These results also vary 

due to the availability of resources on the notebook computer. 

 During these tests, the results that stood out the most were 

the database connection times. The addRecord() method 

contains three sub-methods: genCoefs() which generates the 

secure random  coefficients; genPairs() which generates the 

corresponding shares to an x input; and commitRecord() to 

establish the database connections and store the information. 

 

Fig. 5 Average CPU time to add a record ‘A.’ vs. portion of time spent 

establishing database connections ‘C.’ per number of shares. 

In figure 5, we can observe how much time the 

commitRecord() method takes in the process of adding 

records to the databases. For each set of shares, the left 

column denoted by ‘A.x’ shows the average CPU time spent 

executing the three sub-methods, while the right column ‘C.x’ 

shows what portion of that time is spent establishing the 
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connection and sending the SQL INSERT command. From 

figure 5 we can conclude that the numbers of shares, and 

consequently the number of database connections being 

established, tend to have a more significant impact with 

respect to time than the methods involved in generating the 

secure random coefficients, and generating shares. 

The objective in the following test was to analyze the 

average CPU time it took to recover a secret based on the 

number of shares used. The secret recovery method produces 

the summation of the f(x) terms multiplied by the cross 

product performed in the sub-method. This was done by 

means of an iterative loop, which called the sub-method at 

each iteration. 

 

Fig. 6 Average CPU time to recover a secret per number of shares. 

As we can observe in figure 6 above, the average CPU 

times to compute the secret increases as the number of shares 

increase. During the tests, it took 78.50ms at best to recover 

the secret for eleven shares, compared 90.60ms at its slowest. 

While these results are for almost four times the number of 

shares as the test for three shares, we can also observe that 

there is not a significant impact on the average CPU time to 

recover a secret based on the number of shares. For three 

shares, it took an average of 35.48ms to recover the secret, 

whereas for eleven shares it took an average CPU time of 

83.68ms, which is a ratio of ~1:2.3. 

 

Fig. 7 Average CPU time to fetch shares denoted by ‘G.’ vs. average CPU 

time to recover secret denoted by ‘S.’. 

In figure 7 above, we can observe that the average CPU 

time to recover a secret denoted by ‘G.x’ does not produce as 

much of an impact as does the average CPU time spent 

establishing a connection denoted ‘S.x’ to recover the shares 

from the different databases. For example, using three shares 

as the data with the smallest gap, it took an average CPU time 

of 144.72ms to fetch all shares from the different databases, 

compared to an average CPU time of 35.48ms to recover the 

secret. In other words, it took roughly 25% of the average 

CPU time to recover the secret than it did to retrieve all shares 

from the different databases. 

 While the average CPU times during these tests were 

calculated by making connections to eleven databases across 

two providers as stated in the implementation details in section 

IV, these times may be expected to be different if the 

connections were to be made to more databases and providers 

around the world. In that case, we would mostly be concerned 

with the database connection times to recover the different 

shares, whereas the process to create the different shares or to 

recover the original secret would remain relatively 

insignificant in comparison. 

VI. SUGGESTED IMPROVEMENTS 

A. Generating x Inputs 

 Generating x values for (1) were fairly simple as they were 

generated by means of a loop, generating incremental values 

of x from 1 to k. A security improvement to this method would 

be to use larger values of x which are either database or 

service provider-specific. Using this method would not only 

allow databases to be accessed randomly, it would also reduce 

the correlation between different databases in terms of the 

order in which they are accessed. 

B. Generating Secure Random Coefficients 

Initially, 2048-bit coefficients were being generated. This 

quickly proved to be problematic since there may be times at 

which the coefficients were larger than the prime being used, 

which would violate the rule in [11] of P>C>0. A check was 

then implemented to compare the size of the prime and the 

coefficient, where coefficients would be regenerated if they 

were larger than the prime. This additional step was deemed 

unnecessary, resulting in the decision of removing it altogether 

and simply generating 2047-bit coefficients. This large 

coefficient still enforces the discrete logarithm problem [21]. 

C. Generating Record Name Fields 

 For the purpose of this paper, the record name field is built 

as a hash of the customer name times a hash of the customer 

password times a hash of the database address where the 

particular share is being stored. This was done in an effort to 

suggest that the correlation between record name fields for a 

particular secret across all databases be reduced, or different 

for every database. However, this particular method is not 

sufficient since customers may have several credit cards 

whose shares may be stored in a particular database. A 

solution would be to also include a hash of some combination 

of numbers from a specific card. For the purpose of this paper 

it was enough to show that shares for a particular secret need 

not have the same identifying fields across all databases, 

however, a better mechanism should be used to enable a 

customer to have multiple credit card shares stored in the same 

database without record name field conflicts. 

D. Shuffling Records 

An additional security measure would be to shuffle the 
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records in any one of the databases to reduce the correlation 

among records across different databases. If records 

corresponding to a same secret are located in the same region 

or have the same order in any particular database, and the 

number of shares needed to reconstruct the secret is known, 

and the respective databases are known, then it would be 

easier for an attacker to assemble the required shares in 

attempt to reconstruct a secret. The task would still be very 

difficult, but this additional layer of security in just one of the 

databases would be enough to render the task even more 

difficult. 

E. Diversity in Providers 

This project advocates the use of multiple providers in 

effort to not only reduce the risks associated with a breach, but 

also to ensure availability. Although only two providers were 

used in this implementation, more could be used if desired, 

which would also afford new availability features. More on 

availability will be explained later in this section. 

Additionally, as suggested by [11], we would like to view 

providers as mutually suspicious with conflicting interests, 

which is why we do not want to store all shares for a particular 

secret within one same provider. 

F. Planning For Redundancy 

Although this implementation isn't a traditional (k, n) 

threshold scheme, that concept may be extended to the number 

of providers. For instance, for a secret that is split into fifteen 

shares and stored across three different databases or providers, 

it only takes one of those databases or providers to be 

unavailable for the secret to be unrecoverable. Instead, a 

threshold implementation would maybe create thirty shares to 

be spread over five providers for instance, and randomly 

accessing any combination of three providers would be 

enough to recover a secret. Together with the suggestion in 

‘F.’, whenever the number of shares needed to reconstruct the 

secret is reached, all other connection attempts can be aborted. 

Additionally, having shares across different providers ensures 

that not all shares required to recover a secret are stored within 

one same provider. 

VII. CONCLUSION 

We have shown that implementing Shamir’s secret sharing 

scheme to store credit card information on a multi-provider 

cloud architecture can be a viable solution. The performance 

tests show that the process of generating shares and recovering 

the secret is relatively fast and efficient when compared to the 

time spent establishing database connections, and this is valid 

for any application needing to connect to remote databases. 

The security feature of not being able to recover credit card 

information should any of the databases be breached brings an 

advantage that single-provider or singe local databases do not. 

This paper has shown that the Shamir secret sharing scheme is 

fast, reliable and secure, but most importantly that it is 

applicable. The suggested improvements in section VI along 

with additional contributions could produce a more secure and 

production-ready implementation for multiple environments. 
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