
 I

Security Evaluation of Web Application

Vulnerability Scanners’ Strengths and Limitations

Using Custom Web Application

By

Yuliana Martirosyan

A thesis submitted in fulfillment of the requirements for the

degree, Master of Science in Computer Science

California State University - East Bay

October - 2012

 II

Evaluation of Web Application Vulnerability

Scanners’ Strengths and Limitations Using

Custom Web Application

By

Yuliana Martirosyan

Approved By: Date:

Dr. Levent Ertaul (Advisor)

______________________ ________________

Dr.

______________________ ________________

Dr.

______________________________ ______________________

Abstract

 III

Abstract

Security and privacy concerns grow rapidly as the number of Internet users and areas of life

involving the Web grow. Web application vulnerability scanners (WAVS) help to automate

the process of identifying such security concerns in web based applications. In today's

market, a large number of web application scanning tools are available, e.g. QualysGuard

WAS, Acunetix, Hailstorm, Appscan, WebInspect, and etcetera.

All around the world, web application developers use such scanning tools to verify their

products’ security and to preserve the confidentiality, integrity, and availability of

developed web applications for their customers. Although these tools are available in the

market, the question becomes how efficient they are in addressing security concerns in web

applications. Scanner developers use existing web applications that are publicly available

on the web to assess the vulnerability detection rate of WAVS. Those applications are well

known, and as a result, WAVS developers may use them to optimize their performance. To

compare vulnerability detection rate and evaluate different WAVS, it is important to have

an independent test suite.

This thesis describes a web application that is intended to be used to evaluate the efficiency

of QualysGuard WAS and Acunetix WVS WAVS. The application implements real-life

scenarios that imitate the Open Web Application Security Project (OWASP) Top Ten

Security Risks that are presented in the wild.

For the vulnerabilities presented in this application, we also explain defense measures,

Abstract

 IV

which secure the application significantly.

In this thesis an experiment was conducted by running QualysGuard WAS and Acunetix

WVS against our test suit. The results of the test are presented as the evaluation reports.

They identify the most challenging vulnerabilities for WAVS to detect, and compare their

effectiveness as penetration testing tools for exploiting OWASP Top Ten vulnerabilities.

The assessment results can suggest areas that require further research to improve a

scanner’s detection rate.

Table Of Contents

 V

Table Of Contents

Abstract ... III	

Table Of Contents .. V	

Figures.. X	

Tables .. XII	

Chapter 1 ... 1	

Introduction ... 1	

1.1 Introduction ... 2	

1.2 Organization of Thesis .. 5	

Chapter 2 ... 7	

Open Web Application Security Project (OWASP) Top Ten Web Application

Vulnerabilities ... 7	

2.1 Introduction ... 8	

2.2 Injection Vulnerability .. 8	

2.2.1 Exploiting SQLI Vulnerability .. 10	

2.3 Cross Site Scripting (XSS) Vulnerability ... 13	

2.3.1 Exploiting XSS Vulnerability .. 15	

2.4 Broken Authentication Vulnerability .. 18	

2.4.1 Exploiting Broken Authentication Vulnerability ... 19	

2.5 Insecure Direct Object Reference Vulnerability ... 20	

Table Of Contents

 VI

2.5.1 Exploiting Insecure Direct Object Reference Vulnerability 21	

2.6 Cross Site Request Forgery (CSRF) Vulnerability .. 22	

2.6.1 Exploiting CSRF Vulnerability ... 23	

2.7 Security Misconfiguration Vulnerability .. 24	

2.7.1 Exploiting Security Misconfiguration Vulnerability ... 25	

2.8 Insecure Cryptographic Storage Vulnerability ... 27	

2.8.1 Exploiting Insecure Cryptographic Storage Vulnerability 28	

2.9 Failure to Restrict URL Access Vulnerability .. 28	

2.9.1 Exploiting Failure to Restrict URL Access Vulnerability 28	

2.10 Insufficient Transport Layer Protection Vulnerability ... 29	

2.10.1 Exploiting Insufficient Transport Layer Protection Vulnerability 29	

2.11 Un-validated Redirect and Forward Vulnerability ... 30	

2.11.1 Exploiting Un-validated Redirect and Forward Vulnerability 30	

2.12 Conclusion .. 31	

Chapter 3 ... 32	

Implementation of MusicStore Web Application for Evaluation of Web Application

Vulnerability Scanners (WAVS) .. 32	

3.1 Introduction ... 33	

3.2 Modeling User Behavior ... 34	

3.3 Technical Characteristics of MusicStore .. 36	

3.4 Vulnerabilities Implementation .. 39	

3.4.1 SQL Injection (SQLI) Implementation .. 40	

3.4.2 Cross-Site Scripting (XSS) Implementation .. 45	

Table Of Contents

 VII

3.4.3 Broken Authentication Implementation ... 56	

3.4.4 Insecure Direct Object Reference (DOR) Implementation 58	

3.4.5 Cross-Site Request Forgery (CSRF) Implementation .. 60	

3.4.6 Security Misconfiguration Vulnerability Implementation 63	

3.4.7 Insecure Cryptographic Storage Implementation .. 65	

3.4.8 Failure to Restrict URL Access Implementation ... 67	

3.4.9 Insufficient Transport Layer Protection Implementations 67	

3.4.10 Un-validated Redirect and Forward Implementations 68	

Conclusion .. 70	

Chapter 4 ... 71	

Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques 71	

4.1 Introduction ... 72	

4.2 SQLI Defense .. 73	

4.3 Cross-Site Scripting (XSS) Defense ... 75	

4.4 Broken Authentication Defense, Session Management and Transport Layer

Protection .. 76	

4.5 Insecure Direct Object Reference Defense ... 78	

4.6 Cross-Site Request Forgery Defense .. 78	

4.7 Security Misconfiguration Defense .. 78	

4.8 Insecure Cryptographic Storage .. 79	

4.9 Failure to Restrict URL Access Defense .. 79	

4.10 Un-validated Redirect and Forward Defense .. 80	

4.11 Conclusion .. 80	

Table Of Contents

 VIII

Chapter 5 ... 81	

Automated Web Vulnerability Scanning .. 81	

5.1 Introduction ... 82	

5.2 Web Application Vulnerability Scanners (WAVS) .. 82	

5.3 Automated Scanning Functionality ... 86	

5.4 QualysGuard Web Application Scanner (WAS) Overview .. 89	

5.5 Acunetix Web Vulnerability Scanner (WVS) Overview .. 91	

5.6 Conclusion .. 92	

Chapter 6 ... 93	

Evaluation Environment and Setup .. 93	

6.1 Introduction ... 94	

6.2 Evaluation Environment ... 94	

6.3 Evaluation Setup ... 95	

6.3.1 Preparation ... 96	

6.3.2 Execution ... 96	

6.3.3 Counting and Classification of the Results .. 97	

6.3.4 Analysis.. 98	

6.4 Conclusion .. 98	

Chapter 7 ... 100	

Evaluation of Web Application Vulnerability Scanners (WAVS) 100	

7.1 Introduction ... 101	

7.2 Evaluation Results .. 103	

7.2.1 Results of Detected and False Negative Vulnerabilities 103	

Table Of Contents

 IX

7.2.2 Results of False Positive Vulnerabilities ... 115	

7.3 Evaluation Analysis .. 122	

7.3.1 Analysis of Detected and False Negative Vulnerabilities 122	

7.3.2 Analysis of False Positive Vulnerabilities ... 128	

7.4 Conclusion .. 132	

Chapter 8 ... 133	

Conclusion .. 133	

References .. XIV	

Appendix - I .. XXIV	

Source Code and Deployment Guide of MusicStore Web Application XXIV	

A.1 Introduction ... XXV	

A.2 Model classes ... XXVI	

A.3 Controller classes .. XXVIII	

A.2 View classes .. XXX	

A.3 Source Code .. XXXIII	

A.4 Creation of Music Oracle Database .. XXXIV	

A.5 Deployment and Running of MusicStore ... XLIV	

Appendix - II ... XLV	

Publications ... XLV	

Figures

 X

Figures

Figure 1.1: Distribution of web application vulnerabilities over years (2008-2011) 3	

Figure 2.1: Bay Area Rapid Transit (BART) Service Hacking Strategy 9	

Figure 2.2: Non-Persistent XSS Vulnerability .. 14	

Figure 2.3: Persistent XSS Vulnerability .. 15	

Figure 2.4. Two Ways to Bypass Broken Authentication .. 18	

Figure 2.5: Creation of a Dictionary of USA Cities ... 20	

Figure 2.6: Directories on a Web Server .. 22	

Figure 2.7: CSRF Schema .. 23	

Figure 2.8: States of 1000 Connections .. 26	

Figure 3.1: Real-life user behavior. New user registration and shopping cart creation 34	

 Figure 3.2: Real-life user behaviors. Reviews ... 35	

Figure 3.3: Real-life user behaviors. User Account .. 36	

Figure 3.4: MusicStore Database EER Diagram .. 38	

Figure 3.5: MusicStore MVC Pattern ... 39	

Figure 3.6: First Order SQLI .. 41	

Figure 3.7: Client-Side Input Validation .. 46	

Figure 3.8: Modified HTTP Request with XSS Payload .. 47	

Figure 3.9: ‘First Name’ and ‘Country’ Fields are Vulnerable to XSS Attack 49	

Figure 3.10: Regular ‘Reviews’ Page ... 50	

Figure 3.11: HTTP Request with XSS Payload .. 51	

Figures

 XI

Figure 3.12: HTTP Request with XSS Payload .. 52	

Figure 3.13: XSS Vulnerable AJAX Page .. 55	

Figure 3.14: ‘Lock out’ Mechanism is not implemented .. 58	

Figure 3.15: HTTP Request with Insecure DOR Vulnerability .. 59	

Figure 3.16: Attacker Accessed the ‘server.xml’ .. 60	

Figure 3.17: Attacker Uses User’s JSESSIONID to Access His/Her Personal Data 62	

Figure 3.18: Attacker Changes Victim’s Password Using GET Method of HTTP Request 64	

Figure 3.19: Redirection from MusicStore to example.com ... 69	

Figure: 5.1 QualysGuard WAS Web Application Scanning Lifecycle 89	

Figure 8.1: Acunetix. Detected and False Positive/Duplicate/Maybe Results. 135	

Figure 8.2: QualysGuard. Detected and False Positive/Duplicate/Maybe Results. 136	

Tables

 XII

Tables

Table: 5.1 WAVS Requirements .. 83	

Table: 5.2 WAVS Features According to WASSEC .. 85	

Table 7.1: Results of WAVS assessment .. 102	

Table 7.2: SQLI Vulnerabilities Detection Results .. 104	

Table 7.3: XSS Vulnerabilities Detection Results .. 106	

Table 7.4: Broken Authentication and Session Management Vulnerabilities Detection

Results ... 107	

Table 7.5: Insecure Direct Object Reference Vulnerability Detection Results 108	

Table 7.6: Cross-Site Request Forgery (CSRF) Vulnerabilities Detection Results 108	

Table 7.7: Security Misconfiguration Vulnerabilities Detection Results 109	

Table 7.8: Insecure Cryptographic Storage Vulnerabilities Detection Results 111	

Table 7.9: Failure to Restrict URL Access Vulnerability Detection Results 112	

Table 7.10: Insufficient Transport Layer Protection Vulnerabilities Detection Results 113	

Table 7.11: Un-validated Redirect and Forward Vulnerability Detection Results 114	

Table 7.12: True False Positive Results by Acunetix WVS (A) and QualysGuard WAS (Q)

... 116	

Table 7.13: ‘Maybe’ Results by QualysGuard WAS (Q) ... 117	

Table 7.14: ‘Duplicate’ Results by Acunetix WVS (A) ... 118	

Table 7.14: ‘Duplicate’ Results by Acunetix WVS (A) (continued) 119	

Table 7.15: ‘Duplicate’ Results by QualysGuard WAS (Q) ... 120	

Tables

 XIII

Table 7.16: False Positive Results by Acunetix WVS (A) and QualysGuard WAS (Q) 121	

Chapter 1 Introduction

 1

Chapter 1

Introduction

Chapter 1 Introduction

 2

1.1 Introduction

Web applications have become an integral part of recent industry and our lives. Much of

today’s online business, including university account management, social networking,

email, banking, and shopping, are available online with use of web applications. Since e-

commerce has grown significantly, there has been an exponential increase in online

transactions in the past few years. US online retail sales grew 12.6% in 2010 to reach

$176.2 billion. With an expected 10% compound annual growth rate (CAGR) from 2010 to

2015, US e-commerce is expected to reach $278.9 billion in 2015 [1].

The data that web applications handle, such as credit card numbers and shopping activity

information, typically is of considerable value to the users and the service providers. In

order to be sustainable, web applications should protect the user’s data from unauthorized

access, use, disclosure, disruption, modification, perusal, inspection, and recording or

destruction. But often, it fails to satisfy these requirements. The root cause of most security

risks on the Web is based on vulnerabilities in web applications [2], [3].

According to National Vulnerability Database (NVD) [4], the number of vulnerabilities has

lessened since 2009, which means that security measures have been implemented over the

last few years. As shown in Figure 1.1, in 2008 the number of vulnerabilities reported by

NVD was 5,632; in 2009 the number of vulnerabilities increased to 5,733. But starting from

2010, NVD reported the decrease of vulnerabilities on the Web: 4,639 in 2010 and 4,151 in

2011.

Chapter 1 Introduction

 3

Figure 1.1: Distribution of web application vulnerabilities over years (2008-2011)

Nevertheless, the likelihood that at least one vulnerability will appear in a website remains

very high. During 2010, almost every website was exposed, daily, to at least one highly,

critically, or urgently severe vulnerability, and 64% of these were exposed to at least one

Information Leakage vulnerability [4], [5], [6].

This has led to a need for developers to increase their attention to web application security.

But, due to lack of knowledge or time constraints, developers tend to ignore security

precautions, and some vulnerabilities are discovered during the web application testing

stage or even after applications are deployed. To locate the possible vulnerability in the

code, Web Application Vulnerability Scanners (WAVS) are used. WAVS are automated

tools used to test web applications for common security problems. WAVS search for web-

application-specific vulnerabilities and look for software coding errors, such as illegal input

strings and buffer overflows [7], [8], [9].

Chapter 1 Introduction

 4

WAVS have strengths but also limitations. Vulnerability detection rates may vary

depending on the architecture of WAVS, as well as implementation of crawling and

attacking modules. The other important feature is the availability of attacking vectors

responsible for different vulnerability types. To analyze and assess these shortcomings, the

evaluation of two WAVS, QualysGuard Web Application Scanner (WAS) [10] and

Acunetix Web Vulnerability Scanner (WVS) [11], is presented in this thesis. The decision

to use QualysGuard WAS and Acunetix WVS was made based on the features they

provide, including the ability to:

• Identify all types of vulnerabilities listed in Open Web Application Security Project

(OWASP) Top Ten report [2];

• Support a web application authentication scheme, a login mechanism for securing

Web applications by determining the user’s identity before granting that user access

to application resources [12];

• Support web applications with JavaScript [13] and AJAX.

In order to conduct up-to-date and thorough evaluation of WAVS, there is a need to have an

independent Web Application, which must have real life scenarios and the ability to

implement OWASP Top Ten vulnerabilities.

The MusicStore web application presented in this thesis is designed to realistically simulate

the steps a regular user goes through while using a dynamic web page, and it replicates the

behavior of an online store. The MusicStore implements OWASP Top Ten vulnerabilities

that are used to access the detection rate of the WAVS. The MusicStore also implements

Chapter 1 Introduction

 5

the defense mechanisms against OWASP Top Ten vulnerabilities to measure the false

positive rate of WAVS.

In this thesis, the implementation details of the MusicStore application are presented, along

with the results obtained from testing QualysGuard WAS and Acunetix WVS by running

the WAVS on the MusicStore web application. Furthermore, these results are used to

compare the WAVS based on their testing techniques.

1.2 Organization of Thesis

In this thesis, the list of vulnerabilities presented in OWASP Top Ten report is reviewed.

Vulnerabilities in MusicStore application are implemented and used to evaluate two

commercial WAVS: QualysGuard WAS and Acunetix WVS. The evaluation results are

analyzed and conclusions are given as to capabilities that would improve scanning results.

This thesis is organized in the following chapters.

Ø Chapter 2: In this chapter we describe each of the OWASP Top Ten vulnerabilities

and illustrate how to exploit these web application flaws.

Ø Chapter 3: In this chapter we implement OWASP Top Ten vulnerabilities in our

custom test application (MusicStore), and discuss the implementation details of

vulnerabilities.

Ø Chapter 4: In this chapter, we show the implementation of secure coding

techniques to avoid OWASP Top Ten vulnerabilities. We present the following

defense mechanisms against web application vulnerabilities:

Chapter 1 Introduction

 6

• SQL Injection Defense	

• Cross-Site Scripting (XSS) Defense	

• Broken Authentication Defense, Session Management and Transport Layer

Protection	

• Insecure Direct Object Reference Defense	

• Cross-Site Request Forgery Defense	

• Security Misconfiguration Defense	

• Insecure Cryptographic Storage Defense	

• Failure to Restrict URL Access Defense

• Unvalidated Redirect and Forward Defense	

Ø Chapter 5: In this chapter the mechanisms of testing an application using WAVS,

as well as general information about QualysGuard WAS and Acunetix WVS are

reviewed.

Ø Chapter 6: In this chapter, we demonstrate how to scan the MusicStore web

application.

Ø Chapter 7: In this chapter, WAVS scan reports are presented and the main areas

where WAVS require improvements are presented.

Ø Chapter 8: In this chapter, conclusions are offered.

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 7

Chapter 2

Open Web Application Security Project

(OWASP) Top Ten Web Application

Vulnerabilities

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 8

2.1 Introduction

The Open Web Application Security Project (OWASP) security community has released its

annual report capturing the top vulnerabilities and risks in web application development as

a combination of the probability of an event and its consequence [2]. The OWASP Top Ten

vulnerabilities are:

A1. Injection

A2. Cross-Site Scripting (XSS)

A3. Broken Authentication and Session Management

A4. Insecure Direct Object References

A5. Cross-Site Request Forgery (CSRF)

A6. Security Misconfiguration

A7. Insecure Cryptographic Storage

A8. Failure to Restrict URL Access

A9. Insufficient Transport Layer Protection

A10. Un-validated Redirect and Forward

Each of the OWASP Top Ten vulnerabilities is described in detail in corresponding

sections that illustrate how to exploit flaws.

2.2 Injection Vulnerability

Many types of vulnerabilities, including SQL Injection (SQLI), belong to the general class

of injection flaws. Introducing malicious data into a computer program causes an injection

attack [14]. Malicious data can enter the program at specific places and later are exploited

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 9

by an attacker. Apart from SQLI, there are other prominent examples for injection

vulnerabilities: XML injection [15], OS commands injection [16], and SSI injection [17]. In

this thesis, SQLI vulnerability type is the focus, because it occurs more frequently in real-

world applications than the other types of Injection vulnerability. SQLI vulnerability occurs

when there is a possibility of tricking the SQL engine into executing unintended commands.

In dynamic SQL statements, an attacker supplies malicious data to a vulnerable application.

This data is used to perform SQLI attacks that can be executed on any web application

based on almost any web technologies, like Java [18], ASP.NET [19] and PHP [20] with

any type of SQL database at the back-end.

For example, in August 2011, an Anonymous group attacked the Bay Area Rapid Transit

(BART) service by hacking into one of its websites and leaking the personal information of

over 2,400 passengers [21].

The Figure 2.1 shows the hacking strategy of SQLI.

Figure 2.1: Bay Area Rapid Transit (BART) Service Hacking Strategy

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 10

As shown in Figure 2.1, both the attacker and user had access to the Internet. User has

provided his/her credentials, username and password via web application. Web application

has stored the user data to the SQL server.

An attacker crafts HTTP requests that are sent to the web server to inject commands to the

SQL server in order to gain system level access. The vulnerable web application allows this

malicious code to be placed on an SQL server, thus making it possible for the attacker to

use SQLI commands to get user account credentials.

2.2.1 Exploiting SQLI Vulnerability

SQLI vulnerabilities are exploited using SQLI attacks. SQLI attacks are usually divided

into three categories [14]: First Order SQLI Attack, Second Order or Blind SQLI Attack,

and Database Constants SQLI Attack.

Ø First Order SQLI Attack

During First Order SQLI Attack, a malicious string is used as an input to a function that

calls an SQL query, which is executed immediately. In this way, the injection result is

reflected right away; thus, the vulnerability is called Reflected SQLI, or First Order SQLI

vulnerability.

For example, recoverPassword function is intended to recover the user’s password based

on his/her answer to a security question.

String recoverPassword(String emailAddress, String answer){

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 11

…

String query = "SELECT Password FROM v_UserPass WHERE

(v_UserPass.EmailAddress = '" + emailAddress + "' AND v_UserPass.Answer = '" +

answer + "') ";

…

}

Payload:

emailAddress=test%40test.com%27%29 -- &answer=anycolor

In recoverPassword function, concatenation is used to create dynamic SQL query. An

attacker can easily impersonate a site user and recover a victim’s password by commenting

out the part of the query using ‘--’ single-line comment indicator [22]. The payload is

constructed, taking into account the SQL server type (Oracle, etc.), because for each SQL

server type, different symbols should be used to form a valid SQL query. In other words,

using symbols in payloads, such as comment indicator ‘- -’ or semi-colon ‘;’ is very server

specific. The attackers usually use a list of possible symbols and payloads in order to

perform successful exploitation.

The First Order attack is not always easy to execute because it is not simple to find out the

name of the table and column being used in the SQL database. To overcome this challenge,

an attacker can use another type of SQL injection: Second Order or Blind SQLI Attack.

Ø Second Order or Blind SQLI Attack

 During Second Order or Blind SQLI Attack, malicious data is inserted into a database and

an attack is subsequently executed by another activity. The data is stored on an SQL server;

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 12

thus, the vulnerability is called Stored SQLI or Second Order SQLI vulnerability. By

manipulating query parameters, the attacker can determine execution logic (true/false) of an

SQL statement.

For example, updatePassword function is intended to update user’s password based on

his/her email address.

String updatePassword (String answer, String emailAddress){

…

String String query = "UPDATE v_UserPass SET Password = ?, Answer = '"+

answer+ "' WHERE EmailAddress = '"+ emailAddress + "'";

…

}

Manipulation of the ‘answer’ query parameter lets the attacker verify if the email address

he/she is interested in is stored in application database.

True payload:

password=test11&answer=red%27+WHERE+EmailAddress%3D%28%27existedEmail%

40test.com%27%29--

If there is a user with ‘existedEmail@test.com‘ email address in application database, then a

query will be executed.

False payload:

password=test11&answer=red%27+WHERE+EmailAddress%3D%28%27notExistedEmai

l%40test.com%27%29--

If there is no user with ‘notExistedEmail@test.com‘ email address in the application

database, then the query will fail.

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 13

Ø Database Constants SQLI Attack

Using database constants, or SQL server functions, an attacker can reveal some additional

information about the database and SQL server.

For example, insertReview function adds customer product reviews to a database in an

online store.

String insertReview (String title){

…

String query = "INSERT INTO Reviews (Title) VALUES (‘"+title + "')";

…

}

Payload: title=%27%7C%7CSYSDATE%7C%7C%27

SYSDATE is an Oracle function, which returns the date and the time on a local database.

By using SYSDATE in a payload, the attacker receives additional information about the

SQL server.

2.3 Cross Site Scripting (XSS) Vulnerability

Cross Site Scripting (XSS) vulnerability occurs when there is a possibility of injection of

malicious code in web application. Thus, the XSS flaw is as a result of not validated or

sanitized input parameters. There are three types of XSS: Non-Persistent, sometimes also

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 14

called Reflected XSS; Persistent or Stored XSS; and Document Object Model (DOM)-

based [23].

Ø Non-Persistent XSS Vulnerability

This vulnerability occurs when a web application accepts an attacker’s malicious request

that is then echoed into the application's response in an unsafe way.

Figure 2.2 demonstrates non-persistent XSS flaw.

Figure 2.2: Non-Persistent XSS Vulnerability

As shown in Figure 2.2, the attacker sends an email that contains a link. User clicks the link

and a request with a payload is sent to a page vulnerable to XSS. The page accepts the

malicious data (script), adds it in the response, and returns to the user’s browser. The user’s

browser interprets the page and injected script is executed.

Ø Persistent XSS Vulnerability

This vulnerability occurs when a web application accepts the attacker’s malicious request,

stores it in a data source, and later displays the information from the request to a wide range

of users. As shown in Figure 2.3, the attacker first injects the malicious data (payload) to a

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 15

Web server that is vulnerable to XSS. Later, when a user tries to access a web page on the

vulnerable server by sending an HTTP Request, the malicious script is returned with an

HTTP Response and the user’s browser executes the payload.

Figure 2.3: Persistent XSS Vulnerability

Ø DOM-Based XSS Vulnerability

This vulnerability doesn’t involve server validation. The attack works on a web browser,

avoiding the server side [24]. The DOM ‘environment’ in the victim’s browser is modified

by original client-side script, and as a result of that, the payload is executed.

2.3.1 Exploiting XSS Vulnerability

XSS vulnerabilities are exploited by using XSS attacks. XSS attacks are usually divided

into three categories: Non-Persistent or Reflected XSS Attack; Persistent or Stored XSS

Attack; and DOM-Based XSS Attack [14].

Ø Non-Persistent or Reflected XSS Attack

Here we present examples of Non-Persistent XSS attacks in Java and JSP Expression

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 16

Language [25]. User registration information is saved in an online store database after

‘creditCardNumber’ parameter is validated on the server side. No input inspection for

‘firstName’ parameter is performed.

<form action="registrationServlet" method=post>

 First Name <input type="text" name="firstName”

 value="${newUser.firstName}">

 Card number <input type="text" name="creditCardNumber">

 <input type="button" value="Continue">

</form>

Payload:

firstName=John"'><script>alert("firstName parameter is

vulnerable")</script>&creditCardNumber=1234

If the credit card number is incorrect, ‘firstName’ value will be reflected on the web page.

Ø Persistent or Stored XSS Attack

In this example, we perform Persistent XSS attack using insertReview function, which adds

customer product reviews in server side database in an online store.

String query = "INSERT INTO v_Reviews (Message) VALUES (“'"+ message+ “"')";

Payload:

message=message+%3Cscript%3Ealert%280%29%3C%2Fscript%3E&SUBMIT=Submit

Payload is reflected:

 <table name="ReviewContent">

 <tr><td>Message</td>

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 17

 <td><script>alert(0)</script></td>

 </tr>

 </table>

The review (payload) is saved on server side. When a victim’s browser sends a request to

view attacker’s review, the malicious code is executed.

Ø DOM-Based XSS Attack

In this DOM-Based Attack example, an online store web page uses ‘firstName’ parameter

in the URL to greet the user. The web browser parses this HTML, which is received from

server, into DOM. The web page contains the following code:

 <div id="greeting">

 Hello

 <SCRIPT>

 var url = window.location.href;

 var pos = url.indexOf("firstName=") + 10;

 var firstName_string = url.substring(pos);

 document.write(unescape(firstName_string));

 </SCRIPT>

 </div>

The payload that exploits this DOM-based XSS vulnerability simply needs to replace the

value of variable ‘firstName’ in the URL.

http://www.vulnerableStore/join_email_list.jsp?firstName=%3Cscript%3Ealert%28%22DO

M%20XSS%22%29%3C/script%3E

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 18

The browser’s parser executes the JavaScript code and the XSS vulnerability is exploited.

Because the browser doesn’t send the value of ‘firstName’ parameter to the web server, the

malicious code remains undetected even if the server is performing input validation.

2.4 Broken Authentication Vulnerability

The user authentication on the web typically involves the use of a user’s ID and password.

Stronger methods of authentication are commercially available, such as software- and

hardware-based cryptographic tokens [26] or biometrics [27]. But these mechanisms are

cost-prohibitive for most web applications.

When the authentication mechanism does not provide enough protection, an attacker can try

to obtain credentials by using different techniques or some other combination.

Simple password recovery mechanisms can become victims of a social engineer who

manipulates a user into revealing confidential information.

Figure 2.4. Two Ways to Bypass Broken Authentication

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 19

Figure 2.4 demonstrates a vulnerable authentication mechanism. To recover a password, a

user needs to provide only his/her pet’s name as secret data. The attacker uses a social

engineering technique to find out whether a victim has a pet or pets. Later, he/she performs

a brute force attack (dictionary method) [28] using a list of pet names, to gain access to

victim’s account.

2.4.1 Exploiting Broken Authentication Vulnerability

In this example, the password recovery mechanism is based on a secret question and

answer. A user provides the name of the city, when he/she was born and his/her password is

immediately displayed on a web page without further verifications. Using social

engineering, an attacker can guess the country. Then by using a dictionary method, the

attacker finds the city and obtains the victim’s credentials. Brute force attack is widely used

to obtain log-in credentials, session identifiers, and credit card information with the help of

brute force tools [29], [30], [31]. Attackers can use these tools and proxy applications such

as Paros [32], Webscarab [33] and BurpSuite [34] to access a user’s private information.

Brute force attack is very simple:

1. The intercepted request is sent to the Intruder application;

2. The parameter, which is supposed to be brute forced, is selected;

3. The payloads are formed and configured to be used in the task (Figure 2.5);

4. The attack begins.

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 20

Figure 2.5: Creation of a Dictionary of USA Cities

Figure 2.5 shows the snap shot of BurpSuite usage. The list of all cities in USA is loaded as

payload and forms a dictionary. Using the BurpSuite as proxy and brute force tool an

attacker intercepts the HTTP request and performs a dictionary attack.

2.5 Insecure Direct Object Reference Vulnerability

There are many applications that expose their internal objects to users. This may cause

Insecure Direct Object Reference Vulnerability, a situation when files, directories, and

database records are exposed to a user.

For example, a web server is configured to interpret command line path strings, such as

‘../’. An attacker takes advantage of this configuration and accesses files from other

locations in the file system by manipulating the path string. An incorrect web server

configuration, like the one described above is considered Insecure Direct Object Reference

vulnerability.

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 21

2.5.1 Exploiting Insecure Direct Object Reference Vulnerability

Using Directory traversal method [35], an attacker can exploit Insecure Direct Object

Reference Vulnerability, getting access to command shells and password stores. In other

words, Directory Traversal is an HTTP exploit that allows attackers to access restricted

directories and execute commands outside of the web server’s root directory.

Figure 2.6 demonstrates how a user can access a ‘passwd’ file on Unix-like operating

systems. In Unix-like operating systems the ‘/etc/passwd’ file is a text-based database of

information about either users who may log in to the system or operating system user

identities that own running processes. In this example, ‘passwd’ is stored right under the

main directory. The vulnerable web application allows a user to access sensitive files placed

on a web server by stepping out of the root directory using ‘../’.

Payload: ../etc/passwd

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 22

Figure 2.6: Directories on a Web Server

It takes only one directory up to the main drive and then to 'etc' directory to show the

content of 'passwd' file. An attacker easily reaches the ‘passwd’ file and takes advantage of

a user’s confidential information.

If Insecure Direct Object Reference vulnerability is present in a web application, then it can

be affected by a group of other vulnerabilities, such as SQLI, Insecure Communication, and

Malicious File Execution [36].

2.6 Cross Site Request Forgery (CSRF) Vulnerability

CSRF attacks have been called the ‘sleeping giant’ of web-based vulnerabilities [37]. CSRF

vulnerability occurs when an attacker can force a victim’s web browser to make a request to

a website of the attacker’s choosing.

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 23

Figure 2.7: CSRF Schema

2.6.1 Exploiting CSRF Vulnerability

A CSRF attack forces a logged-on victim's browser to send a pre-authenticated HTTP

request to a web application. This web application then forces the victim's browser to

perform actions without the user’s knowledge.

Figure 2.7 demonstrates the exploitation of CSRF vulnerability. An attacker has placed a

malicious script to some vulnerable web application. Later, a victim (User) browses a

vulnerable web application. This application has an HTML image element that references a

script to the victim's bank's web site.

Malicious CSRF code:

<img src="http://www.vulnerableStore/updateUserPassword?password=falsepass"

width="1" height="1" border="0">

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 24

If the victim's bank keeps his/her authentication information in a cookie, then the script will

submit the withdrawal form with his/her cookie.

Another example is when an attacker tries to steal user cookies. A web program is placed

on attacker’s web server as http://www.badapplication.com/cookieloger.php. A malicious

CSRF code is inserted as a signature or a post in the victim’s forum.

Malicious CSRF code:

<img src="http://www.badapplication.com/cookieloger.php" width="1" height="1"

border="0">

When the victim sees the post, he also views the uploaded image and the cookies are saved

in attacker’s log file. Simply by replacing the cookies in an HTTP request, the attacker

gains access to the victim’s account.

2.7 Security Misconfiguration Vulnerability

This type of vulnerability occurs when application, frameworks, application server, web

server, database server, and platform configurations are not securely defined to prevent

unintentional leakage of information.

For example, a web application can use the GET method in an HTTP request for

transferring password information. But while using the GET method, the browser encodes

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 25

form data into a URL. Since form data is in the URL, it is displayed in the browser's

address bar, and information leakage occurs.

GET http://www.vulnerableApp.com/updateUserPassword?password=falsepass HTTP/1.1

Host: vulnerableApp.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101

Firefox/11.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Proxy-Connection: keep-alive

Referer: http:// vulnerableApp.com/displayAccountPassword

Cookie: JSESSIONID=98224C7236B39895384AD3A760E405AB

While using the POST method, form data appears within the message body of the HTTP

request, not the URL. Thus, password information is not revealed. To avoid security

misconfiguration vulnerability in the above example, the password should be transferred via

POST method [38].

2.7.1 Exploiting Security Misconfiguration Vulnerability

Maintaining security settings of the application, frameworks, application server, web server,

database server, and platform is a very complex problem. The vulnerabilities can occur not

only on the application level, but also in web server configuration settings.

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 26

For example, a web application server may be vulnerable to Slow HTTP Headers Denial of

Service (DoS) attack. Using the slowhttptest [39] tool, an attacker can get denial of service

by slowing down requests.

Figure 2.8: States of 1000 Connections

Figure 2.8 is a screen shot of running the slowhttptest tool against a vulnerable server. The

tool performs a slow HTTP headers (SlowLoris [40]) DoS attack, which drains severs’

concurrent connections pool, thus causing denial of service for legitimate clients. The tool

aims to open 1000 connections at a rate of 200 connections per second. The tool sends

partial HTTP requests without sending the final CRLF – a token that determines the end of

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 27

valid HTTP request. The random follow up data not greater than 8 bytes is sent in intervals

of 10 seconds. Thus, the vulnerable server has been able to concurrently process fewer than

200 connections, leaving more than 800 connections pending. Denial of service was

achieved within the first 5 seconds of the test, and lasted around 300 seconds – the target

duration of the test. During the first 70 seconds, the server was gradually accepting

incoming connections. Once the concurrent connections pool was filled up with around 350

connections, the server rejected the remaining pending connections, leaving 650

connections closed.

2.8 Insecure Cryptographic Storage Vulnerability

Insecure Cryptographic Storage vulnerability occurs when a web application is failing to

encrypt sensitive data. It can be broken down into two main areas: Encryption and Hashing.

One cause of this vulnerability is insecure data transfer. Sensitive user information, like

credit card numbers or passwords, is sometimes sent to a server without being encrypted.

Payment Card Industry (PCI) Data Security Standard [41] requires encrypting the

transmission of cardholder data across open, public networks, including the Internet and

Wireless Technologies [42]. Another cause of the vulnerability is that developers do not

know which data must be protected with the use of encryption. They store the data as plain

text, assuming that no one has access to the website database.

Hashing is a one-way function. Similar to encryption, hashing should be used for securing

passwords. There are a number of techniques employed in cracking hashed data.

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 28

2.8.1 Exploiting Insecure Cryptographic Storage Vulnerability

Finding the flaw in encryption or hashing functions can be a very difficult task, so usually

an attacker tries some other options to exploit Insecure Cryptographic Storage

Vulnerability. For example, due to the fact that a hashed password can't be reversed, it is

theoretically impossible to crack someone's password. But with dictionary attacks, the

match can be found. Another widely used approach is the use of rainbow tables [43]; an

example is when an attacker stores a table of data that contains passwords and the hashed

value for each password. By comparing hash values, it is possible to determine the

corresponding password.

2.9 Failure to Restrict URL Access Vulnerability

Failure to restrict URL Access vulnerability usually occurs when unauthorized users are

able to access the content of web pages that are only intended to be viewed by users with

special privileges, for example administrators.

In 2007, the Macworld Conference & Expo web site failed to restrict special URL access to

a Steve Jobs keynote speech and let users get “Platinum” passes worth nearly $1,700, all for

free [44].

2.9.1 Exploiting Failure to Restrict URL Access Vulnerability

If an application fails to appropriately restrict URL access, security can be compromised

through a technique called forced browsing [45]. Forced browsing can be a very serious

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 29

problem if an attacker tries to gather sensitive data through a web browser by requesting

specific pages, or data files.

For example, a web application protects all data under ‘/admin’ directory, including an

administrator web page. The administrator web page contains a link to the product

maintenance section.

The product maintenance section is not under ‘/admin’ directory, although the only

available path that takes a user to this section is from an administrator web page. An

attacker uses crawling tools to forcefully browse the web site. While the tool is browsing,

the attacker finds the hidden link and takes advantage of it, even if he/she has never had

access to the ‘/admin’ directory.

2.10 Insufficient Transport Layer Protection Vulnerability

This vulnerability occurs as a result of lack of transport layer encryption, weak cipher

support, or not having efficient protection of the confidentiality and integrity of sensitive

network traffic.

2.10.1 Exploiting Insufficient Transport Layer Protection Vulnerability

A very common example of ITLP exploitation is when login pages are served over HTTPS

in order to send passwords over an encrypted channel [46].

https://www.vulnerableApp.com/validateUser

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 30

After authentication is completed, the user is given access to unencrypted communication

using HTTP.

http://www.vulnerableApp/displayAccount

2.11 Un-validated Redirect and Forward Vulnerability

A Redirect and Forward functionality is very common in many web applications. When it is

not securely implemented, this functionality can result in tricking the user into clicking a

link that will navigate to an unsafe destination.

2.11.1 Exploiting Un-validated Redirect and Forward Vulnerability

The most common example of this attack is when the attacker impersonates a trusted web

site and tricks user into clicking a malicious URL. For example, the ‘site’ parameter of the

HTTP request gets the full address of the web page to be redirected.

http://www.vulnerableApp/displayParner?site=http://www.sitePartner.com

The attacker redirects the user to a malicious site.

http://www.vulnerableApp/displayParner?site=http://www.attackerDestination.com

The user is familiar with vulnerableApp web application and trusts it, so he/she opens the

link and becomes a victim of phishing [47] or other security troubles.

Chapter 2 Open Web Application Security Project (OWASP)

Top Ten Web Application Vulnerabilities

 31

2.12 Conclusion

In this chapter we have looked into OWASP Top Ten web application vulnerabilities, the

most critical web application security flaws. OWASP Top Ten vulnerabilities can

significantly affect web applications’ performance and their users’ security. Preventing

these vulnerabilities in applications is extremely important due to the high number of

attacks. To discover the flaws without any knowledge of the application implementation

details, WAVS are used.

There are two techniques available for evaluation of WAVS. The first approach is using

existing web applications that are publicly available on the web. The second approach is to

construct custom test bed applications in order to have better control over the testing

details.

In the next chapter, we discuss the technical characteristics and functionality of our custom

test application, MusicStore. We implement the OWASP Top Ten vulnerability types in

MusicStore, presenting them as real-life scenarios, and we will show the details of these

flaws.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 32

Chapter 3

Implementation of MusicStore Web

Application for Evaluation of Web

Application Vulnerability Scanners

(WAVS)

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 33

3.1 Introduction

The major goal of this thesis is the independent and detailed evaluation of WAVS.

The most popular approach for evaluation of WAVS is using existing web applications that

are publicly available on the web, such as the “HacMe” series [48]. Those applications are

well known by users and scanner developers. And as a result, scanner developers may use

them to optimize the performance of their WAVS. Another concern of using the series is

the unavailability of the source code of the applications to estimate the rate of False

Positive and False Negative results of WAVS findings. In addition, these applications do

not implement all the vulnerabilities from the OWASP Top Ten report, leaving very

popular flaws like Insecure Cryptographic Storage or Un-validated Redirect and Forward

unexplored or tested. Another well-known application is “Web Goat” [49], which is a very

complex web application. It is mainly used for educational purposes and not all of its test

cases replicate real-life scenarios.

The benefit of using existing test applications is the possibility of WAVS assessment

against several test beds. Larry Suto, Application Security Consultant, used this technique

in his 2010 report [50]. He tested several WAVS; the test focuses on the accuracy and the

time needed to run scanners. In his study, he was running each vendor's WAVS against

well-known insecure test sites and comparing the results. The best result, 94%, was

achieved by NTOSpider [51] in “trained” mode, compared to the closest competitor, which

was only able to find 62% of existing vulnerabilities.

The second approach was used by Jason Bau, Elie Bursztein, Divij Gupta, and John

Mitchell in their research “State of the Art: Automated Black-Box Web Application

Vulnerability Testing” [52]. They constructed custom test bed, and they combined general

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 34

classifications of vulnerability categories. Their results showed that black-box WAVS

detection rates show room for improvement in other classes of vulnerabilities, such as

advanced and second-order forms of XSS and SQLI.

In order to conduct up-to-date and thorough evaluation, there is a need to have an

independent web application, which should have real life scenarios and implement OWASP

Top Ten vulnerabilities, to be used to test WAVS. The web application presented in this

thesis, MusicStore, replicates the behavior of an online store. It is designed to realistically

simulate the steps a regular user goes through while using a dynamic web page. The

availability of source code and the control over the web server results in better evaluation of

WAVS.

3.2 Modeling User Behavior

MusicStore is a web-based online store application, which fully simulates the functionality

of publicly available online stores. Each action on the web site can be seen as real-life user

behavior on a typical web commerce application.

Figure 3.1: Real-life user behavior. New user registration and shopping cart creation

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 35

First, a user creates an account, providing his/her personal data, including credit card

number and shipping address. Second, he/she selects the product and stores his/her

selection in a personal shopping cart (Figure 3.1)

Later, when the user decides to make the purchase, an invoice is placed in queue for further

processing. In addition to that, the user can add reviews to products and read other

customers’ opinions, checks partners’ newsletters and subscribe to a mailing list.

Figure 3.2 shows how a user can add his/her reviews and see what other people think of the

product.

Figure 3.2: Real-life user behaviors. Reviews

In this application, a user has total control over his/her account and can make any changes

in his/her personal settings, including updating personal data and credentials, as shown in

Figure 3.3, or he/she can even recover a forgotten password.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 36

Figure 3.3: Real-life user behaviors. User Account

It is important to recreate exact steps that a regular customer goes through as realistically as

possible, because this is what makes the vulnerability testing by WAVS challenging. The

more detailed the test cases, the more likely there could be hidden flaws that WAVS

developers are not aware of. That’s why it is important that WAVS crawl the web site

thoroughly.

In order to see if the WAVS could reach the most unrevealed parts of a web application, the

source code and functional characteristics of the application are required. In the next section

we present the technical details of the MusicStore.

3.3 Technical Characteristics of MusicStore

The MusicStore Web Application is a Java [18] based application, which is deployed on the

Tomcat Server [53]. It uses a database on an Oracle database management server [54] to

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 37

store the data for the web site in its tables. As shown in Enhanced Entity-Relationship

diagram in Figure 3.4, the database consists of the following tables:

• v_User - contains personal information of any customer, including credit card

number and shipping address, who decided to provide personal information in order

to become a new user or just to receive updates and newsletters. This helps simulate

a real registration and update functionality.

• v_UserRole - contains information, such as whether customer is registered user.

• v_UserPass - contains password and secret question answer. Each user can have

only one password.

• v_Product - the list of available online store products.

• v_Reviews - each product can have multiple reviews from different registered

customers.

• v_UserCart - the user has his/her personal shopping cart, where he/she can save

items to buy later.

• v_UserCartLineItem - contains the items the customer has chosen to be saved in the

shopping cart.

• v_Invoice - after the user has chosen to buy products, his/her invoice is placed in

queue for further processing.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 38

Figure 3.4: MusicStore Database EER Diagram

Apache is the web server of MusicStore with a Tomcat servlet/JSP engine. The application

uses JavaServer Pages (JSP) [55] to present the user interface. It also uses HyperText

Markup Language (HTML) [56], Cascading Style Sheets (CSS) [57], JavaScript [13], and

Asynchronous JavaScript and XML (AJAX) technologies.

As shown in Figure 3.5, the application is constructed in Model-View-Controller (MVC)

pattern [58] in order for each layer to remain as independent as possible.

The Model consists of business objects from the data store, the classes to represent the

database, like Product.java, User.java, or Reviews.java, and others. Data store can be a

database or one or more disk files. This is often referred to as persistent data storage

because it exists after the application ends.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 39

The Controller consists of servlets, the layer where the entire job is done,

UpdateUserDetailsServlet.java or AddReviewServlet.java.

The View consists of HTML pages and JSPs, to represent the user interface of the

application, such as review_products.jsp.

Figure 3.5: MusicStore MVC Pattern

The presence of such technologies as AJAX and JavaScript in our web application gives

additional opportunities. JavaScript is widely used in modern web applications and it is

important for analyzing the behavior of WAVS and their ability to parse JavaScript code.

3.4 Vulnerabilities Implementation

The web application was developed based on the OWASP Top Ten vulnerability report. In

this section, we go over the characteristic vulnerabilities presented in the Web Application.

The list of the flaws designed in the project consists of the following vulnerabilities:

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 40

A1. SQL Injection - 6 vulnerabilities

A2. Cross-Site Scripting (XSS) – 18 vulnerabilities

A3. Broken Authentication – 2 vulnerabilities

A4. Insecure Direct Object Reference – 1 vulnerability

A5. Cross-Site request forgery – 11 vulnerabilities

A6. Security Misconfiguration – 5 vulnerabilities

A7. Insecure Cryptographic Storage – 7 vulnerabilities

A8. Failure to Restrict URL access – 1 vulnerability

A9. Insufficient Transport Layer Protection – 3 vulnerabilities

A10. Un-validated Redirect and Forward – 1 vulnerability

The full list is available in Vulnerability Report [59].

3.4.1 SQL Injection (SQLI) Implementation

Ø First Order SQLI

 The MusicStore web application contains two First Order SQLI examples. In the first

example, the password recovery functionality can be exploited by modifying the SQL

query. The recoverPassword(String emailAddress, String answer) function is intended to

recover the user’s password based on the answer to a security question.

Vulnerability 1: /validation/displayPasswordRecovery

Parameter: emailAddress

Payload: emailAddress=test%40test.com%27%29--&answer=anycolor

SQL query:

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 41

String query = "SELECT Password FROM v_UserPass WHERE

(v_UserPass.EmailAddress = '" + emailAddress + "' AND v_UserPass.Answer = '" +

answer + "') ";

In the recoverPassword function, concatenation is used to create a dynamic SQL query. An

attacker can easily impersonate a site user, e.g. ‘test@test.com’, and recover a victim’s

password by commenting out the part of the query using ‘--’ single-line comment indicator

as shown in Figure 3.6.

Figure 3.6: First Order SQLI

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 42

Another example of First Order SQLI is more complex; this time an attacker wants to

exploit the ‘answer’ query parameter. The attacker should have additional information

about the Table name, where the password is stored.

Vulnerability 2: /validation/displayPasswordRecovery

Parameter: answer

Payload:

emailAddress=test%40test.com&answer=anycolor%27%29+OR+v_UserPass.EmailAddre

ss+%3 D+%27test%40test.com%27--

SQL query:

String query = "SELECT Password FROM v_UserPass WHERE

(v_UserPass.EmailAddress = '" + emailAddress + "' AND v_UserPass.Answer = '" +

answer + "') ";

Ø Second Order or Blind SQLI

In the MusicStore application, two vulnerabilities of this type are presented. The first one

can be exploited while updating logged-in customer account details. The update(User user)

function is intended to update the user’s password based on his/her email address.

 String query = "UPDATE v_User SET FirstName = ?, LastName = ?, CompanyName = ?,

Address1 = ?, Address2 = ?, City = ?, State = ?, Zip = ?, CreditCardType = ?,

CreditCardExpirationDate = ?, CreditCardNumber = "+ "'"+ creditCardNumber+ "', "

+ "Country = "+ "'"+ country+ "' "

+ "WHERE EmailAddress = '"+ emailAddress+ "'";

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 43

By manipulating the ‘country’ query parameter, an attacker can verify if the email address

he/she is interested in is stored in an application database.

True Payload:

firstName=+fTest&lastName=+lTest&companyName=CSUEB&address1=ATTACKERAD

DRESS&address2=ATTACKERADDRESS&city=Hayward&state=CA&zip=94542&count

ry=USA%27+WHERE+EmailAddress%3D%28%27test1%40test.com%27%29--

&creditCardType=Visa&creditCardNumber=4111111111111111&creditCardExpiration

Month=01&creditCardExpirationYear=2011

As seen from the payload, the rest of the query after the ‘country’ field value is commented

out with ‘- -‘ symbols. This means that part of the query, which was intended to update the

user details of the currently logged-in user, will be replaced by the attacker’s malicious

query.

If there is a user with a‘test1@test.com’ email address in the application database, then a

query will be executed.

False Payload:

firstName=+fTest&lastName=+lTest&companyName=CSUEB&address1=ATTACKERAD

DRESS&address2=ATTACKERADDRESS&city=Hayward&state=CA&zip=94542&count

ry=USA%27+WHERE+EmailAddress%3D%28%27emailnotexist%27%29--

&creditCardType=Visa&creditCardNumber=4111111111111111&creditCardExpiration

Month=01&creditCardExpirationYear=2011

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 44

If there is not any user with ‘notExistedEmail@test.com’ email address in application

database, then the query will fail.

The same type of attack can be performed while updating an account password and secret

question. An attacker can try to find out whether a user with ‘test1@test.com’ email address

exists in the database. To do that, the attacker uses blind SQLI on the ‘answer’ parameter,

trying true and false payloads.

Vulnerability 3: /user/account/displayAccountPassword

Parameter: answer

SQL query:

String query = "UPDATE v_UserPass SET Password = ?, Answer = '" + answer+ "’

WHERE EmailAddress = '"+ emailAddress+ "'";

If a true payload is injected, the account password will be updated; if a false payload is

injected, the attacker will see an error message.

True Payload:

password=test11&answer=red%27+WHERE+EmailAddress%3D%28%27test1%40test.co

m%27 %29—

False Payload:

password=test11&answer=red%27+WHERE+EmailAddress%3D%28%27emailnotexist%

27%2 9--

Ø Database Constants SQLI

In the MusicStore application, the insertReview function adds the customer product reviews

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 45

database from online store.

Vulnerability 5 and Vulnerability 6

String query = "INSERT INTO v_Reviews (Title, Message) VALUES (‘"+title + "', '"+

message+ "')";

Payload:

title=%27%7C%7CSYSDATE%7C%7C%27&message=%27%7C%7CSYSDATE%7C%7

C%27

SYSDATE is an Oracle function that returns the date and time on a local database. By

manipulating ‘title’ and ‘message’ query parameters, an attacker receives additional

information about the SQL Server.

3.4.2 Cross-Site Scripting (XSS) Implementation

Usually developers try to implement defense mechanisms, thinking that only one warning

can prevent attacks. In Figure 3.7, we demonstrate a popular warning about invalid

parameter value, in our case the ‘Zip Code’ field value.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 46

Figure 3.7: Client-Side Input Validation

But this validation is performed client-side, in other words by a browser, and can be

bypassed using web proxy; here, an attacker can modify field values and send them to the

server as malicious code.

Ø Non-Persistent or Reflected XSS

MusicStore contains 10 Non-Persistent (Reflected) XSS vulnerabilities on the customer

registration form. User registration information is stored in an online store database after

‘creditCardNumber’ parameter is validated on the server side. No input inspection for other

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 47

parameters is performed server-side, because the developer decided to use client-side

validation using JavaScript.

The attacker modifies the parameters using a proxy server and sends an updated HTTP

request to the server, as shown in Figure 3.8.

Figure 3.8: Modified HTTP Request with XSS Payload

Vulnerability 1-Vulnerability 10:

/registration/displayUserRegistration

Payload:

firstName=John"'><script>alert("firstName parameter is vulnerable")</script>

&lastName=Smith"'><script>alert("lastName parameter is vulnerable")</script>

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 48

&emailAddress=js@js.com"'><script>alert("emailAddress parameter is

vulnerable")</script>

&password=password&answer=green

&companyName=CSUEB"'><script>alert("companyName parameter is

vulnerable")</script>

&address1=25800 Carlos Bee Boulevard"'><script>alert("address1 parameter is

vulnerable")</script>

&address2=25800 Carlos Bee Boulevard"'><script>alert("address2 parameter is

vulnerable")</script>

&city=Hayward"'><script>alert("city parameter is vulnerable")</script>

&state=CA"'><script>alert("state parameter is vulnerable")</script>

&zip=94542"'><script>alert("zip parameter is vulnerable")</script>

&country=USA"'><script>alert("country parameter is vulnerable")</script>

&creditCardType=Visa

&creditCardNumber=1234

&creditCardExpirationMonth=01

&creditCardExpirationYear=2011

The payload is executed in all vulnerable fields, starting from ‘First Name’ field (Figure

3.9) and ending with ‘Country’ field.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 49

Figure 3.9: ‘First Name’ and ‘Country’ Fields are Vulnerable to XSS Attack

Ø Persistent or Stored XSS

There are four Persistent XSS Vulnerabilities in MusicStore.

One source of the vulnerability occurs when the customer logges in and updates his/her

account; the updated information is stored in the database and later displayed in orders,

invoices and account details pages.

The country field of the update account form is vulnerable to XSS.

Vulnerability 11: /user/account/displayAccountDetails

Parameter: country

Payload:

firstName=fTest&lastName=lTest&companyName=CSUEB&address1=25800+Carlos+B

ee+Boulevard&address2=25800+Carlos+Bee+Boulevard&city=Hayward&state=CA&zip

=94542&country=<script>alert(0)</script>&creditCardType=Visa&creditCardNumber=

4111111111111111&creditCardExpirationMonth= 01&creditCardExpirationYear=2011

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 50

Payload reflects:

/user/account/displayAccount

/user/order/displayInvoice

Adding a customer review is common practice on many e-commerce web sites. Figure 3.10

demonstrates a web page that has a legitimate review of a music album.

Figure 3.10: Regular ‘Reviews’ Page

A customer can add his/her review to the product on special page, where only registered

users have access. The insert(Review review) function handles this functionality.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 51

String query = "INSERT INTO v_Reviews (ProductID, UserID, ReviewDate, Title,

Message) VALUES ("+ productID + ", "+ userID + ", SYSDATE, '"+ title + "', '"+

message+ "')";

The attacker tampers with the HTTP request to have an XSS payload in it, as shown in

Figure 3.11

Vulnerability 12: /user/review/displayReview

Payload:

title=Title+%3Cscript%3Ealert%280%29%3C%2Fscript%3E&message=Message&SUB

MIT=Submit

Figure 3.11: HTTP Request with XSS Payload

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 52

The result of the payload execution is not displayed at the same page, where the malicious

code was injected. The payload is stored in the database and is later executed on the page

where all customers can view the reviews, as shown in Figure 3.12

.

Figure 3.12: HTTP Request with XSS Payload

The same Persistent XSS vulnerability is present for the ‘message’ parameter.

Vulnerability 13: /user/review/displayReview

Payload:

title=Title&message=Message+%3Cscript%3Ealert%281%29%3C%2Fscript%3E&SUB

MIT=Submit

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 53

Another Persistent XSS vulnerability presented in MusicStore can be exploited by inserting

a malicious code in the ‘answer’ parameter value of an HTTP Request while updating the

account password. The script is saved in a database and can be exploited later, when the

user tries to recover his/her password.

Vulnerability 14: /user/account/displayAccountPassword

Parameter: answer

Payload: password=falsepass&answer=%3Cscript%3Ealert%280%29%3C%2Fscript%3E

Payload reflects: /validation/passwordRecovery

Ø DOM-Based XSS

The MusicStore email list web page uses a ‘firstName’ parameter in the URL to greet the

user. The web browser parses this HTML, which is received from the server, into DOM.

Parser executes the JavaScript code, and as a result the XSS vulnerability is exploited.

<div id="greeting">Hello<SCRIPT>

var url = window.location.href;

var pos = url.indexOf("firstName=") + 10;

var firstName_string = url.substring(pos); document.write(unescape(firstName_string));

</SCRIPT></div>

The attacker can trick a user into running malicious code in his/her web browser by sending

a link to a legitimate MusicStore web page, although the URL itself contains a payload.

Vulnerability 15: /email/join_email_list.jsp?name=guest

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 54

Payload in URL:

/email/join_email_list.jsp?firstName=%3Cscript%3Ealert%28%22DOM%20XSS%22%29

%3C/script%3E

In the next DOM XSS example, AJAX is used. ‘First name’, ‘Last name’, ‘Email address’

fields’ values are used to add a user to a mailing list. When a user enters these values, the

result is displayed on the same web page without refreshing the entire page.

Vulnerability 16: /email/join_email_list.jsp?name=guest

Payload:

http://134.154.14.153:8080/yuliana/email/addToEmailList?firstName=%3CIFRAME%20sr

c=javascript:alert(%27firstName%20XSS%27)%20/%3E&lastName=Simpson&emailAddr

ess=hs@hs .com

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 55

Figure 3.13: XSS Vulnerable AJAX Page

The XSS payload in the ‘firstName’ parameter can use AJAX requests to autonomously

inject itself into pages and easily re-inject the same host with more XSS, all of which can be

done with no hard refresh as shown in Figure 3.13.

The same AJAX XSS vulnerability is present for ‘lastName’ and ‘emailAddress’

parameters.

Vulnerability17: /email/join_email_list.jsp?name=guest

Payload:

http://134.154.14.153:8080/yuliana/email/addToEmailList?firstName=Homer&lastName=

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 56

%3CIFRAME%20src=javascript:alert(%27XSS%27)%20/%3E&emailAddress=homers@h

s.com

Vulnerability18: /email/join_email_list.jsp?name=guest

Payload:

http://134.154.14.153:8080/yuliana/email/addToEmailList?firstName=Homer&lastName=

Simpson&emailAddress=homersimpson@hs.com%3CIFRAME%20src=javascript:alert(%

27emailXS S%27)%20/%3E

3.4.3 Broken Authentication Implementation

We present two types of Broken Authentication vulnerabilities. The first one can be

exploited using social engineering, which allows the attacker to guess the possible user

secret by tricking the user into revealing his/her personal information. The recovery

function is based on the security question.

Vulnerability 1: Question. Where were you born?

Attacker can trick user into revealing his/her place of birth, simply asking: ”Where are you

from”

The second type is the Brute Force attack. The web application uses standard authentication

with Tomcat [60].

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 57

<form action="j_security_check" method="post">

 <table cellspacing="5" border="0">

 <tr><td align="right"><p>Email Address :</p> </td>

 <td><input type="text" name="j_username" ></td></tr>

 <tr><td align="right"><p>Password:</p> </td>

 <td><input type="password" name="j_password"></td></tr>

 <tr><td><input type="submit" value="Login"></td></tr>

 </table>

 </form>

The attacker can perform a dictionary attack, because the application doesn’t employ any

“lock out” mechanism to prevent providing the password multiple times.

Vulnerability2: /user/validation/validateUser

Payload: brute force j_password/ j_username

Figure 3.14 demonstrates that the web application still accepts password attempts after the

attacker has tried to login multiple times.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 58

Figure 3.14: ‘Lock out’ Mechanism is not implemented

3.4.4 Insecure Direct Object Reference (DOR) Implementation

In our vulnerability example, the web application receives reference to a file as a form

parameter ‘letter’, and then reads and displays the text.

The web application has a number of partners that have their own web pages.

Vulnerability 1: /partners

Payload: ../../../../../../../apps/java/apache-tomcat-6.0.16/conf/server.xml

Payload Reflects: in ‘partnerText’ div

Figure 3.15 demonstrates how an attacker can tamper with the ‘letter’ parameter value in an

HTTP Request to access the server.xml file of the Tomcat Apache server.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 59

Figure 3.15: HTTP Request with Insecure DOR Vulnerability

As a result, the attacker can see the content of the server.xml file in the body of web page,

as shown in Figure 3.16.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 60

Figure 3.16: Attacker Accessed the ‘server.xml’

3.4.5 Cross-Site Request Forgery (CSRF) Implementation

In the MusicStore application, we present 11 CSRF vulnerabilities that expose the same

issue: they allow the attacker to perform actions on behalf of an authenticated user.

When a customer logs in, the server sends a session cookie. Every time the registered user

performs an action, like changing his/her password or adding products to the shopping cart,

the web application server checks to verify if the user is authenticated. All web pages that

can be accessed only by logged-in users are under the‘/user’ directory.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 61

 Three vulnerabilities of the ordering pages are that an attacker can view the orders; an

attacker can modify the shopping cart; and an attacker can complete the victim’s orders.

Vulnerability 1: /user/order/displayInvoice

Vulnerability 2: /user/order/displayUserCart

Vulnerability 3: /user/order/completeOrder

The ‘Reviews’ section has two CSRF vulnerabilities, where an attacker can use a victim’s

cookies to add product reviews.

Vulnerability 4: /user/review/displayReview

Vulnerability 5: /user/review/addReview

In the next four CSRF vulnerabilities, the attacker can change a victim’s personal

information, including shopping address, credit card number, and password.

Vulnerability 6: /user/account/displayAccount

Vulnerability 7: /user/account/displayAccountDetails

Vulnerability 8: /user/account/displayAccountPassword

Vulnerability 9: /user/account/updateUserPassword

Vulnerability 10: /user/account/updateUserDetails

For example, only a logged-in user can modify his/her invoice shipping address. An

attacker ‘test1@test.com’ can obtain the JSESSIONID cookie of a legitimate user

‘test@test.com’ and impersonate the customer, as shown in Figure 3.17.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 62

Figure 3.17: Attacker Uses User’s JSESSIONID to Access His/Her Personal Data

In the 11th and last CSRF vulnerability, the authentication is based on custom function. The

logged-in customer views his/her shopping cart, outside the ‘/user’ directory.

This action is allowed only by authenticated users, so the server checks that, using the

isAuth(HttpServletRequest request) function

Vulnerability11: /cart/displayCart

User user = (User) request.getAttribute("user");

 boolean isAuth = false;

 if (request.getUserPrincipal() != null) {

isAuth = true;}

 return isAuth;

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 63

If an attacker uses the JSESSIONID of the logged in customer, then

request.getUserPrincipal() will contain the email of the customer; thus, the attacker will be

able to perform actions resulting in the impersonation of the victim.

3.4.6 Security Misconfiguration Vulnerability Implementation

The MusicStore application contains six Security Misconfiguration vulnerabilities.

All requests that contain confidential information, such as credit card number or password,

should be handled using the POST method. If the form that contains confidential

information can be submitted by the GET method, then an attacker can trick a victim into

changing his/her confidential information without being aware of that fact.

Vulnerability 1:

 /validation/displayPasswordRecovery

Payload:

/validation/displayPasswordRecovery?emailAddress=test%40test.com&answer=black

And

Vulnerability 2:

/user/account/updateUserPassword

Payload:

/user/account/updateUserPassword?password=falsepass&answer=black

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 64

Figure 3.18 demonstrates an example, when an attacker can place a hidden link on an email

address, asking the user to visit a new online shop. The user will click on the ‘Visit us’ web

page, but instead of seeing a new e-commerce web site, his/her password will automatically

be changed.

Figure 3.18: Attacker Changes Victim’s Password Using GET Method of HTTP Request

Another type of the Security Misconfiguration is server configuration mistakes. For

example, Web application servers can fail to defend against denial-of-service (DoS) attacks,

distributed denial-of-service (DDoS) attacks, or different variations of these attack. The

web server on which the MusicStore application is deployed is vulnerable to slow HTTP

headers DoS attack.

Two vulnerabilities are present on the MusicStore server, and by using the slowhttptest tool

an attacker can get denial of service by slowing down requests.

Vulnerability 3:

/validation/displayPasswordRecovery

Payload:

slow HTTP headers DDoS attack

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 65

And

Vulnerability 4:

/validation/displayPasswordRecovery

Payload:

HTTP POST DDoS attack

Sometimes web application developers fail to implement proper mechanisms to deliver web

site password to their customers. For example, when a registered customer recovers his/her

password, he/she can immediately see the password on the web page. The passwords

should never be available on publicly available web pages.

Vulnerability 5:

/validation/displayPasswordRecovery

Payload:

emailAddress=test%40test.com&answer=black

The customer’s password is displayed on web page in ‘Result’ div

3.4.7 Insecure Cryptographic Storage Implementation

In the MusicStore application, seven vulnerabilities of Insecure Cryptographic Storage type

are presented.

Confidential information, such as credit card numbers and passwords, should be stored in

the database in encrypted form. Additionally, the password should not be displayed to a

user while he/she is typing.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 66

Five vulnerabilities of Insecure Cryptographic Storage type don’t employ this rule, and as a

result, an attacker can intercept the values of secure data and use it later.

Vulnerability 1: /user/account/displayAccountDetails

Parameter: creditCardNumber

Vulnerability 2: /registration/displayUserRegistration

Parameter: creditCardNumber

Vulnerability 3: /user/account/displayAccountPassword

Parameter: password

Vulnerability 4: /registration/displayUserRegistration

Parameter: password

Vulnerability 5: /validation/displayPasswordRecovery

Parameter: password

Another type of Insecure Cryptographic Storage is an insecure session cookie. An

authenticated user receives a special JSESSIONID cookie from the server to uniquely

identify him/her as a logged-in user. After the customer logs in, the application still

transfers data through an unencrypted HTTP channel. Thus, MusicStore doesn’t generate

‘secure’ cookies.

Vulnerability 6: The session cookie used to identify authenticated users does not contain the

‘secure’ attribute.

Furthermore, the MusicStore doesn’t generate HTTPOnly cookies, thus, it does not restrict

access from other, non-HTTP APIs (such as JavaScript).

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 67

Vulnerability 7: The session cookie used to identify authenticated users does not contain the

‘HTTPOnly’ attribute.

3.4.8 Failure to Restrict URL Access Implementation

MusicStore protects all data under the ‘/user’ directory. After a user is authenticated, web

application grants him/her an access to a hidden ‘userAccess.jsp’ web page; however,

‘userAccess.jsp’ is not under ‘/user’ directory. Thus, an attacker can guess this hidden link

by using crawling tools and take advantage of this weakness. JSP expression language

code, that checks if a customer is logged in, is vulnerable and doesn’t provide required

restriction to URL access.

Vulnerability 1:

<% if (request.isUserInRole("user")) {%>

User Only

3.4.9 Insufficient Transport Layer Protection Implementations

MusicStore contains seven vulnerabilities of Insufficient Transport Layer Protection type.

The Log-In form, which is used to identify registered users, is not submitted through a

secure channel using SSL connection. This may result in the interception of the login and

password information in plain text.

Vulnerability 1: /user/validation/validateUser

Payload: proxies can intercept secure data in plain text.

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 68

We discussed ‘secure’ cookies in Chapter 3.4.7 Insecure Cryptographic Storage

Implementation. Because those cookies are used in securing the transport layer, they can

also be considered as Insufficient Transport Layer Protection vulnerabilities.

Vulnerability 2: The session cookie used to identify authenticated users does not contain the

‘secure’ attribute.

The confidential data should be encrypted before being sent to the web server.

Vulnerability 3: /user/account/displayAccountDetails

Parameter: creditCardNumber

Vulnerability 2: /registration/displayUserRegistration

Parameter: creditCardNumber

Vulnerability 3: /user/account/displayAccountPassword

Parameter: password

Vulnerability 4: /registration/displayUserRegistration

Parameter: password

Vulnerability 5: /validation/displayPasswordRecovery

Parameter: answer

3.4.10 Un-validated Redirect and Forward Implementations

MusicStore has one vulnerability that describes un-validated redirection and forwarding.

The web application has a number of partners that have their own web pages. Each of the

partners has its link on MusicStore. On Figure 3.19 we can see, that the link “Visit us” takes

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 69

the customer to ‘8AM’ partner’s web site, ‘www.example.com’. This is called un-validated

redirection.

Figure 3.19: Redirection from MusicStore to example.com

This is an example of Java code that demonstrates implementation of redirect function

where the site parameter value is the URL.

String site = request.getParameter("site");

if(site!=null && site!=""){ response.setStatus(response.SC_MOVED_TEMPORARILY);

response.setHeader("Location", site); }

Insecure implementation of redirection can result in an attacker tricking the user into

clicking the link that will navigate to an unsafe destination.

Vulnerability 1: /partners/displayParnerLetter

Chapter 3 Implementation of MusicStore Web Application for Evaluation of Web

Application Vulnerability Scanners (WAVS)

 70

Parameter: site

Payload: ="http://www.vulnerableStore

/partners/displayParnerLetter?site=http://www.attackerDestination.com

Conclusion

With all of these threats widely used on the Web, it is important to secure web applications

against them. Understanding how to exploit vulnerabilities leads to the development of

code that can withstand attacks. There are security features available that are being taught

in universities and via security trainings, but it is more important to write a safe code to

prevent possible security flaws. The most effective way to secure an application is to

implement secure coding practicing in the development stage.

In the next chapter we explain defense mechanisms against OWASP Top Ten

vulnerabilities. We show the implementation of secure coding techniques presented in the

MusicStore web application.

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 71

Chapter 4

Defense Mechanisms Against Web

Vulnerability and Secure Coding

Techniques

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 72

4.1 Introduction

Preventing vulnerabilities in web applications is extremely important due to the high

number of attacks. The best way to prevent vulnerabilities in applications is to write secure

code. According to Computer Emergency Response Team, or CERT, at the Software

Engineering Institute at Carnegie-Mellon University, the following Top 10 Secure Coding

Practices [61] are vital to security.

1. Proper implementation of Input Validation helps to avoid most of the web

application vulnerabilities. But, on the other hand, handling each input in isolation

to avoid unexpected command line arguments, user controlled files, and other

suspicious input is a complex task, and as a result, the validation may be omitted.

2. Warnings and Error messages can suggest the places of possible security flaws for

both developers and an attacker. Static and dynamic analysis tools can detect and

eliminate the vulnerabilities.

3. Strong web application architecture helps to enforce security policies.

4. Simple design helps to avoid errors that can be made during implementation,

configuration, and use.

5. To simplify the access mechanism, by default the access is denied. In other words,

“Everything not explicitly permitted is forbidden.”

6. To continue the ideas in points 4 and 5, the principle of least privilege is introduced,

which suggests the execution of a process using the least set of privileges necessary

to complete the job.

7. Before data is processed, it should be sanitized. The un-validated data could be the

cause of SQL, command, or other injection attacks.

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 73

8. In- depth defense mechanisms help to improve security by adding layers of multiple

defensive strategies, so that if one layer of defense turns out to be inadequate,

another layer of defense can prevent a security flaw from becoming an exploitable

vulnerability, and/or limit the consequences of a successful exploit.

9. Quality Assurance is the key point in security of the software. There are different

techniques to improve reliability of the application, like using source code analysis

tools, penetration testing tools, and independent review of the system.

10. A secure coding standard should be adopted. Programmers should develop and/or

apply a secure coding standard for the target development language and platform.

In this chapter we describe defense techniques against OWASP Top Ten web application

vulnerabilities. Those mechanisms are developed in accordance with Top 10 Secure Coding

Practices for each vulnerability type. We used them in the MusicStore application to check

if the WAVS can avoid reporting False Positive results while scanning the application.

4.2 SQLI Defense

Server Side defense using Prepared Statement [62] is the most effective way to protect from

SQL Injections, because it ensures that intent of query is not changed. For example, the

insertPassword(User user) function adds a new record to v_UserPass table in MusicStore’s

application database, when a new customer is registering his/her account.

public static int insertPassword(User user) {

 ConnectionPool pool = ConnectionPool.getInstance();

 Connection connection = pool.getConnection();

 PreparedStatement ps = null;

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 74

 ResultSet rs = null;

 String query =

"INSERT INTO v_UserPass (EmailAddress, Password, Answer) VALUES (?, ?, ?)";

 try {

 ps = connection.prepareStatement(query);

 ps.setString(1, user.getEmailAddress());

 ps.setString(2, user.getPassword());

 ps.setString(3, user.getAnswer());

 return ps.executeUpdate();

 } catch (SQLException e) {

 e.printStackTrace();

 return 0;

 } finally {

 DBUtil.closeResultSet(rs);

 DBUtil.closePreparedStatement(ps);

 pool.freeConnection(connection);

 }

 }

In this example, PreparedStatement object is used with parameters. Before executing the

query, all special characters will be escaped. All SQL functions, those that are not intended

to be exploited while stress testing [63] the application, are developed using

PreparedStatements.

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 75

It is very important to lock down the database server and to follow the Principle of Least

Privilege [64], [65]. Modern web applications also rely heavily on caching and database

schema design to improve performance. Strong data should be supported before objecting

to prepared statements for non-security reasons [66].

4.3 Cross-Site Scripting (XSS) Defense

For prevention code injection attacks, including SQLI and XSS, all user data should be

validated. There are several main rules that should be followed to increase security:

• Check the data type and set length limits on any form fields on your site;

• Encode or escape the data where it is used in your application to ensure that the

browser treats the possibly dangerous content as text, and not as active content that

could be executed.

JSTL Example:

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn" %>

<div id="userData">

${fn:escapeXml(user.firstName)},

${fn:escapeXml(user.firstName)}

${fn:escapeXml(user.companyName)}

${fn:escapeXml(user.address1)}

${fn:escapeXml(user.address2)}

${fn:escapeXml(user.city)},

${fn:escapeXml(user.state)},

${fn:escapeXml(user.zip)}

 </div>

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 76

• Validate data using regular expression.

Client Side Validation. JavaScript Example:

 var emailexp = /^([A-Za-z0-9_\-\.])+\@([A-Za-z0-9_\-\.])+\.([A-Za-z]{2,4})$/

if (!isValid(emailexp,form.emailAddress.value)){

return false}

From a security perspective, however, client-side validation is not effective, because it

doesn’t provide protection for server-side code. An attacker can easily bypass the client-

side using proxies.

Despite the rule that input must be validated on server-side, sometimes validation should be

performed on client-side. For example, Chrome and ChromeOS applications and extensions

are installed and executed client-side in the web browser. As a result, security design flaws

have been found, exposing all of the user’s email, contacts, and saved documents [67], [68].

Web frameworks and filters that offer automated sanitization to prevent XSS in web

applications are gaining popularity because manual implementation of input sanitization in

web application is prone to errors [69], [70], [71], [72], [73], [74], [75], [76], [77].

Unfortunately, input filters can be circumvented with various attack vectors [78], [79].

4.4 Broken Authentication Defense, Session Management and Transport

Layer Protection

Authentication and session security are critically important because compromised

credentials lead to impersonation and loss of confidentiality.

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 77

To protect a user’s session ID, strong efforts should be made to avoid XSS flaws as

described in the XSS Defense Section.

Authentication key points are Password Strength and Password Use, including the number

of possible attempts and storage; and Password Recovery mechanisms [80].

Authentication relies on secure communication, so it is important to maintain Transport

Layer Protection. For server security management, authentication for all levels should be

performed. In Java Platform, Enterprise Edition (Java EE) [81], applications to switch from

HTTP to HTTPS, protocol transport-guarantee is added in configuration file [82].

Example:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>User</web-resource-name>

 <url-pattern>/user/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

 <user-data-constraint>

<transport-guarantee> CONFIDENTIAL

</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 78

In this example, data under the ‘/user/’ directory will be transferred using a secure

connection. In addition, a session cookie used to identify an authenticated user should

contain the "secure" or “HTTPOnly” attribute.

4.5 Insecure Direct Object Reference Defense

This attack represents a serious threat to parameter-driven sites if a parameter is modified to

point to a local file on the Web server. It is a good practice to use a reference map to

prevent parameter manipulation.

4.6 Cross-Site Request Forgery Defense

The main defense technique is using the authorization token, a generated web application

on the server side. The Anti-CSRF token should be a randomly generated value, specific to

the user’s current session. There are several technologies and projects available that provide

CSRF countermeasures, including Mojarra Project [25], Apache Class Token [83], and

OWASP’s CSRFGuard Project [84].

4.7 Security Misconfiguration Defense

Maintaining security settings of the application, frameworks, application server, web server,

database server, and platform is a very complex problem. Web servers are frequent targets

of attacks, so when trying to secure web servers, the following aspects should be taken into

account [85]:

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 79

• Configuration

• Web content and server-side applications

• Operating System

• Documentation

Example:

HTTP server is subject to Slow type HTTP Attack [86].

There is number of steps to protect against this attack pattern [87]. The

RequestReadTimeout directive value should be set to limit the time a client may take to send

the request [88].

4.8 Insecure Cryptographic Storage

Sensitive data should not be displayed in clear form. The data should be stored encrypted

with strong encryption algorithms, such as AES [89], [90], RSA [91], and SHA-256 [92],

[93] in a database, and it should be decrypted on the server side upon request, or there

should be stored hash of the data.

4.9 Failure to Restrict URL Access Defense

Hidden pages, which are not intended for unauthorized users, are difficult to find, but

sometimes it is possible to guess the URL. It is important to use an effective and trusted

access control mechanism [94] and access control matrix that is carefully planned [60].

Chapter 4 Defense Mechanisms Against Web Vulnerability and Secure Coding Techniques

 80

4.10 Un-validated Redirect and Forward Defense

As to the many previously discussed attacks, parameter value validation should be

performed before redirection. The web application should ensure that the URL parameter is

indeed a valid URL. For example, the following strategy can protect from un-validated

redirection: the web application saves the redirection links list on a server after a redirection

request is made and then compares the request parameter value with the list entries.

4.11 Conclusion

The implementation of defense mechanisms described in this chapter is an important part of

the code analysis that is performed to increase the security of a web application. Some

vulnerability can be exploited only if an attacker performs several steps successively or in

specific order. The best way to find, analyze, and fix these types of flaws is manual testing

and combining with code analysis. This method is also called white-box testing, when a

security specialist has access to the internal source code. While code analysis seems to

achieve good results in securing web application, it is not always possible in reality,

because security specialists don’t always have access to the source code of a Web

application. Thus, to increase security, in addition to code analysis with subsequent

implementation of defense mechanisms, another testing technique is performed, when the

tester or testing application doesn’t have information about available vulnerabilities. All

information about the Web application is gathered with the help of tools such as WAVS. In

the next chapter we will review the mechanisms of testing an application for security flaws

without accessing the source code. Also, we will see the testing techniques of two WAVS

that were used in further evaluation, QualysGuard WAS and Acunetix WVS.

Chapter 5 Automated Web Vulnerability Scanning

 81

Chapter 5

Automated Web Vulnerability

Scanning

Chapter 5 Automated Web Vulnerability Scanning

 82

5.1 Introduction

A customer cannot feel fully secured while using an application as long as there is a

possibility of losing some personal information or other confidential data. Firstly, as many

security flaws as possible should be discovered in order to secure a web application. To

discover vulnerability without any knowledge of the application implementation details,

black-box testing technique is used. During the black-box testing, the web application

source code is hidden from a testing staff, and sometimes even server characteristics are not

revealed. To improve the success rate of discovering application flaws, WAVS are used.

WAVS are tools that most closely mimic web application attacks. These tools cannot

guarantee that their use will eliminate the flaws completely, but they can make the

application more secure.

The primary focus of this chapter is automated web vulnerability scanning tools and

techniques. Understanding the general automated scanning mechanism will allow us to

achieve better performance of scanners. The scanning techniques and implementation

details of each individual tool will help us to give recommendations to improve success rate

of finding vulnerabilities

5.2 Web Application Vulnerability Scanners (WAVS)

WAVS are automated tools to test web applications for common security problems. Yet

there is a difference between finding the vulnerabilities manually and automatically.

Chapter 5 Automated Web Vulnerability Scanning

 83

Table: 5.1 WAVS Requirements

Name - vulnerability type
Related Terms - terms, used to identify the vulnerability type

OWASP Top Ten- mapping of the vulnerability names to Open Web Application
Security Project (OWASP) Top Ten

Name Related Terms OWASP Top Ten

Cross Site Scripting (XSS) Reflected XSS, persistent

(stored) XSS, DOM-based XSS

A2

SQL Injection Blind SQL injection A1

OS Command Injection A1

XML Injection XPath injection, XQuery

injection

A1

HTTP Response Splitting CRLF injection A1

Malicious File Inclusion File inclusion,

Remote code execution,

Directory traversal

A1

Insecure Direct Object

Reference

Parameter tampering, Cookie

poisoning, Path manipulation

A4

Cross Site Request Forgery

(CSRF)
Session riding,

One-click attacks,

Hostile Linking

A5

Information Leakage File and directory information

leaks,

System information leak.

A6

Improper Error Handling Error message information

leaks, Detailed error handling

A6

Weak Authentication and

Session Management

 A3

Session Fixation A3

Insecure Communication A9

Chapter 5 Automated Web Vulnerability Scanning

 84

In order to have a more clear idea of WAVS functionality, the NIST Special Publication

500-269, "Software Assurance Tools: Web Application Security Scanner Functional

Specification Version 1.0" [95] in 2008 defined a list of requirements that all WAVS must

provide:

• Identify all types of vulnerabilities listed in Table 5.1.

• Report an attack that demonstrates the vulnerability.

• Specify the attack by providing script location, inputs, and context.

• Identify the vulnerability with a name semantically equivalent to those in Table 5.1.

• Be able to authenticate itself to the application and maintain logged-in state.

• Have an acceptably low False Positive rate.

While these minimal requirements remain mandatory, since 2008, Web Application

Security Scanner Evaluation Criteria (WASSEC) has updated the list of WAVS features to

satisfy modern attacks [96]. Table 5.2 describes the updated list of WAVS features and

includes the risks associated with the corresponding feature.

WASSEC guidelines that cover the updated list of vulnerability types and attacks, along

with practices such as crawling, parsing, session handling, testing, and reporting, help in the

evaluation of WAVS.

However, in order to understand the logic behind the WAVS for further assessment, the

functionality and testing strategy should be reviewed.

Chapter 5 Automated Web Vulnerability Scanning

 85

Table: 5.2 WAVS Features According to WASSEC

WAVS Feature – updated list of WAVS features according to WASSEC
Risk – web application risk to be tested by WAVS

WAVS Feature Risk

Authentication 1. Brute Force
2. Insufficient Authentication
3. Weak Password Recovery Validation
4. Lack of SSL On Login Pages
5. Auto-complete Not Disabled On Password Parameters

Authorization

1. Credential/Session Prediction
2. Insufficient Authorization
3. HTTP Verb Tampering
4. Insufficient Session Expiration
5. Session Fixation
6. Session Weaknesses

Client-side Attacks

1. Content Spoofing
2. Cross-Site Scripting
3. Cross-Frame Scripting
4. HTML Injection
5. Cross-Site Request Forgery
6. Flash-Related Attacks

Command Execution

1. Format String Attack
2. LDAP Injection
3. OS Command Injection
4. SQL Injection
5. SSI Injection
6. XPath Injection
7. HTTP Header Injection / Response Splitting
8. Remote File Includes
9. Local File Includes
10. Potential Malicious File Uploads

Information Disclosure 1. Directory Indexing
2. Information Leakage
3. Path Traversal
4. Predictable Resource Location
5. Insecure HTTP Methods Enabled
6. WebDAV Enabled
7. Default Web Server Files
8. Testing and Diagnostics Pages
9. Front Page Extensions Enabled
10. Internal IP Address Disclosure

Chapter 5 Automated Web Vulnerability Scanning

 86

5.3 Automated Scanning Functionality

WAVS search for web-application-specific vulnerabilities and look for software coding

errors, such as illegal input strings and buffer overflows. The first task performed by

WAVS is crawling the web application. This process collects all the pages of the web

application and creates an indexed list of all visited web pages. The next step is an active

analysis of a web application by simulating attacks on it. WAVS generates malicious inputs

(payloads) and checks the corresponding response from the application. The response can

contain error messages or attack-specific keywords that correspond to each type of attack

[7].

WAVS have their strengths and limitations. Starting from the crawling phase, WAVS face

some difficulties; they fail to entirely crawl the web application or to go to the entire depth

of it because of their seemingly random approach of link traversal. Without proper indexing

of all available web pages, the tool cannot guarantee finding all possible flaws [97].

WAVS not only fail to go to the entire depth of the web application, but also have problems

with indexing pages that use JavaScript and AJAX [98]. For example, Google advises

developers to keep the functionality simple in order to enhance search crawling: “Use a text

browser such as Lynx [99] to examine your site, because most search engine spiders see

your site much as Lynx would. If fancy features such as JavaScript, cookies, session IDs,

frames or Dynamic HTML (DHTML) [100] keep you from seeing all of your site in a text

browser, then search engine spiders may have trouble crawling your site” [101]. AJAX-

based applications rely on stateful asynchronous client/server communication, and client-

side runtime manipulation of the Document Object Model (DOM) tree. This not only makes

them fundamentally different from traditional web applications, but also more error-prone

Chapter 5 Automated Web Vulnerability Scanning

 87

and harder to test. One way to simulate a web user and gain access to dynamic states of

AJAX applications automatically is by adopting a web crawler capable of detecting and

firing events on clickable elements on the web interface. Such a crawler should be able to

crawl through different User Interface (UI) states and infer a model of the navigational

paths and states [98]. AJAX crawlers should be able to generate and execute different event

sequences as well as different (random or user-specified) input data. This is an additional

difficulty for WAVS.

Another problem is detecting Stored SQLI and XSS vulnerabilities. In order to detect these

attacks, the WAVS should be able to imitate Second Order SQLI and Persistent XSS

attacks. Stored attack is a form of chained attacks, as it requires two or more steps to

complete the attack. Firstly the payload should be stored in the database to be executed in a

next stage. At this stage, the payload is not yet executed. In the second step, the payload

should be found by following a specific sequence of steps and executed. Typically, the

WAVS have difficulties with following the specific sequence of steps; thus, they overlook

the vulnerabilities.

One example of this is when a customer adds a product review to the database in an online

store. To mimic this behavior and check if the function responsible for these actions is

vulnerable, the scanner should perform the following steps:

1. Crawl web site and find the page ‘Review Product’ that has a form, which will be

submitted to add review.

2. Insert the payload A to the database

3. Follow ‘Continue to product details’ link.

4. Analyze the HTTP response in ‘Product Details’ page.

Chapter 5 Automated Web Vulnerability Scanning

 88

The payload is stored in the database in step 2, but it is not exploited immediately. In step 3

the scanner analyzes the response and reports vulnerability. But, suppose there is no direct

path to the ‘Product Details’ page from the ‘Review Product’ page. In that case, while the

scanner is visiting the other vulnerable pages, the payload A can be overwritten by payload

B, and the first vulnerability on the ‘Review Product’ page stays undetected by the analyzer

component of the scanner.

Security Misconfiguration is another challenge for WAVS. In fact, there are several ways in

which web application can be vulnerable to Security Misconfiguration, including

application logic faults due to poor coding practices, irrespective of the technology used for

implementation, or the security of the web server or the back-end database. Protection

mechanisms could be deployed at the host, network, application, and server levels. It is a

very complex job to audit all these protective mechanisms. Therefore, WAVS usually

implement attack vectors, finding some vulnerabilities, but missing most of them. The tool,

for example Security Configuration Assistant for Apache, MySQL or PHP (SCAAMP)

[102], can assist in finding and fixing security misconfiguration vulnerabilities in web

applications, but it doesn’t cover the whole range of possible security misconfiguration

flaws.

This section makes clear that the detection rate of WAVS may vary depending on the

architecture of WAVS, implementation of crawling and attacking modules, as well as the

availability of attacking vectors responsible for different vulnerability types.

Next we will examine the architecture of two WAVS that we evaluate in this thesis.

Chapter 5 Automated Web Vulnerability Scanning

 89

5.4 QualysGuard Web Application Scanner (WAS) Overview

QualysGuard Web Application Scanning (WAS) [10] is a web application vulnerability

scanner that identifies web application vulnerabilities in the OWASP Top Ten report, like

SQL injection, cross-site scripting (XSS) URL redirection, and others. The tool allows

users to:

• Crawl web applications and scan them for vulnerabilities.

• Identify web applications’ handling of sensitive or secret data.

• Customize authentication, black/white lists, robots.txt, sitemap.xml and more.

• View reports with recommended security coding practice and configuration.

The web application scanning lifecycle assists users with managing security and

compliance through web application creation, scanning, reporting and remediation (see

Figure 5.1). Firstly, the web applications are discovered, the hosting and server are checked

for availability, and then the tool catalogs all the web applications in their environment. At

step 3, the scanning module performs the tests and attacks. Finally, the report is created.

Figure: 5.1 QualysGuard WAS Web Application Scanning Lifecycle

Chapter 5 Automated Web Vulnerability Scanning

 90

Scanning module is responsible for detection of custom web application vulnerabilities

including:

• OWASP Top 10 Vulnerability types: SQL injection, cross-site scripting (XSS),

source disclosure, directory traversal and more

• Checks web applications’ handling of sensitive or secret data

• Reports on recommended secure coding practice and configuration

• Differentiates exploitable fault-injection problems from simple information

disclosure

It supports scanning HTML web applications with JavaScript and embedded Flash and also

has the capability to customize scanning options:

• Customizes crawling

• Supports common authentication schemes

• Performs brute force attacks using pre-defined and custom password lists

• Profiles custom web application behaviors

• Configures scanning performance with customizable performance level

The final step is reporting and review. The reporting engine breaks down problems into

types of vulnerabilities, such as XSS or SQLI for a single web site. It also generates a

summary of vulnerability information across groups of web applications. QualysGuard

WAS introduces a mechanism for managing user access to individual web application scans

in order to accommodate different workflows for remediation and testing.

Chapter 5 Automated Web Vulnerability Scanning

 91

5.5 Acunetix Web Vulnerability Scanner (WVS) Overview

Acunetix Web Vulnerability Scanner (WVS) [11] is an automated web application security-

testing tool that audits web applications by checking for vulnerabilities like SQL Injections,

Cross-Site Scripting and other exploitable hacking vulnerabilities. In general, Acunetix

WVS scans any website or web application that is accessible via a web browser and uses

the HTTP/HTTPS protocol.

Acunetix WVS works in the following manner:

1. The Crawler analyzes the entire website by following all the links on the site and in the

robots.txt file and sitemap.xml (if available). WVS will then map out the website structure

and display detailed information about every file. If Acunetix AcuSensor Technology is

enabled, the sensor will retrieve a listing of all the files present in the web application

directory and add the files not found by the crawler to the crawler output. Such files usually

are not discovered by the crawler as they are not accessible from the web server, or not

linked through the website. It also analyses hidden application files, such as web.config.

2. After the crawling process, WVS automatically launches a series of vulnerability attacks

on each page found, emulating a hacker. Also, WVS analyzes each page for places where it

can input data, and subsequently attempts all the different input combinations. This is the

Automated Scan Stage.

3. During the scan process, a port scan is also launched against the web server hosting the

website. If open ports are found, Acunetix WVS will perform a range of network security

checks against the network service running on that port.

4. As vulnerabilities are found, Acunetix WVS reports these in the ‘Alerts’ node. Each alert

contains information about the vulnerability, such as POST variable name, affected item,

Chapter 5 Automated Web Vulnerability Scanning

 92

HTTP response of the server and more. Recommendations on how to fix the vulnerability

are also shown.

5. If open ports are found, they will be reported in the ‘Knowledge Base’ node. The list of

open ports contains information such as the banner returned from the port and if a security

test failed.

6. After a scan has been completed, it can be saved to file for later analysis and for

comparison to previous scans. Using the Acunetix reporter, a professional report can be

created, summarizing the scan.

5.6 Conclusion

There are some commercial WAVS available in the market. In this chapter two of them are

reviewed: QualysGuard Web Application Scanner (WAS) and Acunetix Web Vulnerability

Scanner (WVS). Both WAVS follow the common strategy: firstly they crawl the victim

web site, then they create and insert payloads, and finally they analyze the response. These

commercial WAVS compete against each other for market share, and therefore do not want

to disclose their limitations or restrictions. The decision to use QualysGuard WAS and

Acunetix WVS in evaluation reports was made based on the features they provide: they

identify all types of vulnerabilities listed in OWASP Top Ten report; they support

authentication schemes [12]; and they support web applications with JavaScript and AJAX.

In Chapter 6, the scanning approach of the MusicStore web application is reviewed, which

is designed as a test bed for evaluation of WAVS and contains the features discussed

earlier.

Chapter 6 Evaluation Environment and Setup

 93

Chapter 6

Evaluation Environment and Setup

Chapter 6 Evaluation Environment and Setup

 94

6.1 Introduction

To reveal shortcomings of Web Application Vulnerability Scanners (WAVS), a reliable

method should be employed. In order for an experiment to achieve meaningful results, the

server and the vulnerabilities used and targeted in the experiment should be accessible and

easy to modify. In this experiment, an independent web application, MusicStore, is tested,

which is developed to be used as a test bed for evaluation of QualysGuard WAS and

Acunetix WVS and consists of manageable features to correspond to testing needs.

For this type of experiment, it is important to have full access to the vulnerabilities, as well

as the ability to view and modify them. In this way, the vulnerabilities can be confirmed as

correctly identified or misidentified, and the code can be analyzed to see why certain

vulnerabilities may have been omitted. Using a controlled web server is beneficial because

it provides a web application environment that will remain unchanged and consistent during

the testing process. The MusicStore environment and technologies are discussed in Section

6.2.

Thorough testing methods should be used in order to expose WAVS flaws and limitations.

Section 6.3 describes the main phases of the testing method used for the experiment. Both

QualysGuard WAS and Acunetix WVS scanned the MusicStore in default mode.

6.2 Evaluation Environment

The evaluation of WAVS is conducted using the MusicStore Web Application as a test bed.

It is Java-based application, and it is deployed on the Apache Server. The application uses a

database on an Oracle database management server to store the data for the web site in its

Chapter 6 Evaluation Environment and Setup

 95

tables. Because of the widespread use and popularity of those technologies, they are chosen

as the underlying architecture of the MusicStore.

Apache has consistently been the most popular HTTP server since 1995. The latest web

server survey conducted in May 2012 [103] found that Apache owns 64.20% of the market

share for top servers across all domains.

Oracle database is a relational database, which is used extensively all over the world; it is

one of the most popular databases around the world [104]. It runs on every platform known,

from a mainframe to a Mac.

Java is currently one of the most popular programming languages in use, particularly for

client-server web applications, according to Tiobe [105]. The Java rating is 16.599%,

calculated based on worldwide availability of skilled engineers, courses, and third party

vendors. The most popular search engines, such as Google, Bing, Yahoo!, Wikipedia,

Amazon, YouTube and Baidu, are used to calculate its ratings.

The decision to use the popular technologies makes it possible to apply the result of WAVS

evaluation to the majority of web applications available currently on the web.

6.3 Evaluation Setup

Before the testing procedure, Web Application is restored to its original state. The setup

consists of the following steps:

• Preparation

• Execution

• Counting and Classification of The Results

• Analysis

Chapter 6 Evaluation Environment and Setup

 96

6.3.1 Preparation

The Preparation phase consists of setting up two nodes, client and server, that are deployed

on two machines. The first computer is acting like a web server; this is where the web

application and Oracle database server resides. The Acunetix WVS is installed on the other

computer, which is acting like a client. QualysGuard WAS testing is done in a different

manner. Due to the fact that it is a managed service, the sites to be scanned are ordered and

the reports are received from the service provider.

The Preparation consists of the following steps:

• Count and classify vulnerabilities in web application before the initial test.

• Put the database server and the web server in an initial state. This state includes

seven products, two regular users and one administrator user in database, and seven

images for each product on the web server.

• Delete all client-side and server-side cookies.

6.3.2 Execution

Both WAVS support identification of web application vulnerabilities in the OWASP Top

Ten approach, including dynamic and static search lists, links crawling, brute force and

authentication.

The Execution consists of the following steps:

• Clean the history of previous scan results.

• Run the scanner in default mode.

• Set up authentication mechanism; provide user login and password information.

• Save the reported results and the data (payloads) in the database for further analysis.

Chapter 6 Evaluation Environment and Setup

 97

Both WAVS are configured by using default settings, which allows running WAVS without

major configuration. However, the settings of the WAVS in default mode are adjusted to

ensure that each scanner achieves optimal results for every type of vulnerability from

OWASP Top Ten report.

6.3.3 Counting and Classification of the Results

After the results of WAVS tests are generated, they should be reviewed and organized in

groups: Detected, False Positive and False Negative. Additionally, it is important to review

the types of vulnerabilities found by WAVS to verify that all settings are configured

correctly.

Counting and Classification of the Results consist of the following steps:

• Count the Detected vulnerabilities, those that are found by WAVS, and compare to

actual vulnerabilities report.

Count False Positive results, where False Positive (FP) group represents the

following results:

ü The vulnerabilities that are reported by WAVS but are not actually presented in

the MusicStore web application. For this type of False Positive vulnerabilities,

the abbreviation TFP (True False Positive) is used.

ü The vulnerabilities marked as ‘Possible’ means that the findings are not

necessarily marked as vulnerabilities, but they state the possibility of a flaw or

specific vulnerability type in the MusicStore that are not presented in the

application. Those findings are considered as ‘Maybe’.

Chapter 6 Evaluation Environment and Setup

 98

ü Flaws, reported previously in the same vulnerability type, but with different

description are named 'Duplicate'.

• Count False Negative results (FN), which represent the vulnerabilities missed by

WAVS.

6.3.4 Analysis

The analysis needs to be conducted to unveil why specific vulnerabilities are being detected

while the others are missed. For each vulnerability in the scan report, the payload and the

response received from the web application server are included. In the analysis stage, all

this information is reviewed to verify the correctness of reported results and to discover the

WAVS scanning approach. Once the approach is discovered, mistakes in its functionality

can be identified, and explanations can be given for any limitations in its techniques.

In regard to client and server cookies, database entries are taken into account while

conducting the analysis. The analysis stage can suggest areas that require further research to

improve WAVS detection rates.

6.4 Conclusion

This chapter discussed the importance of choosing a proper evaluation environment and

setup. The testing approach, presented in detail, is sound and can produce significant

results. In the next chapter, the WAVS scan reports are reviewed to determine which

vulnerabilities and which vulnerability types from the OWASP Top Ten report are detected.

Chapter 6 Evaluation Environment and Setup

 99

Also, by analyzing the data obtained through running WAVS against MusicStore, the main

areas where WAVS require improvements can be revealed.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 100

Chapter 7

Evaluation of Web Application

Vulnerability Scanners (WAVS)

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 101

7.1 Introduction

Two WAVS, QualysGuard WAS (Q) and Acunetix WVS (A), were tested using the

MusicStore web application. According to the “Implementation of a Web Application for

Evaluation of Web Application Security Scanners” report [106], the biggest challenge for

these two WAVS was the difficulty to exploit stored and multi-step vulnerabilities. This

resulted in a high rate of False Negative results. On the other hand, False Positives were

mostly caused by ‘Duplicates’ and ‘Possible’ vulnerabilities.

The results of running WAVS against web application are shown in Table 7.1. The Table

contains the following data:

• The first column represents the vulnerabilities presented in the test suite. (Top Ten

OWASP Vulnerabilities)

• The second column shows the different types of a vulnerability presented in the first

column.

• The third column contains the total number of vulnerabilities of each type that exist

in MusicStore.

• The fourth column contains the number of vulnerabilities detected by WAVS.

• The fifth column is named False Positive (FP). The list includes the True False

Positive (TFP) vulnerabilities that are reported by WAVS, but not actually

presented in the MusicStore; the vulnerabilities marked as ‘Possible’ are considered

as either ‘Maybe’ or ‘Duplicates’ and these were reported previously in the same

type but with different description.

• The last column represents False Negative (FN) results, the vulnerabilities missed

by the WAVS.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 102

Table 7.1: Results of WAVS assessment

OWASP Vulnerabilities Vulnerability Kind Total Detected FP FN

 Q A Q A Q A

SQL Injection First Order 2 2 0 0 1 0 2

Second Order 4 0 0 0 0 4 4

XSS

Non-Persistent XSS 10 10 9 10 36 0 1

Persistent XSS 4 3 1 3 1 1 3

DOM XSS 4 1 3 0 0 3 1

Broken Authentication Password Guessing 1 0 0 0 0 1 1

Brute Force 1 1 1 0 0 0 0

Insecure Direct Object

Reference

 1 1 1 0 0 0 0

CSRF 11 4 0 8 0 7 11

Security Misconfiguration Password sent via GET

method

2 0 0 0 0 2 2

Web Server DDoS 2 2 0 2 0 0 2

Sensitive Data display 1 0 0 0 0 1 1

Insecure Cryptographic Storage Secure data is in plain text 5 2 0 0 0 3 5

Session 2 2 2 0 0 0 0

Failure to Restrict URL Access 1 0 0 0 0 1 1

Insufficient Transport Layer

Protection

Insecure session cookie 1 1 1 0 0 0 0

Non-encrypted connection 1 1 1 0 0 0 0

Non-encrypted sensitive

data

5 0 0 0 0 0 0

Un-validated Redirect and

Forward

 1 1 0 0 0 0 1

 59

The evaluation details can be found in Section 7.2. An analysis of limitations observed from

scan results are presented in Section 7.3.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 103

7.2 Evaluation Results

The following sections summarize the results obtained from testing WAVS using the

MusicStore web application. Section 7.2.1 shows the details of Detected vulnerabilities

presented in scan reports, while Section 7.2.2 summarizes the False Positive findings

obtained by comparing the flaws presented in the application with the scanning results.

7.2.1 Results of Detected and False Negative Vulnerabilities

This chapter presents detailed results for each vulnerability type from OWASP Top Ten

report, obtained from running WAVS against MusicStore. Table 7.2 - Table 7.11 contain

the following data:

• The first column represents the number of vulnerabilities. It simplifies the counting

of the overall number of flaws.

• The second column represents the vulnerability types from the OWASP Top Ten

report presented in the MusicStore.

• The third column shows the different kinds of a vulnerability type presented in first

column.

• The fourth column contains the path in the web application, where the specific

vulnerability can be found. The details of vulnerability’s implementation and

exploiting mechanism can be found in Chapter 3 Section 3.4.

• The fifth column represents the vulnerable parameter. By manipulating its value, the

attacker can exploit the flaw.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 104

• The sixth column shows the results of running the WAVS for each vulnerability.

The cell is green if a scanner found the vulnerability; otherwise it is red.

Ø SQL Injection (SQLI) Results

Table 7.2 represents the SQLI results of both WAVS for vulnerabilities that are actually

presented in the MusicStore web application.

Table 7.2: SQLI Vulnerabilities Detection Results

 Vuln. Vuln.

Kind

Vulnerability Path Vulnerable

Parameter

WAVS

 Q A

1 SQLI First

Order

/validation/displayPasswordRecovery emailAddress

2 SQLI First

Order

/validation/displayPasswordRecovery answer

3 SQLI Second

Order

/user/account/displayAccountDetails

country

4 SQLI Second

Order

/user/account/displayAccountPassword answer

5 SQLI Second

Order

/user/review/displayReview title

6 SQLI Second

Order

/user/review/displayReview message

As shown in Table 7.2, some SQLI flaws were missed. The lowest number of missed SQLI

vulnerabilities was First Order SQLI kind (2 of 6), which was the easiest to detect. Despite

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 105

that fact, Acunetix WVS missed all of them. Additionally, both WAVS failed to find

second order SQLI vulnerabilities.

The overall detection rate was 33.3% for the SQLI vulnerability type. The overall detection

rate is calculated as the number of vulnerabilities detected by both WAVS of each type over

the total number of vulnerabilities of each type in MusicStore.

Ø Cross-Site Scripting (XSS) Results

Both WAVS were able to show good results on XSS vulnerability detection. Table 7.3

represents the XSS results.

QualysGuard WAS discovered all Non-Persistent XSS vulnerabilities (10 out of 10).

Acunetix WVS’s results were very impressive, too (9 out of 10).

The overall rate for Non-Persistent XSS is 100%, which is the highest possible result.

QualysGuard WAS missed one Persistent XSS, while Acunetix WVS missed 3 of 4.

Overall, 3 of 4 Persistent XSS vulnerabilities were detected by WAVS, which make the

overall Persistent XSS rate 75%.

Only QualysGuard WAS, with an overall rate of 100%, detected JavaScript XSS

vulnerability.

Acunetix WVS was able to detect all AJAX vulnerabilities (3 out of 3), which is very

impressive, because the AJAX XSS vulnerabilities’ detection mechanism is relatively new.

QualysGuard WAS missed all AJAX XSS flaws.

Overall detection rate for XSS vulnerabilities is 94.4%.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 106

Table 7.3: XSS Vulnerabilities Detection Results

 Vuln. Vuln.
Kind

Vulnerability Path Vulnerable
Parameter

WAVS

 Q A
1 XSS Non-

Persistent
/registration/displayUserRegistration firstName

2 XSS Non-
Persistent

/registration/displayUserRegistration lastName

3 XSS Non-
Persistent

/registration/displayUserRegistration emailAddress

4 XSS Non-
Persistent

/registration/displayUserRegistration companyNam
e

5 XSS Non-
Persistent

/registration/displayUserRegistration address1

6 XSS Non-
Persistent

/registration/displayUserRegistration address2

7 XSS Non-
Persistent

/registration/displayUserRegistration city

8 XSS Non-
Persistent

/registration/displayUserRegistration state

9 XSS Non-
Persistent

/registration/displayUserRegistration zip

10 XSS Non-
Persistent

/registration/displayUserRegistration country

11 XSS Persistent /user/account/ displayAccountDetails country
12 XSS Persistent /user/review/displayReview title
13 XSS Persistent /user/review/displayReview message
14 XSS Persistent /user/account/displayAccountPasswor

d
answer

15 XSS DOM
JavaScript

/email/join_email_list.jsp?name=%3C
script%3Ealert%28%22DOM%20XS
S%22%29%3C/script%3E

name

16 XSS DOM
AJAX

/email/join_email_list.jsp?name=guest firstName

17 XSS DOM
AJAX

/email/join_email_list.jsp?name=guest lastName

18 XSS DOM
AJAX

/email/join_email_list.jsp?name=guest emailAddress

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 107

Ø Broken Authentication and Session Management Results

In MusicStore, two vulnerabilities of this type are presented. Table 7.4 represents results of

discovering the Broken Authentication and Session Management vulnerabilities by both

WAVS.

Table 7.4: Broken Authentication and Session Management Vulnerabilities Detection Results

 Vulnerability Vuln.

Kind

Vulnerability Path Vulnerable

Parameter

WAVS

 Q A

1 Broken

Authentication

Password

Guessing

/validation/displayPasswordRe

covery

answer

2 Broken

Authentication

Brute

Force

/user/validation/validateUser j_password/

j_username

The first flaw is vulnerability with weak password recovery model. Both WAVS missed

this vulnerability.

Nevertheless, both WAVS easily discovered the second vulnerability because it had plain

brute force attack possibility. This makes Brute Force vulnerability rate 100%.

Hence, overall detection rate for Broken Authentication and Session Management flaw type

is 50%.

Ø Insecure Direct Object Reference Results

 In MusicStore, one vulnerability of this type is presented. Table 7.5 shows the results of

the test.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 108

Table 7.5: Insecure Direct Object Reference Vulnerability Detection Results

 Vulnerability Vuln.

Kind

Vulnerability Path Vulnerable

Parameter

WAVS

 Q A

1 Insecure Direct

Object Reference

 /partners letter

Both security WAVS were able to detect this type of vulnerability. The overall detection

rate of Insecure Direct Object Reference vulnerability type is 100%.

Ø Cross-Site Request Forgery (CSRF) Results

Table 7.6: Cross-Site Request Forgery (CSRF) Vulnerabilities Detection Results

 Vulnerability Vuln.

Kind

Vulnerability Path Vulnerable

Parameter

WAVS

 Q A

1 CSRF /user/order/displayInvoice

2 CSRF /user/order/displayUserCart

3 CSRF /user/order/completeOrder

4 CSRF /user/account/displayAccount

5 CSRF /user/account/displayAccountDetails

6 CSRF /user/account/displayAccountPassword

7 CSRF /user/account/updateUserPassword

8 CSRF /user/account/updateUserDetails

9 CSRF /user/review/displayReview

10 CSRF /user/review/addReview

11 CSRF /cart/displayCart

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 109

MusicStore contains eleven vulnerabilities of this type. Table 7.6 shows the results of the

test.

QualysGuard WAS found only 4 CSRF vulnerable links.

Acunetix WVS didn’t show any results for this type of vulnerability.

The overall detection rate of Cross Site Request Forgery vulnerability type is 36.3%.

Ø Security Misconfiguration Results

The MusicStore application contains 5 Security Misconfiguration Vulnerabilities. Table 7.7

shows the results of the test.

Table 7.7: Security Misconfiguration Vulnerabilities Detection Results

 Vulnerability Vuln. Kind Vulnerability Path Vuln.
Param.

WAVS

 Q A
1 Security

Misconfiguration
POST vs GET /user/account/updateUserPassw

ord?password=falsepass&answ
er=black

2 Security
Misconfiguration

POST vs GET /validation/passwordRecovery?
emailAddress=test%40test.com
&answer=black

3 Security
Misconfiguration

Slow HTTP
headers DDoS
attack

/validation/displayPasswordRec
overy

4 Security
Misconfiguration

Slow HTTP
POST DDoS
attack

/validation/displayPasswordRec
overy

5 Security
Misconfiguration

Sec. data
displayed in
Response

/validation/displayPasswordRec
overy

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 110

The two vulnerabilities missed by QualysGuard WAS in this type are based on insecure

data handling by the web server, which is able to process requests sent by the GET method.

Thus, WAVS was able to detect 2 out of 5 vulnerabilities.

The Acunetix WVS missed all Security Misconfiguration vulnerabilities.

The overall detection rate for Security Misconfiguration vulnerability type is 40%.

Ø Insecure Cryptographic Storage Results

In the MusicStore application, 7 vulnerabilities of Insecure Cryptographic Storage type are

presented. Table 7.8 shows the results of discovering these flaws after running WAVS.

Both Acunetix WVS and QualysGuard WAS discovered session flaws (2 out of 2). Both

WAVS recommend setting the ‘secure’ flag to the application cookies. Although, in

general, this recommendation is useful, it doesn’t make sense if an application doesn’t use

HTTPS. The detection rate of each WAVS for this kind of Insecure Cryptographic Storage

vulnerability is 100%.

Although QualysGuard WAS tested the possibility of sending credit card information

securely, but it missed the same type of vulnerability: secure processing password and the

answer to a secret question.

The result for QualysGuard WAS for this kind of Insecure Cryptographic Storage

vulnerability is 40%.

The overall detection rate for Insecure Cryptographic Storage vulnerability type is 57%.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 111

Table 7.8: Insecure Cryptographic Storage Vulnerabilities Detection Results

 Vulnerability Vuln. Kind Vulnerability Path Vuln. Param. WAVS

 Q A

1 Insecure

Cryptographic

Storage

Secure data is in

plain text

/user/account/displa

yAccountDetails

creditCardNumber

2 Insecure

Cryptographic

Storage

Secure data is in

plain text

/registration/display

UserRegistration

creditCardNumber

3 Insecure

Cryptographic

Storage

Secure data is in

plain text

/user/account/displa

yAccountPassword

password

4 Insecure

Cryptographic

Storage

Secure data is in

plain text

/registration/display

UserRegistration

password

5 Insecure

Cryptographic

Storage

Secure data is in

plain text

/validation/displayPa

sswordRecovery

answer

6 Insecure

Cryptographic

Storage

Session Session cookie does

not contain the

‘secure’ attribute

7 Insecure

Cryptographic

Storage

Session Session cookie does

not contain the

‘HTTPOnly’

attribute

Ø Failure to Restrict URL Access Results

MusicStore presents one vulnerability of this type. Table 7.9 shows the results of the test.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 112

Table 7.9: Failure to Restrict URL Access Vulnerability Detection Results

 Vulnerability Vuln.

Kind

Vulnerability Path Vuln.

Param.

WAVS

 Q A

1 Failure to Restrict

URL Access

 /user/account/displayAccountDetails

MusicStore protects all data under ‘/user’ directory. After user is authenticated, web

application makes it possible to access hidden ‘/userAccess.jsp’ web page.

Both Acunetix WVS and QualysGuard WAS failed to discover this vulnerability.

As a result, the overall detection rate for Failure to Restrict URL Access vulnerability type

is 0%.

Ø Insufficient Transport Layer Protection Results

MusicStore contains 7 vulnerabilities of Insufficient Transport Layer Protection type. Table

7.10 shows the results of the test.

Acunetix WVS and QualysGuard WAS were able to detect insecure cookie vulnerability (1

out of 1).

The detection rate of each scanner for this kind of Insufficient Transport Layer Protection

vulnerability is 100%.

In the MusicStore application, the login form is submitted via HTTP, not HTTPS, thus

using non-encrypted connection. Both WAVS found this flaw.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 113

Table 7.10: Insufficient Transport Layer Protection Vulnerabilities Detection Results

 Vulnerability Vuln. Kind Vulnerability Path Vuln. Param. WAVS

 Q A

1 Insufficient

Transport

Layer Protection

 Session Session cookie

does not contain

the ‘secure’

attribute

2 Insufficient

Transport

Layer Protection

Non-encrypted

connection

/user/validation/val

idateUser

3 Insufficient

Transport

Layer Protection

Non-encrypted

sensitive data

/user/account/displ

ayAccountDetails

creditCardNumber

4 Insufficient

Transport

Layer Protection

Non-encrypted

sensitive data

/registration/displa

yUserRegistration

creditCardNumber

5 Insufficient

Transport

Layer Protection

Non-encrypted

sensitive data

/user/account/displ

ayAccountPasswor

d

password

6 Insufficient

Transport

Layer Protection

Non-encrypted

sensitive data

/registration/displa

yUserRegistration

password

7 Insufficient

Transport

Layer Protection

Non-encrypted

sensitive data

/validation/display

PasswordRecovery

answer

However, they missed all other vulnerabilities where confidential data transfer was

implemented without encryption. Although QualysGuard WAS was able to detect that

credit card information is handled insecurely, it didn’t create a reference to OWASP’s

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 114

“Insufficient Transport Layer Protection” vulnerability type. Thus, thus the finding wasn’t

marked as green.

The detection rate of each scanner for non-encrypted connection kind of Insufficient

Transport Layer Protection vulnerability type is 16.6%.

The overall detection rate for Insufficient Transport Layer Protection vulnerability type is

28.5%.

Ø Un-validated Redirect and Forward Results

MusicStore has one vulnerability that describes Un-validated Redirection and Forwarding.

Table 7.11 shows the results of the test.

QualysGuard WAS detected this vulnerability; thus, its detection rate of Un-validated

Redirect and Forward vulnerability is 100%.

Acunetix WVS didn’t report any findings; its detection rate of Un-validated Redirect and

Forward vulnerability is 0%.

Table 7.11: Un-validated Redirect and Forward Vulnerability Detection Results

 Vulnerability Vuln.

Kind

Vulnerability Path Vuln.

Param.

WAVS

 Q A

1 Un-validated Redirect

and Forward

 /partners/displayParnerLetter site

The overall detection rate by both WAVS for Insufficient Transport Layer Protection

vulnerability type is 100%.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 115

7.2.2 Results of False Positive Vulnerabilities

As described in Section 7.1, False Positive is considered a vulnerability that is classified as

‘True False Positive’ (TFP), ‘Maybe’, or ‘Duplicate’. Tables 7.12 - 7.15 represent these

vulnerabilities and contain the following data:

• The first column represents the number of vulnerabilities. It simplifies the counting

of the overall number of flaws.

• The second column shows the WAVS.

• The third column contains the status of the vulnerability: ‘TFP’, ‘Maybe’, or

‘Duplicate’.

• The fourth column represents the vulnerability types from the OWASP Top Ten

report presented in the MusicStore.

• The fifth column contains the path in the web application where the specific

vulnerability can be found. The details of the vulnerabilities and exploiting

mechanisms can be found in Chapter 3, Section 3.4.

• The sixth column represents the vulnerable parameter. By manipulating its value,

the attacker can exploit the vulnerability.

Each scanner reported a different set of False Positives. That is why separate tables are

created for each FP type of vulnerability.

Ø True False Positive Results

In the MusicStore web application, several defense mechanisms against web application

attacks are implemented. Those defense mechanisms are described in Chapter 4. Almost all

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 116

True False Positive (TFP) vulnerabilities are the results of ignoring the implemented

defense mechanisms.

The TFP results reported by Acunetix WVS (A) and QualysGuard WAS are presented in

Table 7.12.

Table 7.12: True False Positive Results by Acunetix WVS (A) and QualysGuard WAS (Q)

 WAVS Status Vuln. Vuln. Path Vuln. Param.

1 A TFP SQL /user/account/displayAccountDetails city

2 Q TFP CSRF /partners

3 Q TFP CSRF /catalog/displayProduct?productCode=8

601

4 Q TFP CSRF /validation/displayPasswordRecovery

5 Q TFP CSRF /cart/displayQuickOrder

6 Q TFP Persistent

XSS

/user/account/ displayAccountDetails zip

The Acunetix WVS is the only scanner that reported TFP SQLI vulnerability.

TFP rate of SQLI vulnerability by Acunetix WVS is 16.6%. The rate is calculated as the

number of TFP vulnerabilities of each type over total number of vulnerabilities of each

type (1 to 6).

 The QualysGuard WAS reported 4 TFP for CSRF vulnerability. This makes the TFP rate

of CSRF vulnerability by QualysGuard WAS equal to 36.3%.

Ø Maybe Results

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 117

The QualysGuard WAS reported several clickjacking vulnerabilities as ‘possible

vulnerability.’ Clickjacking is not new, but it’s increasingly being used in social

engineering attacks. Users are tricked into clicking on a button, which performs an

unintended action, without the user’s knowledge. In this experiment, the clickjacking is

considered as a more advanced variant of CSRF attack, when cross-site content is so

obscured the user thinks he/she is interacting with content from a different site. Thus, the

vulnerabilities that were reported as ‘possible clickjacking’ were classified as CSRF and the

result of counting clickjacking vulnerabilities was included in the evaluation as ‘Maybe’.

The ‘Maybe’ results are presented in Table 7.13.

Acunetix WVS didn’t report any ‘Maybe’ vulnerability.

Only QualysGuard WAS reported 4 ‘Maybe’ vulnerabilities out of total 11 CSRF

vulnerabilities.

The ‘Maybe’ rate of CSRF by QualysGuard WAS is 36.3%.

Table 7.13: ‘Maybe’ Results by QualysGuard WAS (Q)

 WAVS Status Vulnerability Vulnerable Path

1 Q Maybe Clickjacking (CSRF) /user/validation/validateUser

2 Q Maybe Clickjacking (CSRF) /catalog/displayProduct?productCode=pf02

3 Q Maybe Clickjacking (CSRF) /

4 Q Maybe Clickjacking (CSRF) /cart

Ø Duplicate Results

‘Duplicate’ entries were mostly reported for XSS vulnerabilities.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 118

Table 7.14: ‘Duplicate’ Results by Acunetix WVS (A)

 WAVS Status Vulnerability Vulnerability Path Vuln. Parameter

1 A Duplicate XSS /registration/displayUserRegistra
tion

firstName

2 A Duplicate XSS /registration/displayUserRegistra
tion

firstName

3 A Duplicate XSS /registration/displayUserRegistra
tion

firstName

4 A Duplicate XSS /registration/displayUserRegistra
tion

firstName

5 A Duplicate XSS /registration/displayUserRegistra
tion

lastName

6 A Duplicate XSS /registration/displayUserRegistra
tion

lastName

7 A Duplicate XSS /registration/displayUserRegistra
tion

lastName

8 A Duplicate XSS /registration/displayUserRegistra
tion

lastName

9 A Duplicate XSS /registration/displayUserRegistra
tion

companyName

10 A Duplicate XSS /registration/displayUserRegistra
tion

companyName

11 A Duplicate XSS /registration/displayUserRegistra
tion

companyName

12 A Duplicate XSS /registration/displayUserRegistra
tion

companyName

13 A Duplicate XSS /registration/displayUserRegistra
tion

address1

14 A Duplicate XSS /registration/displayUserRegistra
tion

address1

15 A Duplicate XSS /registration/displayUserRegistra
tion

address1

16 A Duplicate XSS /registration/displayUserRegistra
tion

address1

17 A Duplicate XSS /registration/displayUserRegistra
tion

address2

18 A Duplicate XSS /registration/displayUserRegistra
tion

address2

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 119

Table 7.14: ‘Duplicate’ Results by Acunetix WVS (A) (continued)

 WAVS Status Vulnerability Vulnerability Path Vuln. Parameter

19 A Duplicate XSS /registration/displayUserRegistra
tion

address2

20 A Duplicate XSS /registration/displayUserRegistra
tion

address2

21 A Duplicate XSS /registration/displayUserRegistra
tion

city

22 A Duplicate XSS /registration/displayUserRegistra
tion

city

23 A Duplicate XSS /registration/displayUserRegistra
tion

city

24 A Duplicate XSS /registration/displayUserRegistra
tion

city

25 A Duplicate XSS /registration/displayUserRegistra
tion

state

26 A Duplicate XSS /registration/displayUserRegistra
tion

state

27 A Duplicate XSS /registration/displayUserRegistra
tion

state

28 A Duplicate XSS /registration/displayUserRegistra
tion

state

29 A Duplicate XSS /registration/displayUserRegistra
tion

zip

30 A Duplicate XSS /registration/displayUserRegistra
tion

zip

31 A Duplicate XSS /registration/displayUserRegistra
tion

zip

32 A Duplicate XSS /registration/displayUserRegistra
tion

zip

33 A Duplicate XSS /registration/displayUserRegistra
tion

country

34 A Duplicate XSS /registration/displayUserRegistra
tion

country

35 A Duplicate XSS /registration/displayUserRegistra
tion

country

36 A Duplicate XSS /registration/displayUserRegistra
tion

country

37 A Duplicate XSS (Stored) /registration/displayUserRegistra
tion

country

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 120

The ‘Duplicate’ results reported by Acunetix WVS and QualysGuard WAS are shown in

Table 7.14 and Table 7.15, correspondingly. Acunetix WVS reported 37 ‘Duplicate’

entrees out of total 18 for XSS vulnerabilities. It had ‘Duplicate’ entrees only for XSS

vulnerability type. The ‘Duplicate’ rate of XSS by Acunetix WVS is 205.5%.

Table 7.15: ‘Duplicate’ Results by QualysGuard WAS (Q)

 WAVS Status Vulnerability Vulnerability Path Vuln. Param.
1 Q Duplicate XSS /registration/displayUserRegis

tration
firstName

2 Q Duplicate XSS /registration/displayUserRegis
tration

lastName

3 Q Duplicate XSS /registration/displayUserRegis
tration

companyName

4 Q Duplicate XSS /registration/displayUserRegis
tration

address1

5 Q Duplicate XSS /registration/displayUserRegis
tration

address2

6 Q Duplicate XSS /registration/displayUserRegis
tration

city

7 Q Duplicate XSS /registration/displayUserRegis
tration

state

8 Q Duplicate XSS /registration/displayUserRegis
tration

zip

9 Q Duplicate XSS /registration/displayUserRegis
tration

country

10 Q Duplicate XSS /registration/displayUserRegis
tration

emailAddress

11 Q Duplicate XSS (Stored) /user/account/
displayAccountDetails

country

12 Q Duplicate XSS (Stored) /user/account/
displayAccountDetails

country

13 Q Duplicate Redirect and
Forward

/partners/displayParnerLetter site

14 Q Duplicate/
Maybe

Clickjacking
(CSRF)

/cart/displayCart

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 121

QualysGuard WAS reported 12 ‘Duplicate’ entrees out of total 18 for XSS vulnerabilities.

The ‘Duplicate’ rate of XSS vulnerabilities by QualysGuard WAS is 66.6%.

Combining results in Table 7.14 and Table 7.15, the total ‘Duplicate’ rate of XSS

vulnerability type by two WAVS is 272.2%.

The QualysGuard WAS had ‘Duplicate’ results for Insecure Redirect and Forward

vulnerabilities (1 out of 1; 100%); and also one entree for CSRF vulnerabilities (1 out of 11;

9%).

The FP results for each type of vulnerability are presented in Table 7.16.

Table 7.16: False Positive Results by Acunetix WVS (A) and QualysGuard WAS (Q)

 WAVS Status Vulnerability Total Entrees Vulnerability

Rate

1 A FP SQL 1 out of 6 16.6%

2 A FP XSS 37 out of 18 205.5%

3 Q FP XSS 13 out of 18 72.2%

4 Q FP CSRF 8 out of 11 72.7%

5 Q FP Insecure

Redirect and

Forward

1 out of 1 100%

The analysis for each vulnerability type and proposed scanning improvements for the web

application security area they address are explained in section 6.5.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 122

7.3 Evaluation Analysis

This section presents the analysis of ‘Detected’ vulnerabilities and possible causes of ‘False

Negative’ results. Also the ‘False Positive’ results are reviewed and analyzed to avoid

further appearance in the WAVS reports. In addition, for each vulnerability type,

recommendations are made based on experiment results to improve the performance and

detection rate of the WAVS.

7.3.1 Analysis of Detected and False Negative Vulnerabilities

Ø SQLI Analysis

As shown in Table 7.2 QualysGuard WAS was able to discover all First Order SQLI

vulnerabilities. Because SQL error pages are reflected back to the client immediately after

the attack, the scanner was able to identify the SQLI vulnerability. On the other hand, the

Acunetix WVS missed all SQLI vulnerabilities, although it listed the web page where the

SQLI vulnerabilities were located during the crawling phase. The scanner reported one FP

result.

In all First Order SQLI vulnerabilities, the email address is used to construct a valid

payload. QualysGuard WAS used one of its entrees for ‘emailAddress’ parameter, inserted

previously to the database. As a result, the payload was constructed with valid parameters

and it was useful to exploit the flaws. The possible cause of the missing results is that the

Acunetix WVS did not enter valid data into all of the required fields to complete a

transaction.

On the other hand, both WAVS failed to find Second Order SQL Injection vulnerabilities.

This may be because of the essence of Second Order SQLI: the payload is not executed

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 123

immediately. The result of the SQLI is displayed on a page that should be navigated by the

user after the payload is submitted. WAVS fail to follow this logic, thus interpreting it as a

negative response.

The experiment showed that in order to discover maximum SQLI vulnerabilities, the

WAVS should test every possible combination of parameter values on every page of the

web application while constructing the payload. Also, the web application's workflow has

to be executed as intended to overcome logical workflow barriers. The WAVS should make

sure that the response containing the attack vector is always be provoked.

Ø Cross-Site Scripting (XSS) Analysis

The QualysGuard WAS discovered all Non-Persistent XSS vulnerabilities. Acunetix

WVS’s results for this kind of XSS vulnerability type were very impressive too.

As a group, both WAVS missed most Persistent multi-step XSS vulnerabilities. As is

shown in Table 7.3 for Acunetix WVS, the problem arose with Persistent XSS flaws.

Because the payload is usually stored in the database and executed later, the possible cause

of missing those vulnerabilities is that they do not become apparent until the application is

accessed many times. The QualysGuard WAS, in its report regarding Persistent XSS,

mentioned that XSS was initially injected in a page other than where it was detected. But

despite the ability of the scanner to track the stored payload, it missed one flaw.

The Acunetix WVS didn’t crawl the entire web application directly after the payload

injection to the vulnerable ‘answer’ parameter value. As a result, the ‘answer’ parameter

was modified later by other tests and the scanner was not able to discover the initial

payload.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 124

The Acunetix WVS showed brilliant results for discovering the AJAX flaws. The detection

rate was 100%. The QualysGuard WAS missed all AJAX vulnerabilities, but was able to

discover the changes in the DOM ‘environment’ in the browser.

The experiment suggests that the injected patterns can overwrite formerly injected patterns

before they are detected by the analyzer component. In order to increase the detection rate

of XSS vulnerabilities, particularly Persistent XSS flaws, the pages of an application should

be re-indexed after the attack. WAVS should implement more modern techniques for

crawling in order to avoid missing pages that are using AJAX.

Ø Broken Authentication and Session Management

In the MusicStore web application, two vulnerabilities of this type are presented. The first

one is a vulnerability linked to a weak password recovery model. The weakness is easily

exploited by guessing. Guessing, as well as other social engineering techniques, are

straightforward for a human user, but they represent a challenge for automated tools. As a

result, the WAVS were not able to find the flaw, which is not surprising.

As mentioned in Section 7.2.1 and Table 7.4, both WAVS easily discovered the second

vulnerability because it had plain, brute-force attack possibility. This is because the login

brute force option is included in the default settings of tested WAVS.

Ø Insecure Direct Object Reference Analysis

As shown in Table 6.5, both security WAVS were able to detect this type of vulnerability

with an overall rate of 100%. For Insecure Direct Object Reference vulnerability type, it is

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 125

crucial to discover the vulnerable parameter, because by manipulating its value, an attacker

can access the web pages outside the allowed directory.

Ø Cross-Site request Forgery (CSRF) Analysis

The Acunetix WVS didn’t show any results for this type of vulnerability. The QualysGuard

WAS found only 4 CSRF vulnerable links. This is related to the fact that, during the

information-gathering phase, the link crawling did not enumerate all the reachable pages.

For those links presented in the crawling report, CSRF vulnerability was detected.

The experiment suggests that, just like the main cause of missing AJAX flaws, the main

reason CSRF vulnerability type has so many undiscovered vulnerabilities is that the tools

don’t have good in-depth coverage of the MusicStore. Thus, the crawling functionality

should be enhanced.

Ø Security Misconfiguration Analysis

The two vulnerabilities missed by the QualysGuard WAS in this type are based on insecure

data handling by a web server, which is able to process requests sent by GET method.

WAVS missed this vulnerability because the form with sensitive data was submitted by

POST method, although it was possible to send the request by adding the parameters in the

URL and processing it using the GET method. Apparently, the testing of the request

transfer method was not even included in the tools functionality.

Surprisingly, the Acunetix WVS didn’t find any of the presented flaws. This is because the

default settings didn’t include a security misconfiguration module.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 126

Ø Insecure Cryptographic Storage Analysis

As shown in Table 7.8, both the QualysGuard WAS and the Acunetix WVS discovered

session flaws. The WAVS recommend setting the ‘secure’ flag to the application cookies.

Although, in general, this recommendation is useful, it doesn’t make sense if an application

doesn’t use HTTPS. The QualysGuard WAS tested the possibility of sending credit card

information securely, but it missed the same type of vulnerability: secure processing

password and the answer to a secret question. This was because the tool tested for ‘credit

card’ keyword, while it neglected to perform any tests for similar keywords, such as

‘password.’

The Acunetix WVS didn’t report any findings regarding insecure handling of confidential

data.

To protect against these limitations, the WAVS should search for keywords indicating

confidential data, for example, ‘password’, ‘credit card’ and ‘secret.’

Ø Failure to Restrict URL Access

Both WAVS did not detect the hidden link. The link was accessible by a registered user

only.

In order to improve how WAVS detect Failure to Restrict URL Access vulnerability type,

they need to perform advanced forced browsing. For instance, while the hidden link is

found, the scanner should inform a user about the possibility of accessing it without any

additional authentication mechanisms.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 127

Ø Insufficient Transport Layer Protection Analysis

As shown in Table 7.10, the WAVS were able to detect insecure cookie vulnerabilities.

Although QualysGuard WAS was able to detect that credit card information is handled

insecurely, it didn’t specify the details of the vulnerability and didn’t create a reference to

OWASP’s “Insufficient Transport Layer Protection” vulnerability type.

Acunetix WVS wasn’t able to detect any vulnerability regarding insecure sensitive data

transportation.

As mentioned in Section 7.2.2, detection rate of each scanner for Non-encrypted connection

kind of Insufficient Transport Layer Protection vulnerability is 16.6%. Only login-related

vulnerability was described in the evaluation reports. Likewise, during the Insecure

Cryptographic Storage test, the WAVS did not check to see if any parameters with specific

keywords like ‘credit card’, ‘password’ or ‘secret’ were transferred to the server in a secure

manner using HTTPS connection.

The overall detection rate for Insufficient Transport Layer Protection vulnerability type was

28.5%. To improve the results, WAVS should pay more attention to non-encrypted

connections while handling confidential data.

Ø Un-validated Redirect and Forward

The QualysGuard WAS detected this vulnerability. The web application creates a redirect

based on a parameter from form field. The scanner was able to change the redirect

destination by modifying the parameter's value.

The Acunetix WVS didn’t report any findings. In order to avoid these shortcomings, the

Acunetix WVS should spider the site to see if it generates any redirects. Next, it should

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 128

check the parameters supplied prior to the redirection to see if they appear to be a target

URL or a piece of such a URL. If so, Acunetix WVS should change the URL target and

observe whether the site redirects to the new target. Or, it should check all parameters to see

if they look like part of a redirect or forward URL destination.

7.3.2 Analysis of False Positive Vulnerabilities

Ø FP SQL Injection Analysis

There was one FP observed by the WAVS when testing MusicStore for SQLI

vulnerabilities. As shown in Table 6.12, this vulnerability was marked as True False

Positive, meaning that the WAVS reported it as a real vulnerability while no such flaw

existed in MusicStore. This happened due to a shortcoming of Blind SQLI technique,

implemented by the Acunetix WVS. The payload “Hayward' and '3'='3” was inserted in

the database as one of the parameters using java Prepared Statement, discussed in Chapter

4. Thus, the payload was inserted as a text and there was no need to escape it. After the

attack, the application returned a different HTML page, so the Acunetix WVS decided that

the attack was successful. In reality, the payload was never executed and was displayed

later as “Hayward' and '3'='3”, just like an ordinary text.

To improve the performance, the Acunetix WVS should also test for false payloads; in this

example it would be “Hayward' and '3'='2.” The result of injecting this false payload would

be the same as injecting the true payload, described earlier. Thus, this would prove that the

found vulnerability is a FP result.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 129

Ø FP Non-Persistent XSS Analysis

As shown in Table 7.14, the primary reason why FP results were generated during the XSS

testing was because duplicate entries were being reported. The Acunetix WVS FP rate for

XSS vulnerabilities was 205.5%. This is because the scanner reported the same field value

being vulnerable multiple times. Acunetix WVS recognized that a field value was

vulnerable with one set of parameters, but then tested it again by changing some of the

other field parameters on the same page.

For example, ‘address1’ field is vulnerable for XSS.

Test 1:

address1=" onmouseover=prompt(905285) bad="

…

&creditCardExpirationMonth=02

…

Test 2:

address1=" onmouseover=prompt(951534) bad="

…

&creditCardExpirationMonth=03

…

To protect against these limitations, the Acunetix WVS should first check all possible

combinations within a vulnerable field and then report the vulnerability only once.

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 130

The ‘Duplicate’ rate of XSS vulnerabilities by the QualysGuard WAS was 66.6%. The

main reason for these False Positives is that the scanner reported the same XSS

vulnerabilities as ‘Reflected (Non-Persistent) Cross-Site Scripting (XSS) Vulnerabilities’ in

the first case, and then later as ‘Un-encoded characters.’ Displaying characters without

proper encoding or escaping them can be a cause of XSS vulnerability. Thus, the test

named ‘Un-encoded characters’ performed by the QualysGuard WAS is a very useful

attack type for discovering the Reflected (Non-Persistent) XSS flaws. But, because the

vulnerability is the same, it should be reported only once, mentioning different attack

options.

Performing multiple XSS attack types on the same input is a good practice for verification

of vulnerability. However, the report should not contain the duplicates of the same flaw. As

was discussed earlier in the Acunetix WVS example, the scanner should first check all

possible attack vectors and then report the vulnerability only once.

Ø FP Persistent XSS Analysis

The QualysGuard WAS reported one TFP result for Persistent XSS. This example

demonstrates the incorrect behavior of the scanner attacking functionality. A payload

‘’ was first injected in the vulnerable parameter ‘country’

and then successfully exploited. The payload remained in the database without any changes.

Later, another attack was performed on the non-vulnerable parameter ‘companyName’

using the same payload ‘’. After XSS injection, the

QualysGuard WAS checked responses from the server and the payload was discovered. It

had been injected successfully in the ‘country’ field, although it was found right after the

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 131

attempt to inject it to the ‘companyName’ parameter. So, the QualysGuard WAS reported

that the ‘companyName’ parameter was vulnerable.

To avoid mistakes, the QualysGuard WAS should consider using different payloads for

every parameter. In the above example, the False Positive result could be avoided by using

‘’ for ‘companyName’ parameter.

Ø FP Cross-Site Request Forgery (CSRF) Analysis

Numerous CSRF FP results were observed in the QualysGuard WAS report. Scanning the

web application while being authenticated caused the TFP and ‘Maybe’ results. Some links

mentioned as vulnerable for CSRF were actually available for access by not authenticated

users, so the CSRF attack was not a real threat. Also, the QualysGuard WAS report

contained one duplicate of CSRF vulnerability. As was discussed earlier in this chapter,

clickjacing is considered as a variety of CSRF attack. The link, vulnerable to both CSRF

and clickjacing attacks, was reported twice. Thus it was added to the list of ‘Duplicates’.

The general recommendation to prevent CSRF duplicates is to avoid separation of

clickjacing and CSRF attacks. But the decision as to whether clickjacing should be

considered a separate threat is individual to each scanner.

Ø FP Un-validated Redirect and Forwarding Analysis

The QualysGuard WAS reported one ‘Duplicate’ for this type of vulnerability. The reason

was that the web page containing this vulnerability could be accessed by two different

links: ‘/partners’ and ‘partners/displayParnerLetter’. The first link was used while

Chapter 7 Evaluation of Web Application Vulnerability Scanners (WAVS)

 132

accessing the web page first time, and the second after performing some actions, such as

submitting a form.

To protect against these limitation, the QualysGuard WAS should compare the DOM

structure of two web pages. If the DOM structure is similar, then only one vulnerability

should be reported, even if the links to that web page are different.

7.4 Conclusion

Based on the evaluation results and available reports of other studies presented in Chapter

3, it seems that the properties of MusicStore significantly affect the findings of the tools.

The results show that the crawling has been significantly improved, although there are still

limitations that affect the detection rate of such vulnerabilities as SQLI and XSS. In

addition, we have been pleasantly surprised to see the detection of DOM and AJAX

vulnerabilities. The Acunetix WVS was able to find all AJAX flaws, while the

QualysGuard WAS detected DOM and JavaScript vulnerability. Thus, together these two

WAVS covered all AJAX and JavaScript flaws.

We expected to see a much lower FP rate by the WAVS than we did. Unfortunately, the

Acunetix WVS reported three times more Non-Persistent XSS flaws than there actually

were in the MusicStore application. Also, the QualysGuard WAS showed numerous FPs

for CSRF vulnerabilities.

Comparing the WAVS using a single test bed like MusicStore does not represent an

exhaustive evaluation. Thus, the evaluation might not paint a definitive picture of the tools

in general. Still, the analysis of the missed vulnerabilities and the FP rate can suggest areas

that require further research to improve the overall productivity of WAVS.

Chapter 8 Evaluation of Web Application Vulnerability

Scanners (WAVS)

 133

Chapter 8

Conclusion

Chapter 8 Evaluation of Web Application Vulnerability

Scanners (WAVS)

 134

This thesis analyzed the problems that current Web Application Vulnerability Scanners are

facing when trying to detect certain types of vulnerabilities.

We began with a formal definition of Top Ten web application security risks based on the

report presented by the OWASP Foundation in 2011. The vulnerabilities were presented in

examples, and there was an extensive discussion of how to exploit these security flaws.

During this work, an evaluation application called MusicStore was developed. Its

implementation focused on the OWASP Top Ten vulnerabilities. We presented a thorough

description of all flaws presented in the vulnerable part of the code. The MusicStore

application was effectively used as a test bed for the evaluation of WAVS.

Moreover, MusicStore contained the secure part, where the defense mechanisms against

OWASP vulnerability types were implemented. Its significance was observed while

analyzing the False Positive (FP) results obtained by running WAVS.

Moreover, we conducted an experimental evaluation of two WAVS, the QualysGuard WAS

and the Acunetix WVS. The findings were documented and presented in this thesis. In

addition, the reasons behind False Negative and False Positive results were discovered and

analyzed.

The experiment conducted in this thesis showed that if no results were reported by WAVS,

it was not necessarily true that no vulnerabilities existed in the web application. In addition,

each scanner had its strengths and its limitations.

Chapter 8 Evaluation of Web Application Vulnerability

Scanners (WAVS)

 135

The Acunetix WVS showed brilliant results for discovering the AJAX flaws. The detection

rate was 100%. It also had a very good detection rate of other types of XSS vulnerability.

At the same time, though, the Acunetix WVS FP rate for XSS vulnerabilities was reported

as 205.5%, which was the highest FP rate for the entire experiment. This is demonstrated in

Figure 8.1.

Figure 8.1: Acunetix. Detected and False Positive/Duplicate/Maybe Results.

A1-SQL Injection, A2-Cross-Site Scripting, A3-Broken Authentication, A4-Insecure Direct Object

Reference, A5-Cross-Site Request Forgery, A6-Security Misconfiguration, A7-Insecure Cryptographic

Storage, A8-Failure to Restrict URL Access, A9-Insufficient Transport Layer Protection, A10-Un-

validated Redirect and Forward.

The reason behind this is that the scanner reported the same field value being vulnerable

multiple times.

Chapter 8 Evaluation of Web Application Vulnerability

Scanners (WAVS)

 136

The QualysGuard WAS impressed us with its detection of the Un-validated redirection

vulnerability. It was able to spider the site to see if it would generate any redirects. If the

scanner found these, then it changed the URL target. On the other hand, it had very high FP

rate on CSRF vulnerability type, as shown in Figure 8.2.

Figure 8.2: QualysGuard. Detected and False Positive/Duplicate/Maybe Results.

A1-SQL Injection, A2-Cross-Site Scripting, A3-Broken Authentication, A4-Insecure Direct Object

Reference, A5-Cross-Site Request Forgery, A6-Security Misconfiguration, A7-Insecure Cryptographic

Storage, A8-Failure to Restrict URL Access, A9-Insufficient Transport Layer Protection, A10-Un-

validated Redirect and Forward.

The root cause of this was that the links, vulnerable to both CSRF and clickjacing attacks,

were reported twice by QualysGuard.

Chapter 8 Evaluation of Web Application Vulnerability

Scanners (WAVS)

 137

Generally, we saw that scanners had trouble detecting second-order and stored

vulnerabilities, in which the attack vector wasn’t embedded into the immediate response but

in a later response. Neither Second Order SQLI nor Persistent XSS vulnerability types were

properly treated; their detection rate was near 0%.

In this thesis, the extensive analysis of WAVS running results was presented for each

OWASP Top Ten vulnerability type. We traced each attack to the root in order to interpret

and judge the result and, more importantly, find the cause of False Negative vulnerabilities.

We discovered that several vulnerabilities, for instance CSRF, were missed because of

incomplete crawling functionality. The crawler is an important component, and an

incompletely crawled web site can lower the detection rates. Accordingly, WAVS should

improve crawling, in this case by providing more thorough site indexing.

Another major shortcoming was discovered while testing for stored vulnerabilities. To

increase the stored vulnerability detection rate, the scanners should crawl an entire web

application immediately after the payload injection to the vulnerable parameter value.

After this experimental test, it could be observed that there were several types of

vulnerabilities that were misinterpreted or ignored by the scanners. As an illustration,

Failure to Restrict URL Access vulnerability type was not presented in any of the scanner

reports. Moreover, the Acunetix WVS missed four vulnerability types, as shown in Figure

8.1. Many of undetected vulnerability types were application-specific security flaws. More

enhanced methods should be implemented to test for application-specific vulnerabilities.

Chapter 8 Evaluation of Web Application Vulnerability

Scanners (WAVS)

 138

As the test showed, for some vulnerability types, FP rate was very high. False Positives

were mostly the result of ‘Duplicates’ and ‘Possible’ vulnerabilities. The big number of FP

results required more time for verification of vulnerability presence in the web application,

and thereby the testing became less efficient regarding time spent. Performing multiple

attack types on the same input is a good practice for verification of vulnerability; however,

the scanner should first check all possible attack vectors and then report the vulnerability

once, avoiding the duplicates.

In summary, as the techniques and features in WAVS continue to develop and change, we

hope that the work presented in this thesis will serve as a useful foundation on which to

build more effective Web Application Vulnerability Scanners.

 References

 XIV

References

 References

 XV

[1] Mulpuru, S. “US Online Retail Forecast, 2010 To 2015”. Forrester Research.

2011.

[2] The Open Web Application Security Project (OWASP) Foundation. “Top Ten

Web Application Security Risks”. 2011, January 18. Retrieved May 01, 2012,

from http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

[3] Nahari, H. & Krutz, R. L. “Web Commerce Security: Design and Development.”

John Wiley & Sons, 2011.

[4] National Institute of Standards and Technology (NIST). National Vulnerability

Database. Retrieved 2012, from: http://nvd.nist.gov/.

[5] WhiteHat Security. “WhiteHat Website Security Statistics Report”, 2011.

[6] Hopkins, A. “Web Application Vulnerability Statistics 2010-2011”. London:

Context Information Security.

[7] Okun, V., & Fong, E. “Web Application Scanners: Definitions and Functions.

40th Annual Hawaii International Conference on System Sciences “, p. 280b.

IEEE Computer Society Washington, 2007.

[8] The Web Application Security Consortium (WASC). “Web Application Security

Scanner Evaluation Criteria”, 2009.

[9] Curphey, M. “Web application security assessment tools “. IEEE Symposium on

Security and Privacy. IEEE Computer Society Washington, 2006.

[10] Qualys Inc. QualysGuard Web Application Scanning. Retrieved 2012, from

QualysGuard: http://www.qualys.com/products/qg_suite/was/

[11] Acunetix Inc. Acunetix Web Vulnerability Scanner. Retrieved 2012 from

Acunetix: http://www.acunetix.com/vulnerability-scanner/

[12] Jendrock, E., Ball, J., Carson, D., Evans, I., Fordin, S., & Haase, K. “Defining

Security Requirements for Web Applications”, September 2010. Retrieved

August 2011, from The Java EE 5 Tutorial:

http://docs.oracle.com/javaee/5/tutorial/doc/bncbe.html

[13] Eich, B. JavaScript, 1995. Netscape Communications Corporation. Retrieved

from Mozilla Foundation.

 References

 XVI

[14] Oracle. “Defending Against SQL Injection Attacks”, October 2009. Retrieved

May 2012, from Oracle Learning Library:

http://apex.oracle.com/pls/apex/f?p=44785:1:4073230388602787::NO

[15] The Web Application Security Consortium (WASC). “XML Injection”, 2010.

Retrieved 2012, from Project: WASC Threat Classification:

http://projects.webappsec.org/w/page/13247004/XML%20Injection

[16] The Web Application Security Consortium (WASC). “OS Commanding”, 2010.

Retrieved 2012, from Project: WASC Threat Classification:

http://projects.webappsec.org/w/page/13246950/OS%20Commanding

[17] The Web Application Security Consortium (WASC). “ SSI Injection”, 2010.

Retrieved 2012, from Project: WASC Threat Classification:

http://projects.webappsec.org/w/page/13246964/SSI%20Injection

[18] Oracle Corporation. Java. Retrieved from: http://www.java.com/en/

[19] Microsoft. “Active Server Pages, web application framework”. Retrieved from

ASP.NET: http://www.asp.net

[20] PHP. “Hypertext Preprocessor, server-side scripting language”, 2012. Retrieved

from PHP: http://www.php.net/

[21] Kirk, J. “Anonymous breaches San Francisco's public transport site”, 2011.

Retrieved 2012, from Network World:

http://www.networkworld.com/news/2011/081511-anonymous-breaches-san-

franciscos-public.html

[22] java2s. “Oracle PL/SQL Tutorial”, 2009. Retrieved 2012, from

http://www.java2s.com/Tutorial/Oracle/CatalogOracle.htm

[23] The Web Application Security Consortium (WASC). “Cross-site Scripting”,

2010. Retrieved 2012, from:

http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting

[24] The Web Application Security Consortium (WASC). “DOM Based Cross Site

Scripting or XSS of the Third Kind”, 2005. Retrieved 2012, from:

http://www.webappsec.org/projects/articles/071105.shtml

 References

 XVII

[25] Sun Microsystems. Mojarra Project. “Mojarra JavaServerTM Faces JSF, 2.0”,

2011. Retrieved 2012, from:

http://javaserverfaces.java.net/presentations/20090520-jsf2-datasheet.pdf

[26] Public-Key Cryptography Standards (PKCS). “PKCS#11: Cryptographic Token

Interface Standard”, 2011. “PKCS #15: Cryptographic Token Information

Format Standard”, 2011.

[27] Michigan State University. “Biometrics: Overview”, 2007. Retrieved 2012, from:

Biometrics.cse.msu.edu

[28] thc-hydra. THC Hydra 7.1, 2011. Retrieved 2012, from: http://www.thc.org/thc-

hydra/

[29] Openwall. John the Ripper password cracker. Retrieved 2012, from

http://www.openwall.com

[30] Huang, B. S. Brutus Project. “Brutus Project Groups Technical Report”, 2001.

Retrieved 2012, from: http://www.hoobie.net/brutus/

[31] Massimiliano Montoro. OXID. “Cain & Abel”, 2011. Retrieved 2012, from:

http://www.oxid.it/cain.html

[32] Chinotec Technologies Company. Paros Proxy, 2004. Retrieved 2012, from:

http://www.parosproxy.org/

[33] The Open Web Application Security Project (OWASP) Foundation. WebScarab

Project. Retrieved 2012, from:

https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

[34] PortSwigger. Burp Suit. Retrieved 2012, from http://portswigger.net/burp/

[35] Janczewski, L. Idea Group Inc. (IGI). “Cyber Warfare and Cyber Terrorism”,

2008.

[36] Subramanian, D., Le, H. T., Keong Loh, P. K., & Premkumar, A. B.

“Quantitative Evaluation of Related Web-based Vulnerabilities”, 2010. Fourth

IEEE International Conference on Secure Software Integration and Reliability

Improvement Companion. IEEE International Conference.

[37] Grossman, J. “CSRF, the sleeping giant”, 2006. Retrieved 2012, from

http://jeremiahgrossman.blogspot.com/2006/09/csrf-sleeping-giant.html

 References

 XVIII

[38] Microsoft Developer Network (MSDN) Library. “Improving Web Application

Security: Threats and Countermeasures”. Retrieved 2012, from:

http://msdn.microsoft.com/en-us/library/ff649874.aspx

[39] Shekyan, S. “Application Layer DoS attack simulator”, 2011. Retrieved 2012,

from: http://code.google.com/p/slowhttptest

[40] Hansen, R. ha.ckers.org web application security lab. “Slowloris HTTP DoS”.

Retrieved 2012, from: http://ha.ckers.org/slowloris/

[41] Payment Card Industry Security Standards Council (PCI). “Data Security

Standards Overview”. Retrieved 212, from:

https://www.pcisecuritystandards.org/security_standards/

[42] Payment Card Industry Security Standards Council (PCI). “Requirements and

Security Assessment Procedures. Version 2.0”, 2010.

[43] Oechslin, P. “Making a Faster Crytanalytical Time-Memory Trade-Off”, 2003.

Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology

Conference. Santa Barbara: Springer.

[44] Brodkin, J. (2007). Network World. “The top 10 reasons Web sites get hacked”,

2007.

[45] The Open Web Application Security Project Foundation (OWASP). “Forced

browsing”. Retrieved 2012, from:

https://www.owasp.org/index.php/Forced_browsing

[46] Shema, M. Qualys Security Labs. “Why You Should Always Use HTTPS”, June

2011.

[47] The Open Web Application Security Project Foundation (OWASP). “Phishing”.

Retrieved 2012, from: https://www.owasp.org/index.php/Phishing

[48] McAfee Corporation. Foundstone Hacme Series. Retrieved 2012, from:

http://www.mcafee.com/us/downloads/free-tools/index.aspx

[49] The Open Web Application Security Project Foundation (OWASP). “WebGoat

Project”. Retrieved 2012, from: https://www.owasp.org/index.php/Webgoat

[50] Suto, L. “Analyzing the accuracy and time costs of web application security

scanners” 2010.

 References

 XIX

[51] NT OBJECTives. NTOSpider. Retrieved 2012, from:

http://www.ntobjectives.com/security-software/ntospider-application-security-

scanner/

[52] Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. “State of the Art: Automated

Black-Box Web Application Vulnerability Testing”, 2010. IEEE Symposium on

Security and Privacy. Washington, DC: IEEE Computer Society.

[53] Apache Software Foundation. Tomcat Server. Retrieved 2012 from:

http://tomcat.apache.org/

[54] Oracle Corporation. Oracle Database, 11. Retrieved 2012 from:

http://www.oracle.com/us/products/database/overview/index.html

[55] Sun Microsystems. JavaServer Pages Technologies (JSP).

[56] World Wide Web Consortium and Web Hypertext Application Technology

Working Group (WHATWG). HyperText Markup Language (HTML), 1995.

Retrieved 2012 from: http://www.w3.org/html

[57] World Wide Web Consortium (W3C). Cascading Style Sheets (CSS), 1998.

Retrieved 2012 from: http://www.w3.org/Style/CSS/

[58] Leff, A., & Rayfield, J. “Web-application development using the

Model/View/Controller design pattern”, 2010. Fifth IEEE International

Enterprise Distributed Object Computing Conference.

[59] Ertaul, L., & Martirosyan, Y. California State University East Bay, Computer

Science. “Vulnerability Report”, 2012.

[60] Apache Software Foundation. “The Apache Tomcat 5.5 Servlet/JSP Container

Realm Configuration HOW-TO”. Retrieved 2012 from:

http://tomcat.apache.org/tomcat-5.5-doc/realm-howto.html.

[61] Seacord, R. Computer Emergency Response Team (CERT). “Top 10 Secure

Coding Practices”, 2011.

[62] Oracle Documentation. “Using Prepared Statements”, 2011. Retrieved 2012

from: http://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html

[63] Yang Guang, J. J., & Jipeng, H. “System modules interaction based stress testing

model”, 2010. The Second International Conference on Computer Engineering

and Applications, (pp. 138-141). Bali Island.

 References

 XX

[64] Saltzer, J., & Schroeder, M. “The protection of information in computer

systems”, 2005. IEEE Conference.

[65] Schneider, F. “Least Privilege and More”, 2003. IEEE Security & Privacy.

[66] Shema, M. “Seven Deadliest Web Application Attacks”, 2010. Syngress.

[67] Johansen, M., & Osborn, K. “Hacking Google Chrome OS”, 2011. Black Hat

Conference. Black Hat USA.

[68] Grossman, J. “Sometimes Input MUST be Validated Client-Side”, 2011.

WhiteHat Security Conference.

[69] Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos, E. P., &

Karagiannis, T. “xJS: practical XSS prevention for web application

development”, 2010. USENIX Conference on Web Application Development.

USENIX Association Berkeley.

[70] Bisht, P., & Venkatakrishnan, V. “XSS-GUARD: precise dynamic prevention of

cross-site scripting attacks”, 2008. Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, (pp. 23-48).

[71] Robertson, W., & Vigna, G. “Static enforcement of web application integrity

through strong typing”, 2009. 18th Conference on USENIX Security

Symposium. USENIX Association, Berkeley.

[72] Saxena, P., Molnar, D., & Livshits, B. “criptgard: Preventing script injection

attacks in legacy web applications with automatic sanitization”, 2011. 20th

USENIX conference on Security Symposium (pp. 1-1). USENIX Association

Berkeley.

[73] Saxena, P., Hanna, S., Poosankam, P., & Song, D. “FLAX: Systematic discovery

of client-side validation vulnerabilities in rich web applications”, 2010. 17th

Annual Network & Distributed System Security Symposium.

[74] Saxena, P. A., Hanna, S., Mao, F., McCamant, S., & Song, D. “A Symbolic

Execution Framework for JavaScript”, 2010. IEEE Symposium on Security and

Privacy (pp. 513 - 528). IEEE Computer Society.

[75] Zend Framework. “Zend Filter”. Retrieved 2012 from:

http://framework.zend.com/manual/en/zend.filter.set.html

 References

 XXI

[76] Template Toolkit (TT2). “Manual”. Retrieved 2012 from: http://template-

toolkit.org/docs/manual/Filters

[77] Yii Framework. “Special Topics. Security”, 2010. Retrieved from:

http://www.yiiframework.com/doc/guide/1.1/en/.

[78] Mookhey, K., & Burghate, N. “Detection of SQL Injection and Cross-site

Scripting Attacks”, 2010. Symantec Connect Community.

[79] Saxena, P., Weinberger, J., Akhawe, D., Finifter, M., Shin, R., & Song, D. “A

systematic analysis of XSS sanitization in web application frameworks” 2011.

16th European conference on Research in computer security (pp. 150-171).

Springer-Verlag, Berlin.

[80] Miller, C. “Password Recovery”, 2002. Retrieved 2012 from

http://fishbowl.pastiche.org/archives/docs/PasswordRecovery.pdf

[81] Oracle Corporation. “Java EE at a Glance”. Retrieved August 2012, from:

http://www.oracle.com/technetwork/java/javaee/overview/index.html

[82] Jaggi, K. Sun Developer Network. “Securing Web Apps on Tomcat with SSL”,

2006.

[83] Apache Struts. “Class Token”. Retrieved 2012 from:

http://struts.apache.org/2.0.14/struts2-

core/apidocs/org/apache/struts2/components/Token.html.

[84] The Open Web Application Security Project Foundation (OWASP).

“CSRFGuard Project”. Retrieved 2012, from:

https://www.owasp.org/index.php/CSRFGuard

[85] Neto, A. A., Duraes, J., Vieira, M., & Madeira, H. “Assessing and Comparing

Security of Web Servers”, 2008. 14th IEEE Pacific International Symposium on

Dependable Computing. IEEE Computer Society.

[86] Shekyan, S. Qualys Community. “Identifying Slow HTTP Attack Vulnerabilities

on Web Applications”, 2011.

[87] Shekyan, S. Qualys Community. “How to Protect Against Slow HTTP Attacks”,

2011.

[88] Apache Software Foundation. “Security Tips, V 2.5”, 2011. Retrieved 2012,

from: http://httpd.apache.org/docs/2.0/misc/security_tips.html

 References

 XXII

[89] Daemen, J., & Rijmen, V. “The Design of Rijndael: AES - The Advanced

Encryption Standard”, 2002. Berlin: Springer-Verlag.

[90] National Institute of Standards and Technology (NIST). “Advanced encryption

standard (AES)”, 2001. Retrieved 2012, from:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[91] Rivest, B., Shamir, A., & Adleman, L. “A Method for Obtaining Digital

Signatures and Public-key Cryptosystems”, 1978. Communications of the ACM,

120-126.

[92] National Institute of Standards and Technology (NIST). “FIPS 180-2: Secure

Hash Standard (SHS)”.

[93] Oracle Documentation. “Developing Applications Using Data Encryption”.

Retrieved 2012, from:

http://docs.oracle.com/cd/B13789_01/network.101/b10773/apdvncrp.htm

[94] Hu, C. C., Ferraiolo, D. F., & Kuhn, D. R. National Institute of Standards and

Technology (NIST). “Assessment of Access Control Systems. National Institute

of Standards and Technology”, 2006.

[95] Black, P. E., Fong, E., Okun, V., & Gaucher, R. National Institute of Standards

and Technology (NIST). “Software Assurance Tools: Web Application Security

Scanner Functional Specification”.

[96] The Web Application Security Consortium (WASC). “Web Application Security

Scanner Evaluation Criteria”, 2009.

[97] Raghavan, S., & Garcia-Molina, H. “Crawling the hidden web”, 2001. 27th

International Conference on Very Large Data Bases.

[98] Mesbah, A., van Deursen, A., & Roest, D. “Invariant-Based Automatic Testing

of Modern Web Applications”, 2012. IEEE Transactions on Software

Engineering, 38, 35-53.

[99] Distributed Computing Group. Lynx. Retrieved 2012, from

http://lynx.browser.org/

[100] Gilorien. “DHTML and JavaScript”. Upper Saddle River, NJ: Prentice Hall.

 References

 XXIII

[101] Google Webmaster Tools. “Webmaster Guidelines”, February 08 2012.

Retrieved August 2012, from:

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=35769

[102] Eshete, B., Villafiorita, A., & Weldemariam, K. “Early Detection of Security

Misconfiguration Vulnerabilities in Web Applications”, 2012. Sixth International

Conference on Availability, Reliability and Security (ARES), (pp. 169-174).

[103] NetCraft. “May 2012 Web Server Survey, Market Share for Top Servers Across

All Domains August 1995 - May 2012”, 2012.

[104] Shekhar, R. DBA Mertrix Solutions. “Oracle and MySQL comparison”, 2012.

[105] TIOBE Programming Community. “Index for May 2012”, 2012.

[106] Ertaul, L., & Martirosyan, Y. “Implementation of a Web Application for

Evaluation of Web Application Security Scanners”, 2012. Proceedings of the

2012 International Conference on Security & Management SAM’12. Las Vegas:

SAM'12.

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXIV

Appendix - I

Source Code and Deployment Guide of

MusicStore Web Application

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXV

A.1 Introduction

MusicStore is constructed in Model-View-Controller (MVC) pattern.

The Model consists of business objects from the data store, the classes to represent the

database. Model classes are stored under ‘music’ directory in ‘data’, ‘business’ and ‘util’

folders.

The Controller consists of servlets, the layer where the entire job is done. Controller classes

are stored under ‘music’ in ‘admin’, ‘business’, ‘cart’, ‘catalog’, ‘email’, ‘registration’,

‘user’ and ‘validation’ folders; also under ‘job’ and ‘partners’ directories.

The View represents the user interface of the application. It consists of JSP and HTML and

XML pages. The View pages are stored under ‘web’ directory.

The catalog representation of MusicStore web application folders is shown in Figure A1.

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXVI

Figure A1. Catalog Representation of MusicStore Folders

MusicStore

src=> java=> music=> user => account web=> user => account

order order

review review

validation WEB-INF => lib

admin relatedDocs

=>

WVSSingleScan

validation META-INF

cart cart

catalog catalog

registratio

n

email

email partners

util productMain4

data registration

business validation

job includes

partners error

 images

letters

A.2 Model classes

Model classes are stored in ‘data’, ‘business’ and ‘util’ folders.

‘data’ folder:

• CartLineItemDB.java

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXVII

• ConnectionPool.java

• DBUtil.java

• InvoiceDB.java

• LineItemDB.java

• ProductDB.java

• ReportDB.java

• ReviewsDB.java

• SQLUtil.java

• UserCartDB.java

• UserDB.java

‘business’ folder

• Cart.java

• Invoice.java

• LineItem.java

• Product.java

• Review.java

• User.java

• UserCart.java

‘util’ folder

• CardValidationUtil.java

• CookieUtil.java

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXVIII

• ImageUtil.java

• MailUtil.java

• MailUtilYahoo.java

• MusicStoreContextListener.java

• PathUtil.java

• UserUtil.java

A.3 Controller classes

‘job’ folder

• DeleteProductServlet.java

• UpdateProductServlet.java

‘partners’ folder

• DisplayPartnerLetterServlet.java

• DisplayPartnersServlet.java

‘misic/user/account’ folder

• DisplayAccountDetailsServlet.java

• DisplayAccountPasswordServlet.java

• DisplayAccountServlet.java

• UpdateUserDetailsServlet.java

• UpdateUserPasswordServlet.java

‘misic/user/order’ folder

• CompleteOrderServlet.java

• DisplayInvoiceServlet.java

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXIX

• DisplayUserCartServlet.java

‘misic/user/review’ folder

• AddReviewServlet.java

• DisplayReviewServlet.java

‘misic/user/validation’ folder

• ValidateUserServlet.java

‘music/admin’ folder

• AddProductServlet.java

• DeleteProductServlet1.java

• DisplayProductsServlet.java

• UpdateProductServlet1.java

‘music/validation’ folder

• DisplayPasswordRecoveryServlet.java

• PasswordRecoveryServlet.java

• SecurityInformationServlet.java

‘music/cart’ folder

• DisplayCartServlet.java

• DisplayQuickOrderServlet.java

• RemoveCartItemServlet.java

• SetQuantityServlet.java

‘music/catalog’ folder

• DeleteCookiesServlet.java

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXX

• DisplayProductServlet.java

‘music/registration’ folder

• ContinueUserServlet.java

• DisplayUserConfirmationServlet.java

• DisplayUserRegistrationServlet.java

• ProcessUserServlet.java

‘music/email’ folder

• AddToEmailListServlet.java

• DisplayEmailListServlet.javas

A.2 View classes

‘web’ folder

• customer_service.jsp

• index.jsp

• musicStoreStyle.css

• userAccess.jsp

‘web/user/account’ folder

• update_user.jsp

• update_userDetails.jsp

• update_userPassword.jsp

‘web/user/order’ folder

• complete.jsp

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXI

• incomplete.jsp

• invoice.jsp

• user_cart.jsp

‘web/user/review’ folder

• review_product.jsp

• review_table.jsp

‘web/ WEB-INF’ folder

• web.xml

‘web/ WEB-INF /lib’ folder

• jstl

• jstl.jar

• mail.jar

• mysql-connector-java-5.0.5-bin.jar

• standard.jar

‘web/ relatedDocs’ folder contains some additional documents related to QualysGuard

WAS and Acunetix WVS scanning and evaluation.

‘META-INF’ folder

• context.xml

‘cart’ folder

• cart_empty.jsp

• cart.jsp

• quick_order.jsp

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXII

‘catalog’ folder

• displayDetails.jsp

‘email’ folder

• join_email_list.jsp

‘partners’ folder

• partners.jsp

‘productMain4’ folder

• addProduct.jsp

• deleteProduct.jsp

• displayProducts.jsp

• index.jsp

• updateProduct.jsp

‘registration’ folder

• user_confirm.jsp

• user_registration.jsp

‘validation’ folder

• login_error.jsp

• login.jsp

• logout.jsp

• passwordRecovery.jsp

‘includes’ folder

• column_left_all.jsp

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXIII

• footer.jsp

• header.jsp

• product_table.jsp

‘error’ folder

• error_403.jsp

• error_404.jsp

• error_java.jsp

• error_sql.jsp

‘images’ folder contains image files, used in MusicStore web application

‘letters’ folder contains partners’ newsletters and messages

• 8AM.html

• ASR.html

• GoldenClub.html

• SHMELP.html

A.3 Source Code

The source code of the MusicStore web application is available on-line. It is located at the

following URL for project checkout:

https://code.google.com/p/vulnerablewebapp/source/checkout

Or at the following URL in directory format:

http://code.google.com/p/vulnerablewebapp/downloads/list

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXIV

A.4 Creation of Music Oracle Database

MusicStore web application uses database on Oracle database management server to store

the data. Before deploying and running MusicStore the Music database should be created.

To create the database following SQL script is used:

CREATE table "V_USER" (

 "USERID" NUMBER NOT NULL,

 "FIRSTNAME" VARCHAR2(50),

 "LASTNAME" VARCHAR2(50),

 "EMAILADDRESS" VARCHAR2(50),

 "COMPANYNAME" VARCHAR2(50),

 "ADDRESS1" VARCHAR2(50),

 "ADDRESS2" VARCHAR2(50),

 "CITY" VARCHAR2(50),

 "STATE" VARCHAR2(50),

 "ZIP" VARCHAR2(50),

 "COUNTRY" VARCHAR2(50),

 "CREDITCARDTYPE" VARCHAR2(50),

 "CREDITCARDNUMBER" NUMBER,

 "CREDITCARDEXPIRATIONDATE" VARCHAR2(50),

 constraint "V_USER_PK" primary key ("USERID")

)

/

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXV

CREATE sequence "V_USER_SEQ"

/

CREATE OR REPLACE TRIGGER "BI_V_USER"

 before insert on "V_USER"

 for each row

begin

 if :NEW."USERID" is null then

 select "V_USER_SEQ".nextval into :NEW."USERID" from dual;

 end if;

end;

/

CREATE table "V_USERPASS" (

 "EMAILADDRESS" VARCHAR2(50) NOT NULL,

 "PASSWORD" VARCHAR2(15) NOT NULL,

 "ANSWER" VARCHAR2(50) DEFAULT '',

 constraint "V_USERPASS_PK" primary key ("EMAILADDRESS")

)

/

CREATE table "V_USERROLE" (

 "EMAILADDRESS" VARCHAR2(50) NOT NULL,

 "ROLENAME" VARCHAR2(20) NOT NULL

)

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXVI

/

alter table "V_USERROLE" add constraint "V_USERROLE_PK" primary key

("EMAILADDRESS","ROLENAME")

/

end;

/

CREATE table "V_PRODUCT" (

 "PRODUCTID" NUMBER NOT NULL,

 "PRODUCTCODE" VARCHAR2(30) NOT NULL,

 "PRODUCTDESCRIPTION" VARCHAR2(240) DEFAULT '' NOT NULL,

 "PRODUCTPRICE" NUMBER(8,2) DEFAULT 0 NOT NULL,

 constraint "V_PRODUCT_PK" primary key ("PRODUCTID")

)

/

CREATE sequence "V_PRODUCT_SEQ"

/

CREATE trigger "BI_V_PRODUCT"

 before insert on "V_PRODUCT"

 for each row

begin

 if :NEW."PRODUCTID" is null then

 select "V_PRODUCT_SEQ".nextval into :NEW."PRODUCTID" from dual;

 end if;

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXVII

end;

/

CREATE table "V_USERCART" (

 "USERCARTID" NUMBER,

 "USERID" NUMBER,

 constraint "V_USERCART_PK" primary key ("USERCARTID")

)

/

CREATE sequence "V_USERCART_SEQ"

/

CREATE trigger "BI_V_USERCART"

 before insert on "V_USERCART"

 for each row

begin

 if :NEW."USERCARTID" is null then

 select "V_USERCART_SEQ".nextval into :NEW."USERCARTID" from dual;

 end if;

end;

/

ALTER TABLE "V_USERCART" ADD CONSTRAINT "V_USERCART_FK"

FOREIGN KEY ("USERID")

REFERENCES "V_USER" ("USERID")

ON DELETE CASCADE

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXVIII

/

CREATE TABLE "V_CARTLINEITEM"

 ("CARTLINEITEMID" NUMBER NOT NULL ENABLE,

 "USERCARTID" NUMBER NOT NULL ENABLE,

 "PRODUCTID" NUMBER NOT NULL ENABLE,

 "QUANTITY" NUMBER NOT NULL ENABLE,

 CONSTRAINT "V_CARTLINEITEM_PK" PRIMARY KEY

("CARTLINEITEMID") ENABLE

)

/

ALTER TABLE "V_CARTLINEITEM" ADD CONSTRAINT

"V_CARTLINEITEM_FK" FOREIGN KEY ("USERCARTID")

 REFERENCES "V_USERCART" ("USERCARTID") ON DELETE CASCADE

ENABLE

/

CREATE OR REPLACE TRIGGER "BI_V_CARTLINEITEM"

 before insert on "V_CARTLINEITEM"

 for each row

begin

 if :NEW."CARTLINEITEMID" is null then

 select "V_CARTLINEITEM_SEQ".nextval into :NEW."CARTLINEITEMID" from

dual;

 end if;

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XXXIX

end;

/

ALTER TRIGGER "BI_V_CARTLINEITEM" ENABLE

/

CREATE table "V_INVOICE" (

 "INVOICEID" NUMBER NOT NULL,

 "USERID" NUMBER NOT NULL,

 "INVOICEDATE" DATE NOT NULL,

 "TOTALAMOUNT" NUMBER(8,2) ,

 "ISPROCESSED" VARCHAR2(20),

 constraint "V_INVOICE_PK" primary key ("INVOICEID")

)

/

CREATE sequence "V_INVOICE_SEQ"

/

CREATE trigger "BI_V_INVOICE"

 before insert on "V_INVOICE"

 for each row

begin

 if :NEW."INVOICEID" is null then

 select "V_INVOICE_SEQ".nextval into :NEW."INVOICEID" from dual;

 end if;

end;

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XL

/

ALTER TABLE "V_INVOICE" ADD CONSTRAINT "V_INVOICE_FK"

FOREIGN KEY ("USERID")

REFERENCES "V_USER" ("USERID")

ON DELETE CASCADE

/

CREATE TABLE "V_REVIEWS"

 ("REVIEWID" NUMBER NOT NULL,

 "TITLE" VARCHAR2(240) DEFAULT ' ',

 "MESSAGE" VARCHAR2(240) DEFAULT ' ',

 "REVIEWDATE" DATE DEFAULT SYSDATE,

 "USERID" NUMBER,

 "PRODUCTID" NUMBER NOT NULL,

 CONSTRAINT "V_REVIEWS_PK" PRIMARY KEY ("REVIEWID") ENABLE

)

/

ALTER TABLE "V_REVIEWS" ADD CONSTRAINT "V_REVIEWS_FK" FOREIGN

KEY ("PRODUCTID")

 REFERENCES "V_PRODUCT" ("PRODUCTID") ON DELETE CASCADE

ENABLE

/

CREATE OR REPLACE TRIGGER "BI_V_REVIEWS"

 before insert on "V_REVIEWS"

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XLI

 for each row

begin

 if :NEW."REVIEWID" is null then

 select "V_REVIEWS_SEQ".nextval into :NEW."REVIEWID" from dual;

 end if;

end;

/

CREATE TABLE "V_LINEITEM"

 ("LINEITEMID" NUMBER NOT NULL,

 "INVOICEID" NUMBER NOT NULL,

 "PRODUCTID" NUMBER NOT NULL,

 "QUANTITY" NUMBER,

 CONSTRAINT "V_LINEITEM_PK" PRIMARY KEY ("LINEITEMID")

)

/

ALTER TABLE "V_LINEITEM" ADD CONSTRAINT "V_LINEITEM_FK" FOREIGN

KEY ("INVOICEID")

 REFERENCES "V_INVOICE" ("INVOICEID") ON DELETE CASCADE

ENABLE

/

CREATE OR REPLACE TRIGGER "BI_V_LINEITEM"

 before insert on "V_LINEITEM"

 for each row

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XLII

begin

 if :NEW."LINEITEMID" is null then

 select "V_LINEITEM_SEQ".nextval into :NEW."LINEITEMID" from dual;

 end if;

end;

/

DELETE from v_Invoice;

DELETE from v_Reviews;

DELETE from v_UserCart;

DELETE from v_Product;

INSERT INTO v_Product VALUES

(1,'8601', ‘Michael Jackson – The Triller’,'15.15');

INSERT INTO v_Product VALUES

(2,'pf01', ‘Michael Jackson – Dangerous’,'10.10');

INSERT INTO v_Product VALUES

(3, 'pf02', ‘Apple – iPad’,'200.20');

INSERT INTO v_Product VALUES

(4,'jr01',' Stevie Wonder - Songs in the Key of Life’,'5.05');

DELETE from v_User;

INSERT INTO v_User VALUES

(4,'fTest','lTest','test@test.com','','25800 Carlos Bee

Boulevard','','Hayward','CA','94542','USA','Visa',411111111111111,'05/2012');

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XLIII

INSERT INTO v_User VALUES

(5,'fTest1','lTest1','test1@test.com','','25800 Carlos Bee

Boulevard','','Hayward','CA','94542','USA','Visa',4222222222222,'01/2011');

DELETE from v_UserRole;

INSERT INTO v_UserRole VALUES

(‘admin’,'admin');

INSERT INTO v_UserRole VALUES

('test1@test.com','user');

INSERT INTO v_UserRole VALUES

('test@test.com','user');

DELETE from v_UserPass;

INSERT INTO v_UserPass VALUES

('admin',’admin’ ,NULL);

INSERT INTO v_UserPass VALUES

 ('test1@test.com','test1','white');

INSERT INTO v_UserPass VALUES

('test@test.com','falsepass','black');

Appendix - I Source Code and Deployment Guide

of MusicStore Web Application

 XLIV

A.5 Deployment and Running of MusicStore

MusicStore web application is deployed on Tomcat Server. To deploy and run MusicStore

web application firstly the Tomcar Server and Java should be installed on local machine.

Then the application should be built from source code. While working on this project

NetBeans IDE was used to simplify the process. The source code can be found at the

following URL:

https://code.google.com/p/vulnerablewebapp/source/checkout

Before building the MusicStore application the DataSource information, including

password and URL should be updated to correspond to the used DataSource.

For detailed explanation of running and deploying MusicStore web application see

README file that can be found at the following URL:

https://code.google.com/p/vulnerablewebapp/downloads/list

Appendix - II Publications

 XLV

Appendix - II

Publications

L. Ertaul, Y. Martirosyan, “Implementation of a WEB

Application for Evaluation of WEB Application Security

Scanners”, Proceedings of the 2012 International

Conference on Security & Management SAM’12, July, Las

Vegas.

