
Security in Wireless Sensor Networks – A Study

L. Ertaul1, M. Ganta2

1Department of Mathematics and Computer Science, California State University, East Bay, Hayward, CA, USA,
Levent.Ertaul@csueastbay.edu

2Department of Mathematics and Computer Science, California State University, East Bay, Hayward, CA, USA,
mganta@horizon.csueastbay.edu

Abstract - Wireless Sensor Networks (WSNs) are used in
many commercial, military, industrial, research and medical
applications. Because of the limited resources of the sensor
nodes in the wireless environment, these networks impose
special security requirements besides to the security needs in
traditional networks. This study presents the security
problems in WSNs and discusses the security protocols based
on three different security mechanisms: Security Protocols
for WSNs (SPINS), which uses symmetric key cryptography,
then TinySec, which is based on Link layer encryption, and
later TinyPK (the Public Key Infrastructure solution). This
study also presents the security solutions offered, and also
security problems not addressed, by these protocols.

Keywords: WSNs, SPINS, TinySEc, TinyPK.

1 Introduction
 Wireless Sensor Network (WSN) is a heterogeneous system
with a collection of sensors distributed in irregular patterns in
remote areas, and often in hostile environments, without any
pre-deployed architecture, and with limited hardware
resources. The number of sensors in the WSN may range
from few hundred to few hundred thousands. These sensor
nodes will have limited resources of power, storage,
communication and processing capabilities. [1][2][3]

WSNs are used in wide variety of applications. WSN can
be used in military applications with sensors operating
unsupervised in the hostile environments for target
identification, tracking and data collection. WSN can also be
used in civil applications for disaster relief, emergency rescue,
burglar alarms and smart homes, patient monitoring etc., and
also in industrial applications such as environmental control,
Energy Management, inventory control and structural health
monitoring. WSN is also used in habitat and wild life
monitoring in the research of life sciences. [2][4][5]

WSN can be Hierarchical WSN or Distributed WSN by its
architecture. In Hierarchical Wireless Sensor Network
(HWSN), there is a hierarchy between the nodes based on
their capabilities: Base stations, Cluster Heads, and Sensor
Nodes. Base stations (BS) are many orders of magnitude
more powerful than sensor nodes and cluster heads. A BS is
typically a gateway to another network, a powerful data
processing / storage center, or an access point for human
interface. BSs collect sensor readings, perform costly
operations on behalf of sensor nodes and manage the network.
They are used as key distribution centers. Nodes with better
resources, named as cluster heads, may be used to collect and

merge local traffic and send it to BSs. Transmission power of
a BS is usually enough to reach all sensor nodes, but sensor
nodes depend on the ad-hoc communication to reach BSs. The
BS accesses individual nodes using source routing. In
Distributed Wireless Sensor Network (DWSN), there is no
fixed infrastructure, and network topology is not known prior
to deployment. Most of the situations, manual deployment of
WSN is impossible because of the hostile environment and/or
the number of the sensors nodes is too huge. Then the
deployment has to be performed by randomly scattering the
sensor nodes to target area. It may be possible to provide
denser sensor deployment at certain spots, but exact positions
of the sensor nodes can’t be controlled. Thus, network
topology is not known precisely prior to deployment. [3]

This paper is organized as follows. Section 2 explains the
security problems related to WSNs. In later sections, three
popular WSNs security protocols, based on three different
security mechanisms, are studied. Section 3 covers the
Security Protocols in WSNs (SPINS). Link layer encryption
protocol, TinySec, is explained in section 4. Section 5
describes the TinyPK. Section 6 concludes this study
explaining the need of new protocols and why the current
protocols are not satisfying all the WSN security
requirements.

2 Security Requirements of WSNs
 WSNs pose unique new security challenges, which prevent
direct application of traditional security techniques. First,
sensor devices are limited in their processing power, memory,
size, and communication capabilities. These devices have
very little computational power; even efficient public-key
cryptography and fast symmetric ciphers must be used with
care. There is considerable requirement to ensure that our
security protocols use a minimal amount of the limited RAM.
Additionally, communication bandwidth is extremely dear:
any message expansion caused by security mechanisms comes
at significant cost. Energy is the scarcest resource of all: each
milliamp consumed is one milliamp closer to death, and as a
result, nearly every aspect of WSNs must be designed with
power consumption in mind. [4]

Second, in contrast to traditional networks, WSNs are often
deployed in accessible areas to intruders, so adversaries are
not restricted to using WSN’s hardware, presenting a risk of
physical attacks and other security problems. They can even
interact with the network from a distance by using expensive
radio transceivers and powerful workstations.

Third, as the wireless communication is broadcast in nature,
the traditional key distribution and message authentication
solutions would pose problems in the low power WSNs. In a
broadcast medium, adversaries can easily eavesdrop on,
intercept, inject, and alter transmitted data.

Due to all the above reasons, the traditional security
mechanisms are inadequate, for WSNs, and different security
techniques are needed.

The following are the major security requirements in
WSNs.
Confidentiality. It provides privacy of the wireless
communication channels to prevent eavesdropping. Providing
confidentiality is mandatory security requirement in many of
WSN applications. Preferably, an encryption scheme should
not only prevent message recovery, but also prevent
adversaries from learning even partial information about the
messages that have been encrypted even when the multiple
encryptions of the same plaintext are seen. This feature of
encryption scheme is also known as semantic security
[2][4][9].
Integrity. Integrity [2][9] is ensuring that message or the
entity under consideration is not altered. If an adversary
modifies a message from an authorized sender while the
message is in transit, the receiver should be able to detect this
tampering.
Availability. Availability is ensuring that service offered by
whole WSN, by any part of it, or by a single sensor node must
be available whenever required. This also means robustness to
communication without Denial-of-Service (DoS). WSNs are
also vulnerable to resource consumption attacks. Adversaries
can repeatedly send packets to drain the nodes' batteries or
waste network bandwidth. [4][9][10]
Key establishment and trust setup. When setting up a WSN,
one of the first requirements is to establish cryptographic keys
for later use. Key-establishment techniques need to scale to
networks with hundreds or thousands of nodes. [4][9][10].
The simplest solution for key establishment is a network-wide
shared key. But, the compromise of a single node in a
network would lead to the reveal the secret key and thus allow
decryption of all network traffic. Another solution proposes to
use a single shared key to establish a set of link keys, one per
pair of communicating nodes, and then erase the network-
wide key after setting up the session keys. However, this key-
establishment process does not allow addition of new nodes
after initial deployment [4]. Another option is to pre-
configure the network with a shared unique symmetric key
between each pair of nodes, but it doesn’t offer scalability.
Bootstrapping keys using a trusted base station is another
option. Here, each node needs to share only a single key with
the BS and set up keys with other nodes through the base
station. This option makes the BS a single point of failure, but
because there is only one BS, the network may incorporate
tamper-resistant packaging for the BS, which can reduce the
threat of physical attack. [4]. Another approach is random-key
pre-distribution protocols [5] in which a large pool of
symmetric keys is chosen and a random subset of the pool is
distributed to each sensor node before installation. Here the

advantage is that key establishment does not need a central
trusted BS. But, the disadvantage of this approach is that
attackers who compromised sufficiently many nodes could
also reconstruct the complete key pool and break this scheme.
Finally this leads that we need a secure and efficient key-
distribution mechanism allowing simple key establishment for
large-scale WSNs. [4]
Authentication. In the two-party communication case, data
authentication can be achieved through a purely symmetric
mechanism: The sender and the receiver share a secret key to
compute a message authentication code (MAC) of all
communicated data. When a message with a correct MAC
arrives, the receiver knows that it must have sent by the actual
sender. This style of authentication cannot be applied to a
broadcast setting, without placing much stronger trust
assumptions on the network nodes. If one sender wants to
send authentic data to mutually untrusted receivers, using a
symmetric MAC is insecure: any one of the receivers knows
the MAC key, and hence, could impersonate the sender and
forge messages to other receivers. Hence, we need an
asymmetric mechanism to achieve authenticated broadcast.
[2][4][9]
Freshness. Data freshness means the message received is the
message sent by the source but not a replayed message sent by
the adversary. Basic wireless communication is not secure.
Because it is broadcast, any adversary can eavesdrop on
traffic, inject new messages, and replay old messages. There
are two types of freshness: weak freshness, which provides
partial message ordering, but carries no delay information,
and strong freshness, which provides a total order on a
request–response pair, and allows for delay estimation. [2]
Resilience to node capture. In traditional networks, physical
security is achieved by not allowing the physical access of the
network to the unauthorized persons. As this cannot be done
in the case of WSNs, new solutions need to be used for
achieving this. Exposure of sensor node raises the possibility
that an attacker might capture sensor nodes, extract
cryptographic secrets, modify their programming, or replace
them with malicious nodes under the control of the attacker.
Defenses based on redundancy are particularly well suited to
WSNs. Node capture is one of the most vexing problems in
WSN security. No good solution is found for this yet. [4][9]
Secure Routing protocols. Routing protocols are also
susceptible to node-capture attacks. Routing and data
forwarding is an essential service for enabling communication
in WSNs. An attacker might launch DoS attacks on the
routing protocol, preventing communication. The simplest
attacks involve injecting malicious routing information into
the network, resulting in routing inconsistencies. Simple
authentication might guard against injection attacks, but some
routing protocols are susceptible to replay by the attacker of
legitimate routing messages. [9]
Practical Problems. Large scale airdropped WSNs actually do
not work for many practical reasons. First, sensors must be
spaced rather closely to avoid gaps in the connectivity.
Increasing the sensor node’s radio transmission range would
not help in reducing the number of sensors in the WSN,

because energy consumption for a single transmission is
independent of the radio range. This leads to the fact that the
battery is the most important parameter in deciding the
security of WSN. But the energy density of the batteries is
improving only few percentage points every year. Second, in
battle field or terrorist watch areas, having numerous sensors
will lead to higher chances of noticing the node and its
capture. Third, when the sensors are air dropped, it is also
hard to find the actual physical location of the sensor. Another
important problem is maintenance-free operation of the
network. In addition to that in any kind of WSN, used for of
intruder detection, sensor node cannot distinguish between a
human and an animal because of its limited resources. [10]
 Hostile environments, lack of fixed infrastructure, limited
resources, and broadcast communication lead to the need of
special solutions for WSN security requirements, at least for
better solutions. In the following sections, Security Protocols
for WSNs (SPINS), TinySec and TinyPK are studied, and
these protocols offer different kinds of security solutions for
the above security problems in WSNs with some unanswered
problems.

3 Security Protocols for WSNs (SPINS)

SPINS has two security protocols- Secure Network
Encryption Protocol (SNEP) and Micro Timed Efficient
Stream Loss-tolerant Authentication (µTESLA). SNEP
provides data confidentiality, two-party data authentication,
integrity, and evidence of data freshness. µTESLA provides
authenticated broadcast for the limited resource environments
like WSNs. Both the mechanisms are based on symmetric
encryption since asymmetric encryption leads to higher
overheads of computation, storage and communication which
are not suitable for WSNs. [2]

3.1 Secure Network Encryption Protocol
(SNEP)
In SNEP [2], at creation time, each node gets a master

secret key that it shares with the base station. All other keys
are derived from this master key. The two communicating
parties A and B share a master secret key X, and they derive
independent keys using the pseudorandom function F [11]
and the master secret key X: encryption keys KAB = FX (1) and
KBA = FX (3) for each direction of communication, and MAC
keys K'AB = FX (2) and K'BA = FX (4) for each direction of
communication.

SNEP uses Counter exchange protocol for bootstrapping the
counters initially, and also for synchronizing the counter
values as shown in Figure 1.

Since sensors and the communicating parties share the
counter and increment it after each block, the sender can save
energy by sending the message without the counter.
 The encrypted data has the following format: Ciphertext, E
is encrypted message of (M, C) with the encryption key KAB,
where M is the message, and the counter is C. The MACAB is
calculated with MAC key K'AB, E and counter C. The complete
message that A sends to B is A→ B: E and MACAB. The

message is also created in the same manner for the opposite
direction.
 1

 2

 3

A

Figure.1. Counter Exchange protocol in SNEP. The messages sent are

marked with the number of the step given below.
1) A →B: CA,
2) B →A: CB, calculated MAC of (CA and CB) with MAC key K'BA,
3) A →B: Calculated MAC of (CA and CB) with MAC key K'AB.

The plain SNEP in Figure 2 only offers weak freshness.
Since the sender increments the counter after each message,
the receiver verifies weak freshness by verifying that received
messages have an increasing counter, assuring that the
message must have been sent after the previous message it
received correctly (that had a lower counter value), but no
absolute assurance to node A that a message was created by B
in response to an event in node A. This enforces a message
ordering and yields weak freshness

If strong freshness is required, Figure 3, Node A generates a
nonce (NA) randomly and sends it along with a request
message RA to node B. Then B returns the nonce with the
encrypted response message RB, along with the MAC of
(encrypted message RB, CB, and NA). If the MAC verifies
correctly, node A knows that node B generated the response
after it sent the request.

B

A

Fi
.

 E

A

In SNEP,
used for bot
mode [12] [
mode offers
macro and
ENCRYPT

To minim
function as p
secret key X

In summa
Low commu
kept at each
message, thi
Replay prot
replay of old
E KAB [M1, CA], MAC K`AB(CA, E KAB [M1, CA]

B

E KBA [M2, CB], MAC K`BA(CB, E KBA [M2, CB])

gure.2. Plain SNEP protocol with weak freshness.
 NA, RA

B

 E KBA [RB,CB], MAC K`BA (NA,CB , E KBA [RB,CB])
Figure.3. SNEP protocol with strong freshness.
 to save code space, same encryption function is
h encryption and decryption. The counter (CTR)
13] [14] of block ciphers has this property. CTR-
 semantic security. SNEP implements RC5 as a
only expose interfaces to the MAC and CTR-
functions.
ize power requirements, SPINS use a MAC
seudo-random number generator (PRG), with the

rand.
ry, SNEP offers the following security features:
nication overhead. Because the counter state is
 end point, and does not need to be sent in each
s reduces the communication overhead.
ection. The counter value in the MAC prevents
 messages.

Semantic security: Since the counter value is incremented
after each message, the same message is encrypted differently
each time.
Two-party Data authentication. The sender and the receiver
share a secret key to compute a message authentication code
(MAC) of all communicated data. When a message with a
correct MAC arrives, the receiver knows that the message
originated from the claimed sender. This also asserts the
integrity of the message.

3.2 Micro Timed Efficient Stream Loss-
Tolerant Authentication (µTESLA)
SNEP provides only point-to-point authentication.

Authentication of broadcast messages is also an important
security requirement. If convinced to accept forged or
modified commands or data, sensor nodes may perform
unnecessary or incorrect operations, and cannot fulfill the
intended purposes of the network.

SPINS use µTESLA [2], which is an adoption of TESLA
for broadcast authentication in WSNs. TESLA is a broadcast
stream authentication protocol. TESLA uses delayed key
disclosure mechanism where the key used to authenticate ith
message is disclosed along with (i+1)th message. The
difference between TESLA and µTESLA is that TESLA uses
asymmetric cryptography to bootstrap new receivers, whereas
µTESLA depends on symmetric cryptography with the master
key shared between the sender and each receiver to bootstrap
the new receivers individually.

µTESLA provides authentication for data-broadcasts, and
requires that base station and sensor nodes be loosely time
synchronized. SPINS employ base station as key distribution
centre.

Authenticated broadcast requires an asymmetric
mechanism; otherwise any compromised receiver could forge
messages from the sender. But this is suitable for traditional
networks, and leads to high computation, storage, and
communication overhead in case of WSN. µTESLA
overcomes this problem by introducing asymmetry through a
delayed disclosure of authentication keys in the key chain.
Each key in the key chain is the image of the next key under
the one-way hash function.

µTESLA requires sensor nodes to bootstrap from the Base
Station (BS); that is, they receive the first key of the chain,
which is called key chain commitment. Bootstrapping
procedure requires unicast communication, and can be
secured with pair-wise keys. Each node can easily perform
time synchronization and retrieve an authenticated key of the
key chain for the commitment in a secure and authenticated
manner, using the SNEP building block.
 The sender broadcasts the current key periodically in a
special packet. The sender generates the one-way key chain
right-to-left by repeatedly applying the one-way function F.
The sender associates each key of the one-way key chain with
a time interval. Time runs left-to-right, so the sender uses the
keys of the key chain in reverse order, and computes the
MAC of the packets of a time interval with the key of that

time interval. The key disclosure time delay is on the order of
a few time intervals.

Basically, BS randomly selects last key Kn of a chain, and
applies one-way function F [15] to generate the rest of the
chain Ki = F (Ki+1), 0 ≤ i ≤ n − 1, where the secret key Ki is
assigned to the ith time interval as shown in the Figure. 4.
Given Ki, every sensor node can generate the key sequence
K1,…, Ki−1. However, given Ki, no one can generate Ki+1. The
initial commitment of the key chain K0 is provided with
strong freshness and authentication by SNEP. At ith time slot,
BS sends message along with the MAC of the message
created with the key Ki. Sensor nodes store the message until
BS discloses the verification key in (i+1)th time slot.

Figure. 4. µ-TESLA one-way key-chain. K0 is the initial commitment of the key-chain,

which is provided through unicast-authenticated communication through SNEP.
In a one-way key chain, the keys are self-authenticating. So

the receiver can authenticate subsequent keys of the one-way
key chain using one authenticated key. For example, if the
node receives a new key Ki, then later that node can verify
disclosed verification key Ki+1 by using the previous key Ki as
Ki = F (Ki+1).

The node-to-base-station authenticated channel is used to
bootstrap the authenticated broadcast between a new receiver
and the base station. There are two ways of a node broadcasts
authenticated data. In the first solution, the node broadcasts
the data through the base station. It uses SNEP to send the
data in an authenticated way to the base station, which
subsequently broadcasts it. In the second solution, the node
broadcasts the data. But, the base station keeps the one-way
key chain and sends keys to the broadcasting node as needed.

SPINS don’t address all the security problems in WSNs.
First, problem of information leakage through covert channels
is not addressed. Second, it does not deal completely with
compromised sensors, it merely ensure that compromising a
single sensor does not reveal the keys of all the sensors in the
network. Third, it does not deal with DoS attacks. Since we
operate on a wireless network, an adversary can always
perform a DoS attack by jamming the wireless channel with a
strong signal. Finally, Diffie-Hellman style key agreement
[17] or digital signatures, to achieve non-repudiation, are not
available through SPINS like with any other symmetric key
mechanism.

In µTESLA, nodes are required to store a message until the
authentication key is disclosed. This operation may create
storage problems, and encourages DoS types of attacks. An
adversary may jam key disclosure messages to saturate
storages of sensor nodes. Another problem is Bootstrapping a
new receiver requires unicast communication. This leads to
high volume of packets in large WSN for bootstrapping a
large group of new receivers and creates scalability problems.

The major barrier of using µTESLA in large WSNs lies in
its difficulty to distribute the key chain commitments to a
large number of sensor nodes. The essential reason for this

difficulty is the mismatch between the unicast distribution of
key chain commitments and the authentication of broadcast
messages. That is, the technique is developed for broadcast
authentication, but it relies on unicast technique to distribute
the initial parameters.

Multilevel µTESLA is based on µTESLA. Multilevel
µTESLA satisfies several nice properties, including low
overhead, tolerance of message loss, scalability to large
networks, and resistance to replay attacks as well as DoS
attacks. [18] We have three variations of multilevel µTESLA
schemes. The first variation is named DoS-tolerant multilevel
µTESLA and is suitable for WSNs where the base station is
not very resourceful. The second variation is named DoS-
resistant multilevel µTESLA. It is suitable for WSNs with
relatively short lifetime and relatively powerful base stations.
The third variation is hybrid multilevel µTESLA. It is a trade-
off between the above two variations. It sacrifices certain
immediate authentication capability to exchange for less pre-
computation requirement.

4 TinySec

TinySec is the first fully implemented link layer security
architecture for WSNs. TinySec is a lightweight, generic
security package. TinySec offers confidentiality, message
integrity, and authenticity through link layer encryption. [19]
 In traditional networks, message authenticity, integrity, and
confidentiality are usually achieved by an end-to-end security
mechanism such as SSH [20], SSL [21], or IPSec [22]. But,
this is not the case in WSNs. Neighboring nodes in these
networks often have the same or correlated environmental
events, and if each node sends a packet to the base station in
response, precious energy and bandwidth are wasted. To
prune these redundant messages to reduce traffic and save
energy, WSNs use in-network processing such as aggregation
and duplicate elimination. For this, intermediate nodes need to
access, modify, and suppress the contents of messages. In this
scenario, we cannot use end-to-end security mechanisms
between each sensor node and the base station to guarantee
the authenticity, integrity, and confidentiality of these
messages. Another disadvantage of using end-to-end security
mechanisms in WSNs is that message integrity is only
checked at the final destination, then network may route
packets injected by an adversary many hops before they are
detected. This kind of attack will waste precious energy and
bandwidth of WSNs and could lead to DoS. Link-layer
security architecture can detect unauthorized packets when
they are first injected into the network. Link-layer security
mechanisms guarantee the authenticity, integrity, and
confidentiality of messages between neighboring nodes, while
permitting duplicate message elimination and data
aggregation.

TinySec provides two different security options:
authenticated encryption (TinySec-AE) and authentication
only (TinySec-Auth). In TinySec-AE, TinySec encrypts the
data payload and authenticates the packet with a MAC. The
MAC is computed over the encrypted data and the packet

header. In authentication only mode, TinySec authenticates
the entire packet with a MAC, but without the data payload
encryption.

TinyOS packet format and TinySec packet formats in AE
and Auth mode are shown in the Figure 5.

Figure. 5. The TinySec and TinyOS packet formats. The MAC protects fields, which

have been hatched. In TinySec-AE, the data field, shaded gray, is encrypted.
TinySec uses symmetric key mechanisms. In some of the

modes of operation using block ciphers, Initialization Vector
(IV) will be given as input the encryption algorithm while
creating the ciphertext. In TinySec, the IV is concatenation of
destination address, active message handler type, length of the
data payload, source address of the sender, and a 16-bit
counter. The counter starts at 0, and the sender increases it by
1 after each message sent.

In stream ciphers, if the same IV is ever used to encrypt two
different packets, then it is often possible to recover both
plaintexts. To guarantee that IVs are never reused requires
IVs to be fairly long, say, at least 8 bytes. Since one of our
goals, in WSN, is to minimize packet overhead, adding 8
additional bytes to a 30-byte packet is unacceptable. Then, the
alternatives is having shorter IVs and accept that IV reuse will
occur. But the stream ciphers cannot offer IV reuse, so block
cipher should be used in TinySec. Examples of block ciphers
include DES [23], Skipjack [24], AES [25], and RC5 [26].
Since we usually want to encrypt and authenticate messages
longer than 8 or 16 bytes, block ciphers require a mode of
operation to encrypt longer messages. For a k byte block
cipher, a mode of operation typically breaks a message into
segments of k bytes and uses the block cipher in a special way
to encrypt the message block by block. Block ciphers in
Cipher Block Chaining (CBC) mode [23] leaks only a small
amount of information in the presence of repeated IVs, a
significant improvement over a stream cipher. DES and AES
are slow on sensors. The protocol implementation originally
was done by RC5 and Skipjack. The default block cipher is
Skipjack. When a reference is made to a TinySec key, it
means a pair of Skipjack keys, one for encrypting data, and
one for computing MACs.

The sender to confirm the authenticity and integrity of the
message by the receiver creates message Authentication Code
(MAC). The sender computes a MAC over the packet with
the secret key and includes the MAC with the packet. A
receiver sharing the same secret key recomputes the MAC and
compares it with the received MAC value. If they are equal,
the receiver accepts the packet and rejects it otherwise. MACs
must be hard to forge without the secret key. This implies if
an adversary alters a valid message or injects a bogus
message, she or he cannot compute the corresponding MAC
value, and authorized receivers will reject these messages.

TinySec uses a cipher block chaining construction, CBC,
for computing and verifying MAC. CBC-MAC is efficient
and fast, and it relies on a block cipher as well minimizes the
number of cryptographic primitives. This works well in the
limited memory available in WSN. Standard CBC-MAC
construction is not secure for variably sized messages.
Adversaries can forge a MAC for certain messages. The
variant used in TinySec XORs the encryption of the message
length with the first plaintext block.

The security of CBC-MAC is directly related to the length
of the MAC. For a 4 byte MAC, an adversary has a 1 in 232
chance in blindly forging a valid MAC for a particular
message. Sensor nodes do not have enough energy to receive
that many messages. To detect such an attack, nodes could
signal the base station when the rate of MAC failures exceeds
some predetermined threshold.

The default block cipher in TinySec is Skipjack, which is
suitable for sensor nodes. RC5 also can be used in TinySec,
but RC5 may cause little more overhead, as it needs longer
keys. DES and AES are very slow on sensor nodes. When we
refer to a TinySec key, we mean a pair of Skipjack keys, one
for encrypting data, and one for computing MACs.

Researchers are currently exploring key update protocols in
TinySec. However, the TinySec protocol is not limited to any
particular keying mechanism; any can be used in conjunction
with TinySec. A keying mechanism determines how
cryptographic keys are distributed and shared throughout the
network. The TinySec protocol can be used in conjunction
with any keying mechanism. Network-wide keying cannot
protect against node capture attacks. If an adversary
compromises a single node or learns the secret key, he can
eavesdrop on traffic anywhere in the network. Another way is
that per-link keying, a type of in-network processing where
nodes take actions based on messages they overhear, and local
broadcast, where nodes can cheaply send a packet to all their
neighbors. Since a node cannot decrypt and authenticate
messages not addressed to it, passive participation and local
broadcast are incompatible with per-link keying.

TinySec’s shared keys do allow for efficient, secure
communications among nodes. But, for the replay protection,
a counter should be sent with each message. This leads to
saving one counter value, for each sender, in the receiving
sensor node. If the sensor network is huge, then the each
sensor node should have a big table of counter values
containing last counter value from each other node of the
network. This is an expensive solution in limited memory
WSNs. TinySec doesn’t provide replay protection of the
message, one of the most important security requirements.
Usage of TinySec increase the energy, bandwidth, and latency
overhead due to increased packet length due to TinySec, extra
computation time and energy needed for TinySec keys.

5 TinyPK
TinyPK [27] allows authentication and key agreement
between a sensor network and a third party as well as between
two WSNs. With symmetric encryption, proper key

management is a fundamental concern. Public key (PK)
technology is a widely used tool to support symmetric key
management in the realm of Internet hosts and high-
bandwidth interconnections. The TinyPK system
demonstrates that a public-key based protocol is feasible for
an extremely lightweight sensor network. Incorporating the
use of TinySec or any other symmetric encryption service for
mote (sensor node) networks, TinyPK provides the
functionality needed for a mote and a third-party to mutually
authenticate to each other and to communicate securely.
TinyPK is based on the well-known RSA cryptosystem [28],
using e=3 as the public exponent.

TinyPK requires a modest amount of public-key
infrastructure. The first element of the infrastructure is a
Certification Authority (CA), which is an entity with a private
and public key pair that is trusted by all friendly units. Any
third party that wishes to interact with the motes also requires
its own public/private key pair and must have its public key
signed (not on a hash of the data, but by transforming the data
directly) by the CA's private key, thus establishing its identity.
Finally, as each mote is loaded with software before being
deployed to the field, it must have the CA's public key
installed. Traditionally, a public key is made part of a
certificate (e.g. an X.509 certificate) but TinyPK eliminates
certificates as WSNs are assumed to not have the processing
power or the data context to make use of certificates, e.g., no
real-time access to the CA infrastructure. Without a certificate
structure, there is no direct way to deal with compromise of
an external party private key. TinyPK try to minimize the
damage by such a compromise but there are no recovery
mechanisms for compromise of private keys.

Figure. 6. TinyPK External Party Protocol Exchange.

TinyPK provides challenge-response protocol as shown in
Figure 6, that authenticates the external party to the sensor
network and securely transfers a session key from the sensor
network to the third party. To perform authentication, the
external party submits its signed public key and some text
signed with its private key. Protocol operation starts when the
third party provides a challenge to the sensor network. This
challenge consists of two parts: The first is its own public key,
signed by the CA private key; the second is a compound
object consisting of a nonce (a timestamp) and a message
checksum, signed with the third party's own private key. This
information is not encrypted. The nonce serves to detect
replay attacks, wherein a malicious party records previous
valid messages and rebroadcasts them in order to provide
false identification or otherwise attack a system. The

checksum is used to insure message integrity. Upon receipt
of the message, a sensor node uses the preloaded CA public
key to verify the first part of the challenge and extract the
third party's public key. It then uses this public key to verify
the second part of the message and extract the nonce and
checksum. The nonce and checksum are validated. If they
pass validation, the third party has successfully authenticated
to the sensor network and is considered to be an authorized
entity for sensor data. The sensor node now encrypts the
session key plus the received nonce using the third party's
public key. This combination is sent back to the third party,
which decrypts it using its private key, checks that the nonce
is the same as the one it sent, and if so, can record the session
key for future use[29].

TinyPK currently relies on conventional modular arithmetic
cryptosystems. However, there are several options for more
energy efficient cryptosystems, including Elliptic Curve
Cryptography (ECC) [30], and Efficient and Compact
Subgroup Trace Representation (XTR) [31].

But TinyPK does not explain the revocation of the
compromised private keys. It provides limited protection
against DoS attacks. Another problem is that WSNs can have
large number of motes, and the use of multiple session keys
will be required for each mote. This is still a research topic.

6 Conclusions
 In summary, SPINS do not address the information leakage
through covert channels. Covert channels will have
communications through unsecured procedures. It also does
not deal with the DoS attacks. Besides to that, SPINS do not
address compromised node issue except making sure it cannot
reveal keys of other sensors. Most importantly, it cannot
provide non-repudiation.

TinySec doesn’t provide replay protection of the message.
Each sensor node needs to have one counter value for each
session. This leads to huge consumption of memory when a
sensor node has multiple sessions in a large WSN. Besides to
this, TinySec increases the overhead of processing time and
communication because TinySec increases the TinyOS packet
size.
 TinyPK provides only limited protection against DoS
attacks. TinyPK hasn’t provided solution for compromised
private keys. TinyPK does not address handling multiple
session keys by a mote.

So far in all the existing solutions, there are significant
tradeoffs among the WSN security parameters. However, the
research in WSN security protocols can only solve some
security problems, sometimes with significant tradeoffs. But
they cannot eliminate all WSN security problems. Power of
the battery is a big factor in removing the practical obstacles
in the security of WSN. As the energy density of the battery is
increasing at very low rate, we will continue to see the
security problems / tradeoffs in WSN, at least for some more
years.

7 References
[1] David E. Culler, Wei Hong, “Wireless Sensor Networks: Introduction”

Communications Of The ACM, June 2004/Vol. 47, No. 6, pp. 30-33.
[2] Adrian Perrig, Robert Szewczyk, J.D. Tygar, Victorwen and David E. Culler,

“SPINS: Security Protocols for Sensor Networks” Wireless Networks 8, 521–534,
2002 ©2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

[3] “Key Distribution Mechanisms for Wireless Sensor Networks: A survey”, TR-05-
07, Department of Computer Science, Rensselaer Polytechnic Institute.

[4] Adrian Perrig, John A. Stankovic, David Wagner, “Security in Wireless Sensor
Networks” Communications Of The ACM, June 2004/Vol. 47, No. 6, pp. 30-33

[5] Roberto Di Pietro, Luigi V. Mancini, and Alessandro Mei, “Random-Key
Assignment for Secure Wireless Sensor Networks”, Proceedings of 1st ACM
Workshop Security of Adhoc and Sensor Networks Fairfax, Virginia

[6] Jason Hill, Mike Horton, Ralph Kling, Lakshman Krishnamurthy, “The Platforms
Enabling Wireless Sensor Networks” Communications Of The ACM, June
2004/Vol. 47, No. 6, pp. 41-46.

[7] Crossbow Technology Inc., “Motes, smart dust sensors, wireless sensor
networks”, http://www.xbow.com

[8] J. Hill and D. Culler, “Mica: A wireless platform for deeply embedded networks”,
IEEE MICRO, 22(6): 12-24, 2002.

[9] Elaine Shi, and Addrian Perrig, “Designing Secure Sensor Networks”, IEEE
Wireless Communications, December 2004.

[10] Chandana Gamage, Kemal Bicakci, Bruno Crispo, and Andrew S. Tanenbaum,
“Security for the Mythical Air-dropped Sensor Network”, Proc. 11th IEEE Symp.
Computers and Communications, IEEE CS Press, 2006, pp. 41-47.

[11] O. Goldreich, S. Goldwasser and S. Micali, “How to construct random functions”,
Journal of the ACM 33(4) (1986) 792–807.

[12] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, “ A concrete security treatment
of symmetric encryption: Analysis of the DES modes of operation”, in:
Symposium on Foundations of Computer Science (FOCS)(1997).

[13] W. Diffie and M.E. Hellman, “Privacy and authentication: An introduction to
cryptography”, Proceedings of the IEEE 67(3) (1979) 397–427.

[14] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, “Handbook of
AppliedCryptography” (CRC Press, 1997).

[15] R. Rivest, “The MD5 message-digest algorithm.” RFC 1321, Internet Engineering
Task Force (1992).

[16] Sencun Zhu, Sanjeev Setia, Sushil Jajodia, “LEAP: Efficient Security
Mechanisms for Large-Scale Distributed Sensor Networks”, Copyright 2003
ACM, pages 62-72

[17] W. Diffie and M.E. Hellman, “Privacy and authentication: An introduction to
cryptography”, Proceedings of the IEEE 67(3) (1979) 397–427.

[18] Donggang Liu and Peng Ning, “Multilevel µTESLA: Broadcast Authentication
for Distributed Sensor Networks” ACM Transactions on Embedded Computing
Systems, Vol. 3, No. 4, November 2004, Pages 800–836.

[19] Chris Karlof, Naveen Sastry, David Wagner, “TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks” SenSys’04, November 3–5, 2004,
Baltimore, Maryland, USA. Copyright 2004 ACM

[20] T. Ylonen. SSH - secure login connections over the Internet. In Proceedings of the
Sixth USENIX Security Symposium, 1996.

[21] OpenSSL. http://www.openssl.org
[22] Security architecture for the Internet Protocol. RFC 2401, November 1998.
[23] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. “A concrete security treatment

of symmetric encryption: Analysis of the DES modes of operation.” In
Proceedings of 38th Annual Symposium on Foundations of Computer Science
(FOCS 97), 1997.

[24] Biham, E., Biryukov, A., Shamir, A. (1999). “Cryptanalysis of Skipjack reduced
to 31 rounds using impossible differentials”, EUROCRYPT 1999, pp12–23.

[25] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay, David
Wagner, and Doug Whiting, “Improved Cryptanalysis of Rijndael, Fast Software
Encryption”, 2000 pp213–230

[26] Rivest, R. L. (1994). “The RC5 Encryption Algorithm”, In the Proceedings of the
Second International Workshop on Fast Software Encryption (FSE) 1994, p86–96

[27] Ronald Watro, Derrick Kong, Sue-fen Cuti, Charles Gardiner, Charles Lynn1 and
Peter Kruus, “TinyPK: Securing Sensor Networks with Public Key Technology”
SASN’04, October 25, 2004, Washington, DC, USA.Copyright 2004 ACM

[28] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing Elliptic
Curve Cryptography and RSA on 8-bit CPUs,” Proceedings of the Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2004), Boston, August
2004.

[29] Crossbow Technology, Inc., “Mote In-Network Programming User reference,”
http://www.xbow.com/Support/Support_pdf_files/Xnp.pdf.

[30] D. Malan, “crypto for Tiny Objects”, TR-04-04, Computer Science Group,
Harward University, 2004.

[31] A.K. Lenstra and E.R. Verheul, “The XTR public key system”, proceedings
Crypto 2000, LNCS 1880, Springer-Verlag, 2000.

	Introduction
	Security Requirements of WSNs
	Security Protocols for WSNs (SPINS)
	Secure Network Encryption Protocol (SNEP)
	Micro Timed Efficient Stream Loss- Tolerant Authentication (

	TinySec
	TinyPK
	Conclusions
	References

