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2 Abstract

In this thesis we provide new protocols to ensure security in computer networks, wireless sensor networks (WSNs) and wireless mobile ad hoc networks (MANETs) by using existing homomorphic encryption schemes. Homomorphic encryption schemes allow operations to be performed on the encrypted data as if the operations are performed on the plaintext. In computer networks, we provide secure routing protocols that determines minimum optimum path using homomorphic encryption schemes. We briefly look into the existing homomorphic encryption algorithms. Using the homomorphic property of encryption algorithms such as ElGamal, Elliptic Curve and privacy homomorphisms, we propose three new routing protocols, which are ElGamal, Elliptic Curve and Privacy Homomorphisms that find’s the minimum optimal path securely. These protocols provide confidentiality. In WSNs, data aggregation helps eliminate information redundancy and increase the lifetime of the network. When homomorphic encryption is used for data aggregation, end-to-end encryption is achieved and aggregation function like average or minimum/maximum can be computed on the encrypted data. Aggregation function like minimum/maximum rely on comparison operation. But, it has been shown that any homomorphic encryption is insecure against ciphertext only attack if they support comparison operation. The order preserving encryption scheme (OPES) has been suggested for WSNs, for secure comparison of encrypted data at the aggregator node in WSN. But, the computational cost at the sensor node in WSN by using OPES includes binary search on the sorted bucket boundaries, mapping plaintext value to flattened value and mapping flattened value to cipher value. In this thesis we provide an alternative for OPES when used to calculate aggregation function minimum/maximum. In this thesis we show how the sensed data is encrypted by using homomorphic encryption scheme and also show how aggregation function minimum/maximum can be computed at the aggregator node in WSNs by performing addition/multiplication operation and not comparison operation on the encrypted data. We also show how this scheme helps eliminate the encryption cost at the sensor node in WSNs. In MANETs, we provide new scheme that uses homomorphic encryption scheme as an alternative for threshold cryptography (TC) in MANETs to securely transmit the message. By using homomorphic encryption schemes we remove the computational cost associated with Lagrange Interpolation scheme used in TC and also increase the success rate of the encrypted message at the destination in MANETs. In this thesis we provide the computational cost of the homomorphic encryption schemes such as Domingo-Ferrer’s new Privacy Homomorphism, Domingo-Ferrer’s additive and multiplicative Privacy Homomorphism, Domingo-Ferrer’s Privacy Homomorphism allowing field operations on encrypted data and Mixed multiplicative homomorphism and suggest a better encryption schemes to be used in MANETs. We also provide the implementation issues of our new scheme in MANETs.

3 Table Of Content

IIIAcknowledgements


IVAbstract


VITable Of Content


XIFigures


XIITables


1Chapter - 1


1Introduction


21.1 Introduction


51.2 Organization of Thesis


7Chapter - 2


7Homomorphic Encryption Schemes


82.1 Introduction


102.2 Additive and Multiplicative Privacy Homomorphism


102.2.1 Encryption/Decryption


112.2.2 Properties


142.2.3 Security


152.3 A New Privacy Homomorphism and Applications


152.3.1 Encryption/Decryption


162.3.2 Properties


192.3.3 Security


202.4 A Privacy Homomorphism allowing Field Operations on Encrypted Data


202.4.1 Encryption/Decryption


212.4.2 Properties


232.4.3 Security


242.5 Mixed Multiplicative Homomorphism


242.5.1 Encryption/Decryption


252.5.2 Properties


272.5.3 Security


272.6 ElGamal Encryption Scheme


282.6.1 Encryption/Decryption


282.6.2 Property


292.7 Elliptic Curve Cryptography [ECC]


302.7.1 Encryption/Decryption


312.7.2 Property of ECC


312.7.3 Security of ECC


312.8 Summary


33Chapter - 3


33Finding Minimum Optimal Path in Computer Networks using Homomorphic Encryption Schemes


343.1 Introduction


353.2 A Secure Multi-Agent Dynamic Programming Based on Homomorphic Encryption Scheme


373.2.1 Encryption of weights in secure dynamic programming


403.2.2 Protocol


423.3 Finding Minimum Optimal Path Using Homomorphic Encryption Schemes


433.3.1 Use of ElGamal Homomorphic Encryption and its Application to Find the Shortest Optimal Path


483.3.2 Use of Elliptic Curve Homomorphic Encryption and Its Application to Find the Shortest Optimal Path


523.3.3 Use of Privacy Homomorphism to Find the Shortest Optimal Path


593.4 Summary


60Chapter - 4


60Computing Aggregation Function Minimum/Maximum using Homomorphic Encryption Schemes in Wireless Sensor Networks (WSNs)


614.1 Introduction


644.2 Adapting OPES scheme for Encrypted Comparison in Wireless Sensor Networks (WSNs)


674.3 Calculation of Aggregation function Maximum/Minimum


674.3.1 Finding the maximum value by computing addition/multiplication operation on the encrypted data at the aggregator node


754.3.2 Finding the minimum value by computing addition/multiplication operation on the encrypted data at the aggregator node


844.4 Summary


85Chapter - 5


85Secure Message Transmission in Mobile Ad Hoc Networks (MANETs) using Homomorphic Encryption Schemes


865.1 Introduction


865.2 Current security solutions in MANETs


865.2.1 Secure routing


875.2.2 Secure Data Forwarding


905.3 Homomorphic encryption schemes in MANETs


935.4 Implementation of Homomorphic encryption schemes in MANETs


955.4.1 Buffer structure of the encrypted message


985.4.2 Performance results of Homomorphic encryption schemes


1055.4.3 Performance Results of our new scheme in MANETs


1095.5 Alternative scheme for DF’s new Ph and DF’s additive and multiplicative PH


1115.6 Summary


113Chapter - 6


113Conclusion


XIIIReferences


XXIIAppendix - I


XXIIImplementation Details of Homomorphic encryption schemes in Mobile Ad Hoc Networks (MANETs)


XXIIIA.1 Introduction


XXVA.2 Simulation Flow Chart


XXVIIIA.3 Headers and Libraries


XXVIIIA.4 Parent process


XXIXA.4.1 Sender Process


XXXIXA.4.2 Router Process


XXXIXA.4.3 Receiver Process


LA.5 Data structures


LVA.6 Other Important Functions Details


LXVAppendix - II


LXVInstallation guide for MANETs Simulation


LXXVIIAppendix - III


LXXVIIPublications




 TOC \h \z \t "Caption,1" \c "Figure 3.1: Example of a directed graph" 

4 


5 Figures

36Figure: 3.1 Example of a directed graph


40Figure: 3.2 Example of a directed graph


62Figure: 4.1 Representation of Sensor node, Aggregator node and Sink node in WSN


91Figure: 5.1 The new scheme in MANETs


99Figure: 5.2 Execution time of PHs with varying key sizes and message size fixed to 512 bits


100Figure: 5.3 Execution time of PHs in (Sec with 512 bit key size


101Figure: 5.4 Execution time of PHs in (Sec with 1024 bit key size


102Figure: 5.5 Execution time of PHs in (Sec with 2048 bit key size


104Figure: 5.6 Execution time of DF’s new Ph and DF’s additive and multiplicative PH in (Sec with varying d


107Figure: 5.7 Success rate of the Network


107Figure: 5.8 Encryption timing of DF’s new Ph and DF’s additive and multiplicative PH in micro Seconds


108Figure: 5.9 Encryption timing of DF’s field Ph and DF’s MMH in micro Seconds


110Figure: 5.10 The Alternative new scheme in MANETs for DF’s new Ph and DF’s additive and multiplicative PH




6 Tables

95Table: 5.1 Buffer structure of message encrypted with DF’s new PH with d=2


96Table: 5.2 Buffer structure of message encrypted with DF’s additive and multiplicative PH with d=2


97Table: 5.3 Buffer structure of message encrypted with DF’s field PH


97Table: 5.4 Buffer structure of message encrypted with MMH


99Table: 5.5 Execution time of PHs with varying key sizes and message size fixed to 512 bits


100Table: 5.6 Execution time of PHs (Sec with 512 bit key size


101Table: 5.7 Execution time of PHs in (Sec with 1024 bit key size


103Table: 5.8 Execution time of PHs in (Sec with 2048 bit key size


104Table: 5.9 Execution time of DF’s new Ph and DF’s additive and multiplicative PH in (Sec with varying d


108Table 5.10 Encryption timing of DF’s new Ph and DF’s additive and multiplicative PH in micro Seconds


108Table 5.11 Encryption timing of DF’s field Ph and DF’s MMH in micro Seconds




7 Chapter - 1

8 Introduction
1.1 Introduction

The explosive growth in computer systems and their interconnections via networks has increased the dependence of both organizations and individuals on the information stored and communicated over these systems. This, in turn has lead to the heightened awareness of the need to protect data and resources from disclosure, to guarantee the authenticity of data and messages, and to protect systems from network based attacks. The disciplines of cryptography and network security have matured, leading to the development of practical, readily available applications to enforce network security [1].

Security involving communications and networks is not as simple as it might first appear to the novice. The requirement seems to be straightforward; indeed, most of the major requirements for security services can be given self-explanatory one-word labels: confidentiality, authentication, non-repudiation, and integrity. But the mechanisms used to meet those requirements can be quite complex and understanding them may involve rather subtle reasoning [1].

In our study we focus on securing computer networks, wireless sensor networks (WSNs) and wireless mobile ad hoc networks (MANETs). The data transmitted in these networks must be encrypted to achieve confidentiality, authentication, non-repudiation and integrity. There are cryptographic encryption schemes that can be applied to these networks. Such networks have some limitations, so appropriate cryptographic encryption schemes should be adopted to overcome those limitations. Keeping the limitations of these networks in mind we use homomorphic encryption schemes and its properties [2,3,4,5] to secure these networks.

In computer networks there are various routing protocols to determine the shortest path from sender to receiver. These routes are however not determined in a secure way. In our thesis we show how we can determine the shortest path securely from sender to receiver using homomorphic encryption schemes.

The WSNs consists of tiny sensor nodes, which have low computational power. Each sensor node senses their environment and transmits the data to the central point. The data gathered by the sensor nodes in most scenarios like environmental data (eg, temperature) will eventually be computed to find the minimum, maximum or average. These computations could be carried out at a central point or by the network itself. The latter has the advantage of reducing the amount of data transmitted over wireless connections, helps eliminate information redundancy and increase the lifetime of the network [6,7].

There are existing technologies in WSNs to remove information redundancy such as:

· CDA - In concealed data aggregation (CDA) the data gather by the sensor node is encrypted using homomorphic encryption scheme. The aggregator node eliminates information redundancy by computing average operation on the encrypted data [6,7].

· OPES - The OPES scheme is applied on the data gathered by the sensor node to allow the aggregator node to compute the comparison operation like minimum/maximum and helps eliminate information redundancy [8].

In this thesis we show how we can encrypt the sensed data at the sensor node using homomorphic encryption schemes and eliminate information redundancy by performing comparison operations like minimum/maximum on the encrypted data at the aggregator node in WSNs.

In MANETs, there is no fixed infrastructure and the nodes join in, on the fly creating a network on their own. The network may even comprise of nodes with low computational power. In such a network the nodes with inadequate physical protection can be easily captured, compromised and hijacked. Since it is relatively easy to capture the nodes, the nodes even if compromised should not reveal the entire message. In MANETs there are relatively new technologies to provide secure data transmission, which ensures that the nodes even if compromised does not reveal the entire message [9,10,11].

The current security solutions for MANETs are:

· Secure Message Transmission (SMT): In SMT the active paths between two nodes are discovered using existing secure routing protocols. If there are n active paths, then the message is split into n different parts such that only m parts can determine the entire message. The destination can recover the entire message with just m parts [12]

· Threshold Cryptography (TC): TC has been used to redundantly split the messages into n messages, such that a threshold t is enough to recover the entire message at the destination [13,14,15] 

These two schemes ensure that the destination recovers the message even if few messages are lost in transmission and the nodes even if compromised does not reveal the entire message.

In this thesis we provide homomorphic encryption scheme as an alternative for TC to securely transmit the message in MANETs. By using homomorphic encryption schemes we remove the computational cost associated with Lagrange Interpolation scheme used in TC and also increase the success rate of the encrypted message at the destination. We give the implementation details of the proposed scheme and give the successes rate of the encrypted message at the destination. Furthermore, we also give the encryption timing of the homomorphic encryption schemes and arrive at a fastest homomorphic encryption scheme.

1.2 Organization of Thesis

In this study we apply homomorphic encryption schemes and its properties in computer networks, WSNs and MANETs. We implement few of the homomorphic encryption schemes and determine the best encryption scheme for MANETs. We implement the proposed new scheme in MANETs for secure message transmission. 

Our study is organized in the following chapters.

· Chapter 2: In this chapter we define the homomorphic encryption scheme and describe various homomorphic encryption schemes in detail.

· Chapter 3: In this chapter we describe a new protocol to securely find the minimum optimal path in computer networks using homomorphic encryption schemes.

· Chapter 4: In this chapter we describe how to compute aggregation function minimum /maximum function in WSNs using homomorphic encryption schemes as an alternative to OPES.

· Chapter 5: In this chapter we use homomorphic encryption schemes for secure message transmission as a replacement for threshold cryptography in MANETs and describe the implementation of our scheme in MANETs for secure message transmission. 

· Chapter 6: In this chapter we conclude.

Chapter - 2

Homomorphic Encryption Schemes

2.1 Introduction

In computer networks, WSNs and MANETs efficient resource utilization is very important, meaning lesser the resource we use the better.  If homomorphic encryption schemes are used for secure data transmission, then operation can be performed on the ciphertext as if the operation were performed on the plaintext [2,3,4,5].

If homomorphic encryption schemes are not used for secure data transmission, then operations such as calculation of the minimum value, maximum value or average value at the intermediate nodes is a very costly operation, as the data has to be first decrypted to perform these operations. The intermediate nodes have to have the knowledge of the encryption keys to perform the encryption and decryption operation and the nodes if malicious, would easily get the encryption keys and hence the network would no longer be secure [6,7].

When Homomorphic encryption schemes are used operations such as calculation of the minimum value, maximum value or average value at the nodes is performed directly on the ciphertext [6,7].

Following are the advantages of using homomorphic encryption schemes

· Cost Saving: The encrypted data need not be decrypted, to perform required additive, subtractive or multiplicative operations on the plaintext and encrypted again.  This saves the encryption and decryption cost.

· Sensitive encryption key information not revealed: Nodes need not store sensitive encryption key information, as the operation can be performed directly on the encrypted data.  The node even if compromised won't reveal the sensitive encryption key information.

Homomorphic encryption schemes may be additive, subtractive, multiplicative and mixed multiplicative.  In additive homomorphism, decrypting the sum of two ciphertext is same as addition of two plaintext, represented as E(x+y) = E(x) + E(y).  In subtractive homomorphism, decrypting the difference of two ciphertext is same as subtracting the two plaintext, represented as E(x-y) = E(x) – E(y).  In multiplicative homomorphism, decrypting the product of two ciphertext is same as multiplication of the two plaintext, represented as E(x*y) = E(x) * E(y).  In mixed multiplicative homomorphism, decrypting the product of one ciphertext and plaintext is same as multiplication of two plaintext, represented as E(x*y) = E (x) * y [2,3,4,5].

The chapter is organized as follows. In section 2, we describe Domingo-Ferrer's additive and multiplicative homomorphic encryption scheme [2], which has additive, subtractive and multiplicative homomorphism. In section 3, we describe Domingo-Ferrer's new privacy homomorphism [3], having additive, subtractive, multiplicative and division homomorphism. In section 4, we describe Domingo-Ferrer's privacy homomorphism allowing field encryptions on encrypted [4], which is an additive and multiplicative homomorphism allowing computing inverses on encrypted data. In section 5, we describe Hyungjick Lee's Mixed multiplicative homomorphism [5], which is an additive, multiplicative and mixed-multiplicative homomorphism. In section 6, we describe ElGamal encryption scheme [16,17], which is an asymmetric encryption scheme exhibiting the property of multiplicative homomorphism. In section 7, we describe Elliptic Curve encryption scheme [18, 19, 20, 21, 22], which is an asymmetric encryption scheme exhibiting the property of additive homomorphism [23, 24]. In section 8, we conclude.

2.2 Additive and Multiplicative Privacy Homomorphism

Domingo-Ferrer's Additive and Multiplicative Privacy homomorphism is introduced in [2].  We now look into the details of additive and multiplicative privacy homomorphism.

2.2.1 Encryption/Decryption 

The public parameters are d>2 and m. m should have many small divisors and there should be many integers less than m that can be inverted modulo m. Secret parameters are r( Zm such that r−1mod m exists and a small divisor m' > 1 of m such that s := logm'm is an integer.

The encryption operation is performed by randomly splitting a ( Zm' into secret a1,··· , ad such that a =( a1 + a2 … + ai +... ad ) mod m' and ai(Zm.  Compute,

Ek (a) = (a1 r mod m, a2 r2 mod m, ... , ad rd mod m) --- (2.1)

The decryption operation is performed by computing the scalar product of the j-th coordinate by r−jmod m to retrieve aj mod m.  The plaintext a is a obtained by computing, (a1+..+aj +...+ ad )mod m'.

The additive and multiplicative homomorphism exhibits set of properties, which is explained in the next subsection.

2.2.2 Properties 

Additive and multiplicative privacy homomorphism has the following properties:

· Additive Homomorphism: Addition operation is done between terms of same degree.

· Subtractive Homomorphism: Subtraction operation is done between terms of same degree.

· Multiplicative Homomorphism: Multiplication operation works as in polynomials. The terms are cross-multiplied in Zm, the d2-th degree term with d1-th degree term yielding d1+ d2 -th degree term. 

· Division Homomorphism: Division operation cannot be applied on polynomials as they are rings not fields.

Let us look into an example to explain the protocol in more detail.

Let d=2, m=28, r=3 and m’ = 14. 

Consider  x1 = 2 and x2 = 3. 

The encryption operation is performed as in equation 2.1.

Ek (x1) = Ek (2) = Ek (11,5)

                     = (11* r1 mod m, 5 * r2 mod m)

                     = (11*3 mod 28, 5*9 mod 28)

                     =(33 mod 28, 45mod 28)

                     = (5,17)

Ek (x2) = Ek (3) = Ek (5,12) 

                     =(5 * r1 mod m, 12 * r2 mod m)

                      = (5*3 mod 28, 12*9 mod 28)

                      =(15 mod 28, 108 mod 28)

                      = (15,24)

Additive homomorphism: In additive homomorphism decryption of the sum of two ciphertext is same as the addition of two plaintext.

Ek (x1) + Ek (x2) =  (5,17) + (15,24)


          = (5+15 mod m' , 17+24 mod m')

                      =(20 mod 14, 41 mod 14)

                      =(6,13)

By decrypting the ciphertext (6,13) we get,

Dk (Ek (x1) + Ek (x2)) = Dk (6,13) 

                           = (6 * r-1 mod m, 13 * r-2 mod m)

                          =(6 * 19 mod 28, 13 * 192 mod 28)

                         =(2, 17)

                         =2+17 mod 14

                         =5 

which is same as the plaintext x1 + x2  = 5

This shows that addition can be performed on the ciphertext, as if performed on the plaintext.


Multiplicative homomorphism: In multiplicative homomorphism decrypted result of the product of two ciphertext is same as the multiplication of two plaintext.
Ek (x1) * Ek (x2) =  (5,17) * (15,24)

As in polynomials the terms are cross-multiplied to get,


          = (0 mod m', 5 * 15 mod m' , 17*15 mod m', 5*24 mod m' ,17 * 24 mod m') 

represents [x, x2, x3, x3, x4 ] respectively

We add up same powers to get,


         = (0, 5 * 15 mod m' , (17*15+ 5*24 )mod m' ,17 * 24 mod m')

                     =(0,75 mod 14, 375 mod 14, 408 mod 14)

                     =(0,5,11,2)

By decrypting the ciphertext (0,5,11,2) we get,

Dk (Ek (x1) * Ek (x2)) = Dk (5,2) 

                           = (0, 5* r-2 mod m, 11 * r-3 mod m, 2 * r-4 mod m)

                          =(0, 5 * 192 mod 28, 11 * 193 mod 28, 2 * 194 mod 28)

                         =(0,13,17,18)

                         =0+13+17+18 mod 14

                         =6 

which is same as the plaintext x1 * x2  = 6

This example shows that multiplication can be performed on the ciphertext, as if performed on the plaintext.

In the next subsection we look at the security details of this privacy homomorphism.

2.2.3 Security 

The privacy homomorphism is secure against chosen ciphertext attacks but not secure against chosen plaintext attacks as shown by Wagner [25].

Wagner in the paper [25] showed an efficient way to recover m' with a small pool say n, of known plaintexts.  He proposed several ways to recover r', where r' ≡ r mod m'. One possibility is exhaustive search, that works whenever m' is small.  Another possible attack is based on linear algebra, which works with reasonable success probability whenever n >=d.  A third possibility is an attack based on polynomial root-finding, which applies m' can be factored and there are a few known plaintexts.  Furthermore, he says that in each case, these attacks are conjectured to work, but there is no formal proof of this conjecture.

In the next section we look at the details of Domingo-Ferrer's new privacy homomorphism, which is secure against known ciphertext attacks but not secure against known plaintext attacks.

2.3 A New Privacy Homomorphism and Applications

The Doming-Ferrer's new privacy homomorphism is introduced in [3]. The details of this privacy homomorphism is explained in the following subsections.

2.3.1 Encryption/Decryption 

In this privacy homomorphism d and m are the public parameters.  Here m= p * q, where p and q are large prime numbers.  To increase security m can be made secret. The number d, represents the split of the plaintext. The secret keys are p, q, xp , xq .  Also,  xp  <  p or  xp ( Zp, such that it generates a large multiplicative subgroup in Zp – {0}.  Also, xq  <  q or  xq ( Zq, such that it generates a large multiplicative subgroup in Zq – {0}.

To perform encryption operation we need to select the plaintext  a ( Zm.  We then split a into secret numbers a1, a2 ... ad, such that a = (a1 + a2... +ai+... ad ) mod m and ai ( Zm.
Ek(a) = (a1xp mod p, a1xq mod q), ( a2 x2p  mod p, a2 x2q mod q),..., (ad xdp mod p, ad xdq mod q)

The Decryption operation is performed by computing scalar product of the ith pair [mod p, mod q] by [ x-ip  mod p, x-iq mod q] to get [ ai mod p, ai mod q].  The pairs are added up to get [a mod p, a mod q]. Finally, Chinese remainder theorem [CRT] [26] is performed to get a mod m.

The CRT is computed on a1 mod p and a2 mod q , to get a mod m.

Let m1=p, m2=q, M= m, M1 = m2 and M2 = m1 

Using Extended Euclid's Algorithm [27] we compute M1-1, the inverse of  M1 mod m1 and M2-1 , the inverse of M2   mod  m2.

a mod m  is recovered from a1,  a2  as,

a mod M = (a1M1  M1-1  + a2M2  M2-1 ) mod M

In the next subsection we look at the properties of the new privacy homomorphism. 

2.3.2 Properties 

The new privacy homomorphism has the following properties

· Additive Homomorphism: Addition operation is done between terms of same degree.

· Subtractive Homomorphism: Subtraction operation is done between terms of same degree.

· Multiplicative Homomorphism: Multiplication operation works as in polynomials. All the terms are cross multiplied in Z. 

Let us illustrate an example to explain the protocol in more detail.

Consider the example of 2 multiplication and 1 addition i,e. ( x1  * x2 ) + ( x3 * x4).

Let d = 2, i.e. the plaintext is split into 2. Consider p = 11, q = 7, xp = 2,  xq = 3 as secret keys.

Let  (x1, x2, x3, x4 ) = (-1, 1, 2, 3)

To perform encryption operation the plaintext is split as follows,

Ek(x1) = Ek ( -1) = Ek ( 2, -3 )

                            = [2 xp mod p, 2 xq mod q], [ -3 x2p mod p, -3 x2q mod q]

                            = [4, 6] , [10,1]

Ek(x2) = Ek ( 1) = Ek ( 4, -3 )

                          = [4 xp mod p, 4 xq mod q], [ -3 x2p mod p, -3 x2q mod q]

                          = [8, 5] , [10,1]

Ek (x3) = Ek ( 2 ) = Ek ( 3, -1 )

                          = [3 xp mod p, 3 xq mod q], [ -1 x2p mod p, -1 x2q mod q]

                          = [6, 2] , [7,5]

Ek (x4) = Ek ( 3) = Ek ( 4, -1 )

                          = [4 xp mod p, 4 xq mod q], [ -1 x2p mod p, -1 x2q mod q]

                          = [8, 5] , [7,5]

Ek (x1) * Ek (x2) = ( [4, 6] [ 10, 1] ) * (  [8, 5] [10, 1] )

                            = [0, 0] [ 4*8, 6*5] [4*10, 6*1] [10* 8, 1*5] [10*10, 1*1]

                            = [0, 0] [32, 30] [40, 6] [ 80, 5] [100, 1]

 represents [x, y][x2, y2] [x3, y3][x3, y3] [x4, y4] respectively

We add up same powers to get,

                            = [0, 0] [ 32, 30] [120, 11] [100,1]

Ek (x3) * Ek (x4) = ( [6, 2] [ 7, 5] ) * (  [8, 5] [7, 5] )

                            = [0, 0] [ 6*8, 2*5] [6*7, 2*5] [7* 8, 5*5] [7*7, 5*5]

                            = [0,0] [48,10] [42,10] [ 56, 25] [49, 25] 

represents [x, y][x2, y2] [x3, y3] [x3, y3] [x4,y4]

We add up same powers to get

                            = [0, 0] [ 48, 10] [98, 35] [49,25]


Performing (Ek (x1) * Ek (x2) ) + (Ek (x3) * Ek (x4) )

                   = [0, 0] [ 32+48, 30+10] [120+98, 11+35] [100+49,1+25]

                   = [0,0] [80, 40] [218, 46] [149, 26]

Decryption operation is performed as,

[ 0 * x-1p  mod p, 0 * x-1q  mod q ], [ 144 * x-2p  mod p, 65 * x-2q  mod q ],

[ 342 * x-3p  mod p, 100 * x-3q  mod q ], [ 189 * x-4p   mod p, 35 * x-4q   mod q ],

[ 0 x 6 mod 11, 0 x 5 mod 7 ], [ 80 * 62 mod 11, 40 * 52 mod 7 ], 

[ 218 * 63 mod 11, 46 * 53 mod 7 ],  [ 149 * 64  mod 11, 26 * 54 mod 7 ]

[ 0, 0 ], [ 9, 6 ], [ 8, 3 ], [ 10, 3 ]

Add up all the terms over Zp x Zq to get,

[0 + 9 + 8 + 10 mod 11, 0 + 6 + 3 + 3 mod 7]

[ 5, 5]

By applying CRT on [ 5, 5] we get 5 ( decrypted ciphertext).

We know that ( x1  * x2) + ( x3 * x4) = 5 which is the plaintext.

This shows that the the  plaintext and the decrypted ciphertext are the same.

In the next subsection we look at the security details of this privacy homomorphism

2.3.3 Security 

The protocol is said to be secure against known plaintext attacks and ciphertext attacks  [3]. But there is a possibility to break this protocol with great difficulty by using known plaintext ciphertext pairs as explained in [28]. When this protocol is used, one has to consider this weakness. 

In the next section we look into the details of Doming-Ferrer's privacy homomorphism, which is secure against known ciphertext attack, but not secure against known plaintext attacks.

2.4 A Privacy Homomorphism allowing Field Operations on Encrypted Data

The Domingo-Ferrer's privacy homomorphism allowing field encryptions on encrypted data is introduced in [4]. This is an additive and multiplicative privacy homomorphism that allows computing inverses on encrypted data. In the following subsections we look into the details of this privacy homomorphism.

2.4.1 Encryption/Decryption 

In this privacy homomorphism p and q are large prime numbers, which are kept secret. The public parameter is m where, m = p* q. Qp = {  a/b; a,b ( Zp}, where Zp is the set of clear text, Zm is the set of ciphertext. The set of clear text operations is performed by addition, subtraction, multiplication and multiplicative inverse computation on Zp. The set of ciphertext operations is performed by addition, subtraction, multiplication and multiplicative inverse computation on Zm.


The encryption operation is performed by choosing plaintext x ( Zp and a/b random fraction from Qp, such that x = ab-1 mod p. The ciphertext is computed as,

y = Ep(x) = ab-1 mod m.

The decryption operation is performed by picking a random fraction A/B belonging to Qm, such that y = AB-1 mod m. Then the plaintext x is recovered as,

x = Dp(y) = AB-1 mod p where p is the secret key.

In the next subsection we look at the properties of this privacy homomorphism.

2.4.2 Properties 

Following are the properties of privacy homomorphism allowing field operation on encrypted data:

· Additive Homomorphism: Addition operation performed on the ciphertext and the decrypted result is same as the sum of the plaintexts.

· Multiplicative Homomorphism: Multiplication operation performed on the ciphertext and the decrypted result is same as the product of the plaintexts.

Let us look into an example, which shows us that privacy homomorphism allowing field operation on encrypted data is additive and multiplicative homomorphic.

Let p = 13, q = 5, m = p * q = 65, x1 = 3, x2 = 7

Ep(x1) = Ep (3) 

        3 ≡ 120 mod p

       3 ≡ 120 mod 13  

Ep (3)= 120 mod m

         = 120 mod 65 

         = 55

Ep (x2) = Ep (7) 

       7 ≡ 20 mod p

       7 ≡ 20 mod 13  

Ep (7)  = 20 mod m

           = 20 mod 65 

           = 20

Additive homomorphism: In additive homomorphism decryption of the sum of two ciphertext is same as the addition of two plaintext.

Ep (x1) + Ep (x2) = 55 + 20 mod 65 = 10

By decrypting the ciphertext 10 we get,

Dp (Ep (x1) + Ep (x2)) = Dp (10) 

                                  = 10 mod 13

        

          = 10

which is same as the plaintext x1 + x2  = 10.
This shows that addition can be performed on the ciphertext, as if performed on the plaintext.


Multiplicative homomorphism: In multiplicative homomorphism decrypted result of the product of two ciphertext is same as the multiplication of two plaintext.
Ep (x1) * Ep (x2) = 55 * 20 = 1100 mod 65 = 60.

By decrypting the ciphertext 60 we get,

Dp (Ep (x1) * Ep (x2)) = Dp (60)

                                  = 60 mod 13

              
          = 8

which is same as the plaintext x1 * x2 = 21 mod 13 = 8.

This example explains that multiplication can be performed on the ciphertext, as if performed on the plaintext.

In the next section we look at the security details of this privacy homomorphism.

2.4.3 Security

The proposed protocol though exhibits the property of homomorphism is not very secure against known plaintext attacks. The cryptosystem is however secure against known ciphertext attacks.

Let us look into the known plaintext attacks and known ciphertext attacks in more detail with respect to this privacy homomorphism

· Known  plaintext attack : If (x, y) are the known plaintext ciphertext pair, finding key p is relatively easy. The cryptanalyst can determine a set of AiBi-1 such that AB-1= y mod m. We know x = Dp(y) = AB-1 mod p, where  p is the prime key and  p >=x.  We also know that,  p | (A – xB), that is  p completely divides A – xB. Here x, A and B-1 are known, so finding p is relatively easy.

· Known ciphertext attack : The cryptanalyst need not know the value of p to determine the fraction A/B in Qm to get  y= AB-1 mod m. To determine the plaintext x, the cryptanalyst needs to know the value of p. Determining the private key p from the public key m is as hard as factoring m.

In the next section we look into the details of Hyungjick Lee's Mixed multiplicative homomorphism, which is secure against known ciphertext attack but not secure against known plaintext attack.

2.5 Mixed Multiplicative Homomorphism

The mixed multiplicative homomorphism [5] is the simplified version of Domingo-Ferrer's field encryption [4]. 

2.5.1 Encryption/Decryption
This new cryptosystem, uses large number m, where m= p* q. Here p and q are large prime numbers, which are kept secret. Let Zp = { x|x <= p } be the set of original plaintext messages, Zm = { x|x <m } be the set of ciphertext messages and Qp = { a|a ( Zp } be the set of encryption clues.

The encryption operation is performed by choosing a plaintext 'x' belonging to Zp and a random number 'a' in Qp such that x = a mod p, here p is kept secret. 

The ciphertext y is calculated as y = Ep(x) = a mod m.


In decryption operation the plaintext x is recovered as x = Dp (y) = y mod p, where p is the secret key.

2.5.2 Properties 

Following are the properties of the mixed multiplicative homomorphism

· Additive Homomorphic: Addition is done on ciphertext and the decrypted result is same as  the sum of plaintexts.

· Multiplicative Homomorphic: Multiplication is done on ciphertext and the decrypted result is same as the product of plaintexts.

· Mixed-Multiplicative Homomorphic: Multiplication is done on a ciphertext and plaintext and the decrypted result is same as the product of plaintexts.

Let us look into an example, which explains this protocol in more detail.

Let p = 13, q = 5, n = p * q = 65, x1 = 3, Ep (x1) = 29, x2 = 7 and Ep (x2) = 46.

Additive homomorphism: In additive homomorphism decryption of the sum of two ciphertext is same as the addition of two plaintext.

Ep (x1) + Ep (x2) = 29 +46 = 75 mod 65 = 10

By decrypting the ciphertext 10 we get,

Dp (10) = 10 mod 13 = 10, which is same as the plaintext x1 + x2  = 10.
This shows that addition can be performed on the ciphertext, as if performed on the plaintext.

Multiplicative homomorphism: In multiplicative homomorphism decrypted result of the product of two ciphertext is same as the multiplication of two plaintext.
Ep (x1) * Ep (x2) = 29* 46 = 1334 mod 65 = 34.

By decrypting the ciphertext 34 we get,

Dp (34) = 34 mod 13 = 8, which is same as the plaintext x1 * x2 = 21 mod 13 = 8.

This shows that multiplication can be performed on the ciphertext, as if performed on the plaintext.

Mixed Multiplicative Homomorphism: In Mixed Multiplicative Homomorphism

Ep ( x1*x2 ) = Ep (x1) * x2

Ep (x1) * x2 = 29 * 7 =203 mod 65 = 8.

By decrypting 8 we get,

Dp (8) = 8 mod 13 = 8, which is same as the plaintext x1 *  x2 = 21 mod 13 = 8.

This shows that mixed multiplicative homomorphism can be performed on the ciphertext, as if performed on the plaintext.

In the next subsection we look into security details of the mixed multiplicative homomorphism and show how this privacy homomorphism is susceptible to known plaintext attack but not to known ciphertext attack.

2.5.3 Security 

The proposed protocol though exhibits the property of homomorphism is not very secure against known plain- text attack. The cryptosystem is however secure against known ciphertext attack.

Let us look into the known plaintext attack and known ciphertext attack in more detail with respect to this cryptosystem.

· Known plaintext attack: If (x, y) are the known plaintext ciphertext pair, finding key p is relatively easy. We know x = Dp (y) = y mod p, where p is the prime key and  p >=x. We know that p | (y – x), that is p completely divides y – x. Here x and y are known, so finding p is relatively easy as p is the divisor of (y – x).

· Known ciphertext attack: We know x = y mod p and if y is known, x and p are still unknown. We know, y = x + rp and it is difficult to determine y as x and p are unknown.

In the next section we look at a homomorphic encryption scheme not susceptible to known plaintext attack or known ciphertext attack.

2.6 ElGamal Encryption Scheme

ElGamal encryption [16, 17] is a public key encryption scheme having the property of multiplicative homomorphism. In the following subsections we look into the details of this encryption scheme.

2.6.1 Encryption/Decryption 

The ElGamal encryption scheme, requires large prime numbers, p and q where p = 2q+1. G = <g> subset of Zp* be the cyclic group of order q generated by g and Zp* denotes the set of integers in Zp and prime to p. The public keys are g and y, where g is the cyclic group which is the subset of Zp and y =  gx. Here x is the secret key belonging to Zq. Zp is set of integers from 0 to p-1 and Zq is the set of integers from 0 to q-1. The message M to be encrypted belongs to group G.

During encryption the message M is encrypted using public keys. 

E(M) = (A= gr, B=yrM) where r is the random number.

Decryption is computed with the private key x, D(E(M)) = B/Ax.

In the next subsection we look into the property of ElGamal encryption.

2.6.2 Property 

ElGamal encryption scheme has the following property

· multiplicative homomorphism [16, 17].

Let us look into an example to explain this encryption scheme in detail.

Public keys: p=47, g=10, y=10 5 = 100000. 

Private key: x=5 

The random number r=4 and the message to encrypt is M= 6

Encryption

E(M) = E(6) = (g4, y4 * M)

                     = (104, 1000004 * 6) mod 47

                     =(36,14)

Decryption

D(E(x)) = B/Ax  = 14/ 365  mod 47

                          = 14/18  mod 47

                          = 14* 34  mod 47

                          =6.

In the next section we look into the details of Elliptic curve cyptography having the property of additive homomorphism.

2.7 Elliptic Curve Cryptography [ECC]

ECC is a public key encryption scheme and is explained in the following subsections.

2.7.1 Encryption/Decryption 

ECC [18, 19, 20, 21, 22] is also a public key encryption scheme, which requires a point G and an elliptic group Eq(a,b) to perform encryption and decryption. Eq(a,b), is an elliptic curve with parameters a, b and q, where q is the prime or an integer of the form 2m . G is the point on the elliptic curve whose order is large value n. If  nA  is the secret key of user A, then user A generates the public key PA= nA * G.

During encryption operation the message m to be encrypted is first encoded as an x-y point Pm.  The message Pm is sent to the node B by encrypting the message with the public key PB of the node B. Node A chooses a random number k and the ciphertext is generated as,

C = { kG , Pm+kPB } 

Decryption operation is performed by node B by using the private key nB. Node B computes the multiplication of the 1st point of the ciphertext with it’s private key and then subtracts the result from the 2nd point of the ciphertext to recover the message Pm.

Pm+kPB – (nB kG) = Pm + k(nB G)- (nB kG) =  Pm

In the next subsection we look at the property of ECC.

2.7.2 Property of ECC

ECC  has the following property

· Elliptic Curve has the property of additive homomorphism [23, 24].

In the next subsection we look at the security details of ECC.

2.7.3 Security of ECC

The security of ECC depends on how difficult it is to determine k given kP and P. This is referred to as elliptic curve logarithmic problem.

2.8 Summary

In this chapter we have briefly looked into some of the homomorphic encryption schemes. In the following chapters we use these homomorphic encryption schemes in computer networks, WSNs and MANETs

In our study homomorphic encryption scheme has been used in computer networks, WSNs and MANETs. In computer networks, the shortest path has been determined securely using homomorphic encryption scheme. The minimum of the two paths has been determined, by adding up the paths encrypted, using homomorphic encryption scheme. In WSNs, the data sensed by the sensor nodes are encrypted using homomorphic encryption scheme and the minimum and maximum value sensed by all the sensor nodes has been determined, by adding up all the encrypted sensed values. In MANETs, the message to be transmitted is first split up and then encrypted using homomorphic encryption scheme. The message is recovered by adding up the partial encrypted messages and then decrypting it.
9 Chapter - 3

Finding Minimum Optimal Path in Computer Networks using Homomorphic Encryption Schemes
3.1 Introduction

In this chapter we describe a secure routing protocol for computer networks, which finds minimum optimum path using homomorphic encryption schemes [2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 22]. We make use of ElGamal encryption [16, 17], Elliptic Curve encryption [18, 19, 20, 21, 22] and privacy homomorphisms [2,3,4,5], which exhibits the property of homomorphism in our new routing protocol. Elliptic curve exhibits the property of additive homomorphism [23, 24] and is computationally faster than ElGamal [16, 17] and RSA [29]. However, the privacy homomorphism using mod operation is computationally much faster than both ElGamal and Elliptic Curve. Using the homomorphic property of these encryption algorithms, we propose three new protocols, which are ElGamal, Elliptic Curve and Privacy Homomorphism to find the minimum optimal path securely. These protocols provide confidentiality.

The routing algorithm decides which line the packet should be transmitted to. In a wireless environment the route keeps on changing, so we should dynamically select the route to transmit the packet. Using homomorphic encryption schemes we can securely find a minimum path in these networks.

Homomorphic [2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 22] encryption schemes can be implemented in routing protocols to enhance security. Using homomorphic encryption, operations can be performed by the intermediate nodes on the ciphertext as if performed on the plaintext without actually knowing the plaintext. This enhances security of the protocol as the intermediate nodes if malicious cannot determine the plaintext. 

In this chapter we describe the secure multi-agent dynamic programming based on homomorphic encryption introduced in [16]. We then aim to find the minimum optimal path in computer networks, by using ElGamal, Elliptic Curve and Privacy Homomorphism encryption schemes, which is the variation of secure dynamic programming.

The chapter is organized as follows. In section 2, we briefly describe the protocol, which determines maximum optimal path dynamically. In section 3, we propose new routing protocols, which use the homomorphic property of ElGamal encryption, Elliptic Curve Encryption and Privacy Homomorphisms. Finally we conclude.

3.2 A Secure Multi-Agent Dynamic Programming Based on Homomorphic Encryption Scheme

In the paper [16] the authors propose secure dynamic programming protocol to combinatorial auctions, by using homomorphic public key encryption. In the proposed protocol, multiple servers solve the combinatorial optimization problem, by using the private information sent from agents as inputs. Although the severs can compute the optimal solution correctly, the inputs are kept secret even from the servers. For example, in a combinatorial auction, multiple auction servers can solve the winner determination problem, i.e., they can find the combination of bids so that the sum of the bidding prices is maximized. However, the information of bids that are not part of the optimal solution is kept secret from the auction servers. More specifically, the authors develop a method for securely executing dynamic programming procedures, which are very effective and widely applied to various combinatorial optimization problems.
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Figure: 3.1 Example of a directed graph 

The Figure 3.1 illustrates the concept of dynamic programming. The graph consists of nodes 0, 1, 2, . . . , m with directed links among them. A link is represented as (i,j), where i < j. For each link (i,j), the weight of the link w(i,j) is defined. The goal is to find the longest path from initial node 0 to terminal node m, i.e., to find a path from 0 to m so that the sum of the weights of links are maximized. The length of the longest path from 0 to m  can be obtained ,by solving the following recurrence formula from node m − 1 to 0.

f(i) =max(i,j){w(i,j) + f(j)}

In this formula, f(i) represents the length of the longest path from i to m. f(i) is called an evaluation value of node i. 

The basic idea of the secure dynamic programming protocol proposed by the authors is as follows:

· The authors assume a weight publisher P(j,k)  corresponding to a bidder in an auction,for each link (j, k), and an evaluator Ti  corresponding to a part of multiple auction servers, for each node i.

· These evaluators cooperatively execute dynamic programming. Evaluator Ti knows only its evaluation value f(i) and does not know any weight of any link.

In secure dynamic protocol the maximum of the weight, and adding a constant to the weight has to be determined without revealing the weight itself. This is achieved by way of representation and encryption of weight and will be discussed in the next following subsections.

3.2.1 Encryption of weights in secure dynamic programming

The weight is encrypted by using ElGamal encryption [16, 17], a public key encryption scheme having the property of multiplicative homomorphism.

Public key encryption: In public key encryption the message is encrypted using the public key and so anybody can encrypt the message. The encrypted message can only be decrypted by the person with the secret key.

Homomorphic encryption: In homomorphic encryption scheme operations can be performed on the ciphertext as if the operation is performed on the plaintext. ElGamal encryption has the property of multiplicative homomorphism i,e E(M1* M2) = E(M1) * E(M2).

ElGamal encryption [16, 17] is described in detail in the second chapter. We see that the encryption is done using a random number r. Using different random number r, we can generate different ciphertexts for the same plaintext. 

The authors determine the secure dynamic programming using the following steps

· Representation of weight

· Adding a constant

· Finding the maximum

Representation of weight: The authors represent the weight in a specific way so that the maximum of the weight can be determined and a constant can be added to the weight. The protocol chooses a weight w such that (1<= w <= n) and chooses n such that it is large enough to represent the longest path. 


e(w) =  (e1, e2,... en)

=E(z),...,E(z),E(1),...,E(1) ....(3.1)

         w            n-w

Here e(w) is the encryption of weight w, E(1) is the encryption of 1, E(z) is the encryption of z and z is a public number not equal to 1. z is chosen such that zk mod p ≠1 for 0 < k <q.

Let us consider an example where w=2 and n=4

e(w) = E(z), E(z), E(1), E(1). Here z can be any number not equal to 1.

Adding a constant: A constant f is added to encrypted function e(w) by shifting e(w) to the right f  times.

e(w+f) =E(z),...,E(z), e1, ... en-f  ....(3.2)

    f

let   e(w) = E(z), E(z), E(z), E(1),E(1),E(1) and f=2,

       e(w+f) = E(z), E(z), E(z), E(z), E(z), E(1)

This operation can be performed without decrypting e(w). If we compare e(w) and e(w+f) we cannot know the amount of shift. The shifting and the encryption can be masked by multiplying with E(1) and using different random numbers for encryption. The value of z can be different for different encryption.

Finding the maximum: The maximum of the two weights can be found without decrypting the entire encrypted weights. This can be achieved by multiplying the two encrypted weights and decrypting the resulting product from en to e1, for i = 1 to n until D (E (xi)) ≠ 1 and i determines highest of the two weights. 

Consider two weights e(w+f) and e(v)

e(w+f) = E(z), E(z), E(z), E(z),E(z), E(1)

e(v) = E(z), E(z), E(1), E(1),E(1), E(1)

e(w+f) * e(v) = E(z2), E(z2), E(z), E(z),E(z), E(1)

Decrypting the 6th element we get D(E(x) = 1, decrypting the 5th element we get D(E(x)) = z ≠ 1, therefore the maximum of the two weight is 5. Using this scheme a maximum optimal path is determined dynamically in [16].

3.2.2 Protocol

The authors outline the protocol as follows:

• The weight publisher P(j,k) encrypts its weight w(j, k) as in equation 3.1,using Tj ’s encryption function.

• Evaluator Tk (who cannot decrypt this information) then calculates the encryption of w(j, k) + f(k) as in equation 3.2.

• Evaluator Tj then calculates f(j) to find the optimal path, by decrypting a part of this encryption without knowing w(j, k).
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Figure: 3.2 Example of a directed graph 
Let us look into Figure 3.2, to illustrate the protocol in detail. The Figure 3.2, has 4 nodes with links {(0,1),(0,2),(1,2),(1,3),(2,3)} having weights w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2, w(2, 3)= 0 are the weights. Let n = 6 and z can be any number not equal to 1. The weight publisher P(0,1),P(0,2), P(1,2), P(1,3), P(2,3).

e(0,1) (w(0,1)) = E0(z),E0(1),E0(1),E0(1),E0(1),E0(1): encrypted with the public key of node 0.

e(0,2) (w(0,2)) = E0(z),E0(z),E0(1),E0(1),E0(1),E0(1): encrypted with the public key of node 0.

e(1,2) (w(1,2)) = E1(z),E1(1),E1(1),E1(1),E1(1),E1(1): encrypted with the public key of node 1.

e(1,3) (w(1,3)) = E1(z),E1(z),E1(1),E1(1),E1(1),E1(1): encrypted with the public key of node 1.

e(2,3) (w(2,3)) = E2(1),E2(1),E2(1),E2(1),E2(1),E2(1): encrypted with the public key of node 2.

Evaluator T2 decrypts e(2,3) (w(2,3)) to find f(2) value to be 0 and then computes 

e(1,2) (w(1,2)+f(2))= E1(z),E1(1),E1(1),E1(1),E1(1),E1(1)

Evaluator T1 computes max{e(1,2) (w(2,3)+f(2)), e(1,3) (w(1,3))} by computing,

e(1,2) (w(2,3)+f(2)) * e(1,3) (w(1,3)) = E1(z2),E1(z),E1(1),E1(1),E1(1),E1(1)

By decrypting the 6th, 5th,4th and 3rd element we get D(E(x)) = 1 and decrypting the 2nd  element we get D(E(x))  ≠  1. So the maximum weight is 2. T1 is convinced f(1) = max{e(1,2) (w(2,3)+f(2)), e(1,3) (w(1,3))}=2.

Evaluator T0  decrypts  f(1) to find the value to be 2 and then computes 

e(0,1) (w(0,1)+f(1))= E0(z),E0(z),E0(z),E0(1),E0(1),E0(1)

Evaluator T0 computes max{e(0,1) (w(0,1)+f(1)), e(0,2) (w(0,2))} by computing,

e(0,1) (w(0,1)+f(1)) * e(0,2) (w(0,2)) = E0(z3),E0(z),E0(z),E0(1),E0(1),E0(1)

By decrypting the 6th, 5th and 4th element we get D(E(x)) = 1 and decrypting the 3rd element we get D(E(x))  ≠  1. So the maximum weight is 3. T0 is convinced f(0) = max{e(0,1) (w(0,1)+f(1)), e(0,2) (w(0,2))} =3.

To find the optimal path evaluator T0  decrypts e(0,1) (w(0,1)+f(1)) and e(0,2) (w(0,2)) at 3rd position to find they decrypt to z and 1 respectively and finds link 0-1 to have e(0,1) (w(0,1)+f(1)) to be the optimal path.To find the optimal path evaluator T1 decrypts both paths e(1,2) (w(2,3)+f(2)) and e(1,3) (w(1,3)) at 2nd position to find 1 and z respectively and T1 is convinced e(1,3) (w(1,3)) to be the optimal path.

In the next section we propose new protocols, which determine the shortest path using ElGamal, Elliptic Curve and Privacy Homomorphisms.

3.3 Finding Minimum Optimal Path Using Homomorphic Encryption Schemes

In this section we propose three new routing protocols in computer networks, which finds minimum optimal path using ElGamal Encryption, Elliptic Curve Encryption and Privacy Homomorphism. As these encryption schemes are additive and multiplicative we reduce the computational power and increase security by doing operations on encrypted data. Furthermore the proposed protocols encrypt the weight in a particular fashion, which make it difficult for an intruder to determine the weight.

Outline of the three protocols to determine the shortest optimal path

· Representation of weight: Each node first represents the weight in a specific way as described below. The representation of weights depends on the homomorphic encryption scheme used.

· Combine two paths: Two paths are combined by shifting one encrypted path by a weight of another path.

· Determine the minimum optimal path: The optimal path is determined by multiplying the two encrypted paths or adding the two encrypted paths depending on the homomorphic encryption scheme used.

3.3.1 Use of ElGamal Homomorphic Encryption and its Application to Find the Shortest Optimal Path

We first find the minimum optimal path using ElGamal homomorphic encryption scheme. Encryption scheme in ElGamal [16, 17] requires two exponentiation, which could be computed ahead of time, as it is independent of the message. Decryption requires one exponentiation and one division, which is computationally much faster.

We now look into the detail of our protocol using the multiplicative homomorphic property of ElGamal encryption scheme.

Representation of weight: To find the minimum optimal path, we assume that all the nodes know the weight of its neighboring nodes. We choose a number n, which is large enough to represent the length of the longest path. The weight w is encrypted with the ElGamal public key encryption scheme and w<=n.

e(w) = (e1, e2,... en)

=E(1),...,E(1),E(z),...,E(z)

w              n-w

Here e(w) is the encryption of weight w, E(1) is the encryption of 1, E(z) is the encryption of z and z is a public number not equal to 1. z is chosen such that zk mod p ≠ 1 for 0< k <q.

Consider an example where w=2, n=4 and z ≠ 1.

 e(w) = E(1), E(1), E(z), E(z)

Combining two paths: In this protocol, the two paths are combined by shifting the encrypted path e(w) to the right by the weight of the other path.

Let e(w) be the encrypted weight of one path and f  be the weight of other path, then  

e(w+f) = E(1),...,E(1) e1, ..., en-f

f

Consider f=2

let e(w) = E(1), E(1), E(1), E(z),E(z), E(z)

e(w+f) = E(1), E(1), E(1), E(1),E(1), E(z)

This operation can be performed without decrypting e(w). If we compare e(w) and e(w+f) we cannot know the amount of shift. The shifting and the encryption can be masked by multiplying with E(1). Furthermore, different random numbers can be used to get different ciphertext for the same plaintext.

Determining the minimum optimal path: To find the minimum optimal path we first find the minimum of the incoming weights without decrypting the entire encrypted weight, but by multiplying the encrypted weights and decrypting the resultant product from right to left until we get a value z=1. The position at which we get a value z=1, determines the minimum weight. The minimum optimal path is determined by decrypting the encrypted paths at minimum weight+1 position. The path, which decrypts to a value z ≠ 1 at the minimum weight+1 position, is the minimum optimal path.

Consider two weights e(w+f) and e(v)

e(w+f) = E(1), E(1), E(1), E(1),E(1), E(z)

e(v) = E(1), E(1), E(z), E(z),E(z), E(z)

e(w+f) * e(v) = E(1), E(1), E(z), E(z),E(z), E(z2)

Decrypting the 6th, 5th, 4th and 3rd element of the resultant product, we get D(E(x)) ≠ 1, decrypting the 2nd element we get D(E(x)) = 1, therefore the minimum of the two weight is 2.To find the optimal path between e(w+f) and  e(v) decrypt both these paths at the 2nd +1 position. The path which decrypts to z ≠ 1 at the 2nd + 1 position is the optimal path with the minimum weight.

Let us look into Figure 3.2, to illustrate the protocol in detail. The protocol determines the optimal path from node 0 to node 3. Let  w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2, w(2, 3) = 0 be the weights. Let n = 6 and z can be any number not equal to 1.  

Representation of weights: The weights are encrypted as follows at each node.

e(0,1) (w(0,1)) = E0(1),E0(z),E0(z),E0(z),E0(z),E0(z): encrypted with the public key of node 0.

e(0,2) (w(0,2)) = E0(1),E0(1),E0(z),E0(z),E0(z),E0(z): encrypted with the public key of node 0.

e(1,2) (w(1,2)) = E1(1),E1(z),E1(z),E1(z),E1(z),E1(z): encrypted with the public key of node 1.

e(1,3) (w(1,3)) = E1(1),E1(1),E1(z),E1(z),E1(z),E1(z): encrypted with the public key of node 1.

e(2,3) (w(2,3)) = E2(z),E2(z),E2(z),E2(z),E2(z),E2(z): encrypted with the public key of node 2.

Combining path 1-2 and 2-3 to get 1-2-3: Decrypting path 2-3 at node 2, we find the distance to be 0. At node 2 we compute path 1-2-3 by shifting the encrypted path of 1-2 to the right by the weight of path 2-3, which is 0.

e(1,2,3) (w(1,2,3)) = E1(1),E1(z),E1(z),E1(z),E1(z),E1 (z)

Finding optimal path at node 1: To find the minimum of two paths 1-2-3 and 1-3 with weights w(1,2,3) & w(1,3) respectively, at node 1 we multiply the two weights,

e(1,2,3)(w(1,2,3)) * e(1,3) (w(1,3))

= E1(1),E1(z),E1(z2),E1(z2),E1(z2),E1(z2)

By decrypting the 6th, 5th, 4th, 3rd and 2nd element we get D(E(x)) ≠ 1 and decrypting the 1st element we get D(E(x)) = 1. So the minimum weight is 1. To find the optimal path between 1-2-3 and 1-3, decrypt 1-2-3 and 1-3 at the 1st+1 (2nd) position and the path, which decrypts to the value not equal to 1 at the 2nd position, is the shortest optimal path. Here path 1-2-3 is the optimal path, as it decrypts to z ≠ 1 at the 2nd position. 

Combing paths 0-1 and 1-2-3 to get 0-1-2-3: To combine two paths 0-1 and 1-2-3 to get 0-1-2-3, we shift the encrypted path of 0-1 to the right by 1 at node 1, which is the weight of the path 1-2-3.

e(0,1,2,3)(w(0,1,2,3))=E0(1),E0(1),E0(z),E0(z),E0(z), E0(z)
Finding optimal path at node 0: At node 0 along with the encrypted path 0-1-2-3 from node 1,we also obtain an encrypted path 0-2-3 from node 2, which is obtained by shifting the encrypted path 0,2 to the right by 0 (weight of path 2-3). 

e(0,2,3)(w(0,2,3)) = E0(1),E0(1),E0(z),E0(z),E0(z), E0(z)  

Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3), and  we determine the minimum path by multiplying the two encrypted paths to get,

e(0,1,2,3)(w(0,1,2,3))  * e(0,2,3)(w(0,2,3))

= E0(1), E0(1), E0(z2), E0(z2), E0(z2), E0(z2)

By decrypting the resultant path at node 0 we find the 2nd position decrypts to value 1 and so the minimum weight is 2. By decrypting encrypted paths e(0,2,3) and e(0,1,2,3) at the 2nd +1 position we find that both the paths decrypts to a value z ≠ 1. The optimal path from 0 to 3 has the minimum weight 2 and the optimal path is either 0-1-2-3 or 0-2-3 determined at node 0 which is the source.

In the next section we find the minimum optimal path using Elliptic Curve encryption.

3.3.2 Use of Elliptic Curve Homomorphic Encryption and Its Application to Find the Shortest Optimal Path

Elliptic Curve Public Key Cryptosystem [18, 19, 20, 21, 22] is a relatively new public key cryptography which uses relatively small key sizes compared to ElGamal [16, 17] and RSA [29]. Reduction in key sizes brings the advantage of less storage area and less required bandwidth, which are important requirements of wireless network architectures. In addition, Elliptic Curve permits the implementation of high-speed and efficient network security protocols requiring less power and smaller code sizes as compared to classical public key techniques such as ElGamal, RSA and Diffie-Hellman [30, 31]. 

We now look at how Elliptic Curve encryption scheme can be used to find the minimum optimal path. 

Representation of weight: We use a similar scheme as in ElGamal encryption, but the only difference is that the value of z can be any number other than 0 and the minimum path is obtained by adding the two paths as Elliptic Curve Cryptosystem has only additive homomorphism. That’s why z is chosen such that z ≠ 0.The weight w is encrypted as follows  

e(w) = (e1, e2,... en)

=E(0),...,E(0),E(z),...,E(z)

w              n-w

Here E(0) is the encryption of weight 0 and E(z) is the encryption of weight z. Here z can be any number not equal to 0, n is large enough to represent the length of the longest path and weight w<=n. The encrypted weights are randomized by adding with E(0).

Combining two paths: As in ElGamal, shifting the encrypted weight of one path to the right by the weight of the other path combines the two paths.

Let e(w) be the encrypted weight of one path and f  be the weight of other path, then  

e(w+f) = E(0),...,E(0) e1, ..., en-f
f

Consider f=2, n=6

let e(w) = E(0), E(0), E(0), E(z),E(z), E(z)

e(w+f) = E(0), E(0), E(0), E(0),E(0), E(z)

Determining the minimum optimal path: The paths are compared for optimality by adding the two paths. The minimum weight of the two paths is the position at which the resultant sum decrypts to a value z=0, when the decryption is carried out from right to left. The minimum optimal path is the one, which decrypts to a value z ≠ 0 at the minimum weight +1 position. 

Let us consider the Figure 3.2, to find the minimum optimal path from node 0 to 3 securely. w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2, w(2, 3) = 0, are the weights. Let n = 6 and z can be any number not equal to 0.

Representation of weights: Each node encrypts the weight the following way.

e(0,1) (w(0,1)) = E0(0),E0(z),E0(z),E0(z),E0(z),E0(z): encrypted with the public key of node 0.
e(0,2) (w(0,2)) = E0(0),E0(0),E0(z),E0(z),E0(z),E0(z): encrypted with the public key of node 0.

e(1,2) (w(1,2)) = E1(0),E1(z),E1(z),E1(z),E1(z),E1(z): encrypted with the public key of node 1.

e(1,3) (w(1,3)) = E1(0),E1(0),E1(z),E1(z),E1(z),E1(z): encrypted with the public key of node 1.

e(2,3) (w(2,3)) = E2(z),E2(z),E2(z),E2(z),E2(z),E2(z): encrypted with the public key of node 2.

Combining path 1-2 and 2-3 to get 1-2-3: By decrypting path 2-3 at node 2, we find the distance to be 0. At node 2 we compute path 1-2-3 by shifting the encrypted path of 1-2 to the right by the weight of path 2-3, which is 0.

e(1,2,3) (w(1,2,3) = E1(1),E1(z),E1(z),E1(z),E1(z),E1(z)

Finding minimum optimal path at node 1: To find the minimum of two paths 1-2-3 and 1-3 with weights w(1,2,3) & w(1,3) respectively, at node 1 we add the two weights to get,

 e(0,1,2)(w(0,1,2)) + e(0,2) (w(0,2))

= E0(0), E0(z), E0(2z), E0(2z), E0(2z), E0(2z)

By decrypting the 6th, 5th, 4th, 3rd and 2nd element, we get D(E(x)) ≠ 0 and decrypting the 1st element we get D(E(x)) = 0. So the minimum weight is 1. To find the optimal path between 1-2-3 and 1-3, we decrypt 1-2-3 and 1-3 at the 1st + 1 (2nd) position and the path, which decrypts to the value not equal to 0 at the 2nd position, is the shortest optimal path. Here path 1-2-3 is the optimal path, as it decrypts to z≠0 at the 2nd position. 

Combining paths 0-1 and 1-2-3 to get 0-1-2-3: To combine two paths 1-2-3 and 0-1 to get 0-1-2-3, at node 1 we shift the encrypted path of 0-1 to the right by 1, which is the weight of the path 1-2-3.

e(0,1,2,3)(w(0,1,2,3))=E0(0),E0(0),E0(z),E0(z),E0(z), E0(z)

Finding the minimum optimal path at node 0: At node 0 along with the encrypted path 0-1-2-3 we also obtain an encrypted path 0-2-3 from node 2, which is obtained by shifting the encrypted path 0-2 to the right by 0 (weight of path 2-3). 

e(0,2,3)(w(0,2,3)) = E0(0),E0(0),E0(z),E0(z),E0(z), E0(z)

Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3), and  we determine the minimum path by adding the two encrypted weights to get,
e(0,1,2,3)(w(0,1,2,3))  + e(0,2,3)(w(0,2,3)) = E0(0), E0(0), E0(2z),E0(2z), E0(2z), E0(2z)

By decrypting the resultant path we find the 2nd position decrypts to value 0 and so the minimum weight is 2. The optimal path from 0 to 3 has the minimum weight 2 and the optimal path is either 0-1-2-3 or 0-2-3 as both these paths decrypt to a value z ≠ 0 at the minimum weight +1 position.

In the next subsection we find the minimum optimal path using privacy homomorphisms.

3.3.3 Use of Privacy Homomorphism to Find the Shortest Optimal Path

In this section we look into our routing protocol using Mixed multiplicative homomorphism [5] and  Domingo-Ferrer's three privacy homomorphisms, additive and multiplicative privacy homomorphism [2], new privacy homomorphism [3] and privacy homomorphism allowing field operation on encrypted data [4]  encryption schemes. The protocol is similar to the protocol used in Elliptic curve encryption [18, 19, 20, 21, 22]. Though Domingo-Ferrer's additive multiplicative privacy homomorphism and new privacy homomorphism are both additive and multiplicative homomorphic, the paths are compared for optimality by adding the two encrypted paths instead of multiplying the two paths as multiplication increases the vectors in squares. The homomorphic encryption schemes are all symmetric encryption scheme and so all the nodes encrypt the data with the same encryption key.

We now look into the details of the protocol using privacy homomorphic encryption schemes [2,3,4,5].

Representation of weight: In this protocol, a weight w is chosen such that w <= n and n is chosen such that it is large enough to represent the length of the longest path as in ElGamal and Elliptic Curve encryption. The encryption of the weight in this protocol is performed as follows:

e(w) = (e1, e2,... en)

=E(0),...,E(0),E(z),...,E(z) 

w              n-w

Here e(w) is the encryption of weight w, E(0) is the encryption of 0, E(z) is the encryption of z, n is large enough to represent the longest path and z is any number not equal to 0. In Doming-Ferrer's additive multiplicative privacy homomorphism [2] and new privacy homomorphism [3] encryption schemes randomness between the same plaintext 0 is achieved by splitting the plaintext differently. In Mixed multiplicative homomorphism [5] encryption scheme, randomness between the same plaintext 0 is achieved by using different a value used in encryption and Doming-Ferrer's privacy homomorphism allowing field operation on encrypted data [4] encryption scheme, randomness between the same plaintext 0 is achieved by using different ab-1 value used in encryption. Further randomness can be achieved in all the encryption schemes, by adding E(0).

Consider an example where w=2, z=5, n=4.

e(w) = E(0), E(0), E(z), E(z)

Combining two paths: In this protocol, the two paths are combined by shifting the encrypted path e(w) to the right by f,  f  being the weight of the other path.

e(w+f) = E(0),...,E(0) e1, ..., en-f
f
Consider w= 2, f=2 and n=4

let  e(w)  =  E(0), E(0), E(z), E(z)

      e(w+f) = E(0), E(0),E(0), E(0)

This operation can be performed without the decryption of e(w). If we compare e(w) and e(w+f) we cannot know the amount of shift. The shifting and the encryption can be masked by adding E(0).

Determining the minimum optimal path: The minimum of the two weights can be found without decrypting the entire encrypted weights. This can be achieved by adding the two encrypted weights and decrypting the resultant sum from right to left until we get a value z=0. The position at which we get a value z=0, determines the minimum weight. The minimum optimal path can be determined by decrypting the two paths at minimum weight + 1 position and the path, which decrypts to a value z ≠ 0 is the minimum optimal path. 

Consider two weights e(w) and e(v), with w=2,v=1 and  n=4

e(w) = E(0), E(0), E(z), E(z)

e(v) = E(0), E(z), E(z), E(z)

e(w) + e(v) = E(0), E(z), E(z), E(z)

Decrypting the 4th, 3rd and 2nd element of the resultant sum we get D(E(x)) = z, decrypting the 1st  element we get D(E(x)) = 0, therefore the minimum of the two weight is 1. To find the optimal path between e(w) and e(v) decrypt both these paths at the 2nd  position. The path, which decrypts to z ≠ 0 at the 2nd position, is the optimal path with the minimum weight.

Let us consider Figure 3.2 to illustrate this scheme in detail. Let w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2, w(2, 3) = 0 , be the weights and n = 6. Let the weights be encrypted using Domingo-Ferrer’s additive multiplicative Privacy Homomorphism [2]. Let d=2, m=28, r=3 and m’ = 14 be the parameters of the encryption scheme. 

Ek(1) = Ek(10,5) = (2,17)  

Ek(1) = Ek(20,9) = (4,25)  

Ek(2) = Ek(11,5) = (5,17)

Ek(3) = Ek(5,12) = (15,24)

Ek(0) = Ek(4,-4) = (12,20)

Ek(0) = Ek(2,-2) = (6,10)

Ek(2) = Ek(2)+ Ek(0) =(5,17) + (6,10) =  (11,27)

Representation of weights: Each node encrypts the weight the following way.

e(0,1) (w(0,1)) = E(0), E(z), E(z), E(z), E(z), E(z)

                        = E(0), E(1), E(1), E(2), E(3), E(2)

                       =(12,20), (2,17), (4,25), (5,17), (15,24), (11,27)

e(0,2) (w(0,2)) = E(0), E(0), E(z), E(z), E(z), E(z)                           

                        = E(0), E(0), E(1), E(2), E(3), E(2)

                       =(12,20), (6,10), (4,25), (5,17), (15,24), (11,27)

e(1,2) (w(1,2)) = E(0), E(z), E(z), E(z), E(z), E(z)                            

                        = E(0), E(1), E(1), E(2), E(3), E(2)

                       =(12,20), (2,17), (4,25), (5,17), (15,24), (11,27)

e(1,3) (w(1,3)) = E(0), E(0), E(z), E(z), E(z), E(z)                           

                        = E(0), E(0), E(1), E(2), E(3), E(2)

                       =(12,20), (6,10), (4,25), (5,17), (15,24), (11,27)

e(2,3) (w(2,3)) = E(z), E(z), E(z), E(z), E(z), E(z)
                        = E(3), E(1), E(1), E(2), E(3), E(2)

                       =(15,24), (2,17), (4,25), (5,17), (15,24), (11,27)

Combining paths 1-2 and 2-3 to get 1-2-3: By decrypting path 2-3 at node 2, we find the weight of path 2-3 to be 0. The path 1-2-3 is obtained by shifting the encrypted path 1-2 to the right by the weight of 2-3 at node 2.

e(1,2,3) = E(0), E(z), E(z), E(z), E(z,) E(z)
             = E(0), E(1), E(1), E(2), E(3), E(2)

            =(12,20), (2,17), (4,25), (5,17), (15,24), (11,27)

Finding minimum optimal path at node 1: To find the minimum of two paths 1-2-3 and 1-3, at node 1 we add the two encrypted paths to get the resultant path,

e(1-2-3) + e(1-3) = E(0), E(z), E(z), E(z), E(z), E(z)

                            = E(0), E(1), E(2), E(4), E(6), E(4)

   = (24,12), (8,27), (8,22), (10,6), (30,20), (22,26)

By decrypting the 6th,5th,4th,3rd, and 2nd element, we get D(E(x)) ≠ 0 and by
decrypting the 1st element, we get D(E(x)) = 0. So the minimum weight is 1. To find the optimal path between 1-3 and 1-2-3, we decrypt path 1-3 and 1-2-3 at 2nd position and the path, which decrypts to a value z ≠ 0 is the optimal path. We find that path 1-2-3 decrypts to a value z ≠ 0. Hence, path 1-2-3 is the optimal path.

Combining paths 1-2-3 and 0-1 to get 0-1-2-3: Decrypting path 1-2-3 we find the weight to be 1. To combine two paths 0-1 and 1-2-3 to get 0-1-2-3, we shift the encrypted path 0-1 to the right by 1.

e(0-1-2-3) = E(0) E(0),E(z), E(z), E(z), E(z)

                 = E(0), E(0), E(1), E(2), E(3), E(2)

                = (6,10), (12,20), (4,25), (5,17), (15,24), (11,27)

Finding minimum optimal path at node 0: At node 0 we obtain an encrypted path 0-2-3 from node 2.

e(0-2-3) = E(0), E(0), E(z), E(z), E(z), E(z).

              = E(0), E(0), E(1), E(2), E(3), E(2)

             = (12,20), (6,10), (4,25), (5,17), (15,24), (11,27)

Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3), and  we determine the minimum path by adding the two encrypted weights to get,

e(0,1,2,3)(w(0,1,2,3))  + e(0,2,3)(w(0,2,3)) = E(0), E(0), E(z), E(z), E(z), E(z)

          = E(0), E(0), E(2), E(4), E(6), E(4)

                     = (18,2), (18,2), (8,22), (10,6), (2,20), (22,26)

By decrypting we find that the minimum weight is 2. The optimal path from 0 to 3 has the minimum weight 2 and the optimal path is either 0-1-2-3 or 0-2-3, determined at node 0, as both these paths decrypt to a value z ≠ 0 at the minimum weight +1 position.

In this section, we have proposed three new routing protocols, which uses ElGamal Encryption, Elliptic Curve Encryption and Privacy Homomorphisms. These schemes ensure that the minimum optimal path is finally determined by the source. None of the nodes are aware of what the optimal path is going to be. We consider that Elliptic Curve Encryption scheme is better over ElGamal as it requires less key space and is computationally faster than ElGamal Encryption. However, we consider that the Privacy Homomorphism is computationally much faster than both ElGamal and Elliptic Curve Encryption. But the problem with Domingo-Ferrer's additive multiplicative privacy homomorphism and new privacy homomorphism is that the encrypted weight is d (secret key to split the plaintext during encryption) times longer than that required for ElGamal and Elliptic Curve Encryption. This results in more storage space.

3.4 Summary

In this chapter we have shown that a minimum optimal path can be found securely to route the packets in computer networks by using homomorphic encryption schemes. Using these homomorphic encryption schemes, minimum weight of the two paths can be found without actually decrypting the entire resultant path. The minimum of the two paths can be found by decrypting the two paths at the minimum weight +1 position, thus reducing the computational power by not decrypting the entire path. These proposed protocols provide confidentiality as the minimum path is found securely. Using ElGamal and Elliptic Curve encryption schemes, confidentiality is achieved, as the intermediate nodes can neither determine the encrypted weight of the other nodes nor the minimum optimal path. The minimum optimal path is chosen by the source. An intruder can neither determine the encrypted weights nor the minimum optimal path without the knowledge of ElGamal or Elliptic Curve secret keys of every node. Using privacy homomorphisms, confidentiality is also achieved, as an intruder cannot determine the weight or the optimal path without the knowledge of the secret key.
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11 Computing Aggregation Function Minimum/Maximum using Homomorphic Encryption Schemes in Wireless Sensor Networks (WSNs)

4.1 Introduction

A WSN consists of less expensive and low power sensor nodes that are capable of computation, storage and communication. These sensor nodes have low computation power and storage space. The purpose of deploying a sensor node is to monitor an area of interest with respect to some physical quantity. Information gathered by the sensor nodes is reported to the base station [32].

The sensor nodes have low computation power and low storage capacity. Each sensor node senses their environment and transmits the data to the central point. The data gathered by the sensor nodes in most scenarios like environmental data (eg, temperature) will eventually be computed to find the minimum, maximum or average. These computations could be carried out at a central point or by the network itself. The latter has the advantage of reducing the amount of data transmitted over wireless connections, helps eliminate information redundancy and increase the lifetime of the network. Since the energy consumption increases linearly with the amount of transmitted data, an aggregation approach helps increase the overall lifetime of WSNs [6, 7, 8, 32, 33].

The authors in [6, 7] have logically separated WSN into sensor nodes, forwarding nodes, aggregator nodes and sink node. Let us look into the Figure 4.1 introduced in [6, 7, 33] which explains the flow of data from sensor nodes to sink node. Sensor nodes sense the environment and send the data to the aggregator node. Aggregator node aggregates the data received from the senor nodes. The aggregation function may be calculation of the average, minimum/maximum or movement detection. The forwarding node just forwards the data. Sink node is assumed to be more powerful than the sensor nodes and the aggregator node. Aggregator node and the forwarding nodes belong to the backbone, whereas the sensor nodes persist in sleep mode until the sink node initiates a process that 

requires a subset of them to contribute. 
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Figure: 4.1 Representation of Sensor node, Aggregator node and Sink node in WSN
The concept of concealed data aggregation (CDA) is introduced in [6, 7, 33], where the authors address the security and energy requirements for WSNs. In CDA the authors use Domingo-Ferrer's Privacy Homomorphism [2], which provides end-to-end encryption between the sensor and the sink node. The aggregators carry out the aggregation function on the encrypted data. Privacy Homomorphism is a homomorphic encryption scheme, which allows operation to be performed on the encrypted data (ciphertext) as if the operation is performed on the plaintext. The advantage of using homomorphic encryption is that the intermediate aggregator node need not decrypt and then encrypt to perform the aggregation operation. 

In paper [6,7], the authors performed aggregation function average and movement detection using Domingo-Ferrer's privacy homomorphism [2]. The aggregation function minimum/maximum is a comparison-based function. In [34], Rivest has shown that a Privacy Homomorphism is insecure against ciphertext only attacks if it supports comparison operations. In [8] the authors apply OPES [35] for CDA, to perform secure ciphertext comparison required by the aggregation function minimum/maximum. In this chapter we show that the aggregation operation minimum/maximum can be performed by computing addition operation and not comparison operation on the encrypted data at the aggregator node. This chapter provides an alternative for OPES scheme when used to calculate the aggregation function minimum/maximum.

The chapter is organized as follows. In section 2, we briefly describe the OPES scheme used for secure ciphertext comparison. In section 3, we propose a new scheme to find the minimum/maximum at the aggregator node. Finally, in section 4 we conclude.

In the next section we look into OPES scheme used to perform secure comparison over encrypted data.

4.2 Adapting OPES scheme for Encrypted Comparison in Wireless Sensor Networks (WSNs)

The idea of OPES [35] is to take as input a user provided target distribution T determined by the network designer and transform the plaintext value such that the transformed value follows the target distribution. In paper [8] the authors show how OPES can be adapted to the WSN.

As given in [8, 35], OPES have the following stages:

· Model: The input distribution P and the target distribution T are modeled by piecewise linear splines.

· Flatten: The input distribution P is transformed into flat distribution F such that values in F are uniformly distributed.

· Transform: The flat distribution F is transformed into cipher distribution C such that values in C are according to the target distribution T.

Let us now look into the details of these phases as described in [8]. 

Modeling phase: In the Modeling phase the authors split the sorted points p1<p2<..p|p| (samples sensed by the sensor node known to the network designer) into number of bucket, each bucket having boundaries [pl,ph], pl being the least value and ph being the highest value. A given bucket [pl,ph] has h-l-1 sorted points. The bucket is then split at the point that has the largest deviation from it’s expected value. The splitting is then stopped when the number of points in the bucket is below some threshold. Using Minimum Description Length principle [36] the buckets can be minimized even while the values in the bucket preserve the uniform distribution. The bucket boundaries are uploaded onto each sensor. For m buckets the sensors stores m+1 bucket boundaries.

Flattening phase: In the Flattening phase a plaintext bucket B is mapped onto a bucket Bf such that the density of the flattened bucket is uniform. If a distribution over [0, ph] has a density function qp+r, where p ( [0,ph], then for any constant z>0, the mapping function M(p) will yield a uniform distribution. M(p) is calculated as, 

M(p) =z(qp2/2r+p). 

s=q/2r is the quadratic coefficient and during predeployment phase one coefficient for each bucket is uploaded to all sensor nodes. z = Kn/(sw2 + w) is a scale factor where w is the width of the bucket, n is the number of points in the bucket and K is the maximum of minimum of the predicted flattened bucket widths. (pmin ,pmax) represents the domain of the sensed valued in plaintext and (fmin ,fmax) is the domain of the sensed values. When sensor senses a plaintext value the sensor node performs binary search over m+1 bucket boundaries. Then p is mapped on to flat value f using the equation,
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, where wi f  = Mi(wi ).  

wi  is the length of the plaintext bucket Bi and  wi f is the length of the corresponding flat bucket. The sensor stores the bucket boundaries, quadratic coefficient and scale factors in the data structure kf, which is termed as encryption key used to flatten the sensed values.

Transformation phase: In the Transformation phase the uniform flattened value is mapped into target distribution. In other words, the target distribution is flattened and aligned with the flattened plaintext distribution. The sink node models the target distribution and flattens it during the predistribution phase. The modeling of the target distribution yields a set of buckets, (B1t, B2t,..., Bkt) and for each bucket there is a quadratic factor st and a scale factor zt given as, zt = Ktnt/( st (wt2)+wt). The quadratic function and the scale factor is precomputed.  Let B’f be the bucket in the flattened target distribution with length w’f. To align the flattened plaintext distribution and the flattened target distribution, a scaling factor L is computed as, 
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The length of the cipher bucket Bc corresponding to the target bucket Bt  is given as wi c = L wi t and the length of the flattened target bucket w’f is given as  w’f = L w’f.  Finally the mapping function Mc for mapping values from the bucket Bc to the flat bucket B’f is defined by the quadratic coefficient sc  = st/L

and the scale factor zc = zt.  If [cmin, cmax] is the domain of the ciphertexts, then a flat value f from the bucket B’f is mapped into cipher c using the equation
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The authors suggest that the OPES scheme, when adapted for encrypted comparison in WSN is reasonably energy wise, as computationally intensive operation is performed at the sink node during predeployment stage. The sensor node performs minimal computation in real time. The sink node models the plaintext distribution, target distribution, and computes the scale factor and quadratic coefficient. Computation at the sensor nodes includes binary search of the sorted bucket boundaries, mapping plaintext value to flattened value and mapping flat value to cipher value. This scheme is used to perform minimum/maximum aggregation function at the aggregator node.

In the next section we show how minimum/maximum can be performed at the aggregator node using homomorphic encryption schemes.

4.3 Calculation of Aggregation function Maximum/Minimum

In this section we look at how to determine the aggregation function minimum/maximum by computing addition/multiplication operation on the encrypted data at the aggregator node. The sensor nodes encrypts the sensed data by using homomorphic encryption schemes [2,3,4,5] as explained in Chapter 2 and transmits the encrypted data to the aggregator node.

4.3.1 Finding the maximum value by computing addition/multiplication operation on the encrypted data at the aggregator node

In this section we look at how to determine the maximum value by computing either addition or multiplication operation on the encrypted data at the aggregator node. To calculate the maximum value by using the addition operation on the encrypted data at the aggregator node in WSN, the sensor nodes encrypts the sensed data by using the encryption schemes with additive homomorphic property. To calculate the maximum value by using the multiplication operation on the encrypted data at the aggregator node in WSN, the sensor nodes encrypts the sensed data by using the encryption schemes with multiplicative homomorphic property.

In the next sub section we describe how to determine maximum value at the aggregator node in WSNs by using the additive homomorphic property of the homomorphic encryption schemes.

4.3.1.1 Finding the maximum value by computing addition operation on the encrypted data at the aggregator node

To calculate the maximum value at the aggregator node in WSNs by using the additive homomorphic property, the sensor nodes encrypts the sensed data by using the scheme proposed by the authors in [16]. 

The protocol chooses a sensed value w such that (w<=n) and chooses n such that it is large enough to represent the maximum sensed value. The weight w is encrypted as:

e(w) = (e1, e2,... en)

=E(z),...,E(z),E(0),...,E(0) ....(4.1)

w              n-w

Here e(w) is the encryption of sensed value w, E(0) is the encryption of 0, E(z) is the encryption of z and z is a number not equal to 0. 

To use this protocol in WSN, we assume that the network designer chooses the value n, large enough to represent the maximum sensed value by the sensor nodes. The weight w is the data sensed by the sensor nodes. The network designer depending on the additive homomorphic encryption schemes chooses the value z. The value of z is chosen with some restriction so that they do not add up to a value 0 at the aggregator nodes in WSNs. 
In mixed multiplicative homomorphism [5] and Domingo-Ferrer's Privacy Homomorphism allowing field operation on encrypted data [4] the value of z is chosen such that, z*s<p and z≠0. Here s is the number of sensor nodes in WSNs and s<p. For Domingo-Ferrer's New Privacy homomorphism [3] the value of z is chosen such that, z<q, z*(p-1) mod m≠0 and s<p. s is the number of sensor nodes in WSNs. In Domingo-Ferrer's Additive and Multiplicative Privacy homomorphism [2] the value z is chosen such that, z*s<m’ and z≠0. s is again the number of sensor nodes in WSNs and should be lesser than m’. 

The sensor nodes encrypt the sensed value as show in equation 4.1 and each sensor node transmits n encrypted data to the aggregator node.

The aggregator node calculates the maximum value by computing, 


[image: image5.wmf])

1

)

(

,

),...,

(

,

),...,

1

(

1

,

(

å

=

=

=

s

i

i

n

x

n

i

E

j

x

j

i

E

x

i

E

M

... (4.2)

on the encrypted data received from all the sensor nodes. Here s is the number of sensor nodes in the network, sending data to the aggregator node and Ei,j(xj) is the encryption of either z≠0 or 0. The aggregator node transmits the calculated maximum value M = E0(x),E1(x),…,En(x) to the sink node.
The sink node decrypts the maximum value from en to e1 for i=n to 1 until D (E(xi))≠0  and i determines the maximum value sensed by the sensor nodes. 

Let us consider an example to understand this in more details. Assume that n=5 and there are 4 sensors (s1, s2, s3, s4) that monitor environmental data with readings (1, 3, 4, 2) respectively.

The sensors nodes encrypt the sensed data as

s1 : e(1)=E1,1(z), E1,2(0), E1,3(0),E1,4(0), E1,5(0)

s2 :e(3) = E2,1(z), E2,2(z), E2,3(z),E2,4(0), E2,5(0)

s3 :e(4) = E3,1(z), E3,2(z), E3,3(z),E3,4(z), E3,5(0)

s4 :e(2) = E4,1(z), E4,2(z), E4,3(0),E4,4(0), E4,5(0)

z is any value not equal to 0.

The sensor node then transmits these 4 encrypted data to the aggregator node. 

The aggregator node computes e(1)+e(3)+e(4)+e(2) to get E(z),E(z),E(z),E(z),E(0). This is the maximum value sensed by the sensor node. Aggregator node transmits the maximum value to the sink node.

Sink node decrypts the received encrypted message E(z),E(z),E(z),E(z),E(0) from right to left for i=5 to 1. At i=4 the encrypted message decrypts to a value z not equal to 0. So the maximum value is 4.

Let us look into a numerical example using Domingo-Ferrer’s additive multiplicative Privacy Homomorphism [2]. Let d=2, m=28, r=3 and m’ = 14. Let (x1,x2,x3,x4,x5) = (1,2,3,0,0).

Ek(x1) = Ek(1) = Ek(10,5) = (2,17)  

Ek(x2) = Ek(2) = Ek(11,5) = (5,17)

Ek(x3) = Ek(3) = Ek(5,12) = (15,24)

Ek(x4) = Ek(0) = Ek(4,-4) = (12,20)

Ek(x5) = Ek(0) = Ek(2,-2) = (6,10)

Adding with encryption of 0 can further hide encryption of x, but the result is still x. Ek(x5)+ Ek(x6)=(18,2).

As before assume that n=5 and the 4 sensors (s1, s2, s3, s4) that monitor environmental data senses data as (1 ,3, 4 2) respectively. The data is encrypted as in equation 4.1, using Domingo-Ferrer’s additive multiplicative Privacy Homomorphism.

s1 : e(1)= Ek(3),Ek(0), Ek(0), Ek(0), Ek(0)

            =(15,24),(12,20),(6,10),(12,20),(18,2)

s2 :e(3) = Ek(1),Ek(3), Ek(2), Ek(0), Ek(0) 

            =(2,17),(15,24),(5,17),(12,20),(6,10)

s3 :e(4) = Ek(2),Ek(1), Ek(3), Ek(1), Ek(0)


=(5,17),(2,17),(15,24),(2,17),(6,10)

s4 :e(2) = Ek(3),Ek(1), Ek(0), Ek(0), Ek(0)

             =(15,24),(2,17),(12,20),(6,10),(18,2)

These encrypted values are sent to the aggregator node by the sensor node.

The aggregator node calculates the maximum value by computing,

M = s1+ s2+ s3+ s4 = (15+2+5+15 mod 28, 24+17+17+24 mod 28), (12+15+2+2 mod 28, 20+24+17+17 mod 28), (6+5+15+12 mod 28, 10+17+24+20 mod 28), (12+12+2+6 mod 28, 20+20+17+10 mod 28), (18+6+6+18 mod 28, 2+10+10+2 mod 28)

M = (9,26),(3,22),(10,15),(4,11),(20,24)

This maximum value M is transmitted to the sink node. 

The sink node decrypts the maximum value M from right to left. At i=5 the value (20, 24) decrypts to 0, at i=4 the value (4,11) decrypts to 1. Since at i=4 the encrypted value decrypts to a value z ( 0, the maximum value is 4.

In the next sub section we show how to determine maximum value at the aggregator node in WSNs by using the multiplicative homomorphic property of the homomorphic encryption schemes.

4.3.1.2 Finding the maximum value by computing multiplication operation on the encrypted data at the aggregator node

To calculate the maximum value at the aggregator node in WSNs by using the multiplicative homomorphic property, the sensor nodes encrypts the sensed data by using the scheme proposed by the authors in [16]. The sensed data can be encrypted with ElGamal encryption scheme [16, 17], which exhibits the property of multiplicative homomorphism.
The sensor nodes encrypts the sensed value w as,

e(w) = (e1, e2,... en)

=E(z),...,E(z),E(1),...,E(1) 

  w              n-w

Here w is chosen such that w<=n where n is the maximum value sensed by the sensor nodes. Also, e(w) is the encryption of sensed value w, E(1) is the encryption of 1, E(z) is the encryption of z and z is any number not equal to 1.

The aggregator node calculates the maximum value by computing, 
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on the encrypted data received from all the sensor nodes. Here s is the number of sensor nodes in the network, sending data to the aggregator node and Ei,j(xj) is the encryption of either z≠1 or 1. The aggregator node transmits the calculated maximum value M = E1(x),E2(x),…,En(x) to the sink node.
The sink node decrypts the maximum value from en to e1 for i=n to 1 until D (E(xi))≠1  and i determines the maximum value sensed by the sensor nodes. 

As before let us consider an example to understand this in more details. Assume that n=5 and there are 4 sensors (s1, s2, s3, s4) that monitor environmental data with readings (1, 3, 4, 2) respectively.

The sensors nodes encrypts the sensed data as

s1 : e(1)=E1,1(z), E1,2(1), E1,3(1),E1,4(1), E1,5(1)

s2 :e(3) = E2,1(z), E2,2(z), E2,3(z),E2,4(1), E2,5(1)

s3 :e(4) = E3,1(z), E3,2(z), E3,3(z),E3,4(z), E3,5(1)

s4 :e(2) = E4,1(z), E4,2(z), E4,3(1),E4,4(1), E4,5(1)

z is any value not equal to 1.

The sensor node then transmits these 4 encrypted data to the aggregator node. 

The aggregator node computes e(1)*e(3)*e(4)*e(2) to get E(z4),E(z3),E(z2),E(z),E(1). This is the maximum value sensed by the sensor node. Aggregator node transmits the maximum value to the sink node.

Sink node decrypts the received encrypted message E(z4),E(z3),E(z2),E(z),E(1) from right to left for i=5 to 1. At i=4 the encrypted message decrypts to a value z not equal to 1. So the maximum value is 4.

In the next section we show how to determine the minimum value at the aggregator node in WSNs by using either the additive or multiplicative homomorphic property of the homomorphic encryption schemes.

4.3.2 Finding the minimum value by computing addition/multiplication operation on the encrypted data at the aggregator node

In this section we look at how to determine the minimum value by computing either addition or multiplication operation on the encrypted data at the aggregator node. To calculate the minimum value by computing addition operation on the encrypted data at the aggregator node in WSN, the sensor nodes encrypts the sensed data by using the encryption schemes with additive homomorphic property. To calculate the minimum value by computing multiplication operation on the encrypted data at the aggregator node in WSN, the sensor nodes encrypts the sensed data by using the encryption schemes with multiplicative homomorphic property.

In the next sub section we describe how to determine minimum value at the aggregator node in WSNs by using the additive homomorphic property of the homomorphic encryption schemes.

4.3.2.1 Finding the minimum value by computing addition operation on the encrypted data at the aggregator node
To calculate the minimum value we use the scheme proposed by the author in finding the minimum path [37], which modifies the proposed schemes in [16]. The protocol chooses a weight w such that (w<=n) and chooses n such that it is large enough to represent the maximum sensed value. The weight w is encrypted as:

e(w) = (e1, e2,... en)

=E(0),...,E(0),E(z),...,E(z) ....(4.3)

  
                   w              n-w

Here e(w) is the encryption of weight w, E(0) is the encryption of 0, E(z) is the encryption of z and z is a number not equal to 0. 

To use this protocol in WSN the adaptation is same as in the earlier section. The network designer chooses the value n, large enough to represent the largest sensed data and the weight w is the data sensed by the sensor node. As in the earlier section the network designer depending on the homomorphic encryption schemes chooses the value z. For mixed multiplicative privacy homomorphism [5] and Domingo-Ferrer's Privacy Homomorphism allowing field operation on encrypted data [4] the value of z is chosen such that, z*s<p and z≠0. Here s is the number of sensor nodes in WSNs and s<p. For Domingo-Ferrer's New Privacy homomorphism [3] the value of z is chosen such that z<q and z*(p-1) mod m ≠0. The number of sensor nodes s in WSNs should be lesser than p. In Domingo-Ferrer's Additive and Multiplicative Privacy homomorphism [2] the value z is chosen such that, z*s<m’ and z≠0. s is again the number of sensor nodes in WSNs and should be lesser than m’. The value of z is chosen with such restriction so that they do not add up to a value 0 at the aggregator nodes in WSNs.

The sensor nodes encrypt the sensed value as show in equation 4.3, and transmit the encrypted data to the aggregator node. 

The aggregator node calculates the minimum value by adding up the encrypted data received from all the sensor nodes as
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Here s is the number of sensor nodes in the network, sending data to the aggregator node and Ei,j(xj) is the encryption of either z≠0 or 0. The aggregator node transmits the calculated minimum value M to the sink node. 

The sink node decrypts the minimum value from e1 to en for i=1 to n until D(E(xi)) not equal to 0 and i-1 determines the minimum value sensed by the sensor node. 

As in the earlier section, let us consider an example to understand this in more details. Assume that n=5 and there are 4 sensors (s1, s2, s3, s4) that monitor environmental data and they measure sensor readings (1,3,4,2) respectively. 

The sensor nodes encrypt the sensed data as

s1 : e(1)=E1,1(0), E1,2(z), E1,3(z),E1,4(z), E1,5(z)

s2 :e(3) = E2,1(0), E2,2(0), E2,3(0),E2,4(z), E2,5(z)

s3 :e(4) = E3,1(0), E3,2(0), E3,3(0),E3,4(0), E3,5(z)

s4 :e(2) = E4,1(0), E4,2(0), E4,3(z),E4,4(z), E4,5(z)

z is any value not equal to 0. The sensor node then transmits these 4 encrypted data to the aggregator node.

The aggregator node computes e(1)+e(3)+e(4)+e(2) to get E(0), E(z), E(z), E(z), E(z). This is the minimum value sensed by the sensor nodes. Aggregator node transmits the minimum value to the sink node.

Sink node decrypts the received encrypted message E(0),E(z),E(z),E(z),E(z) from left to right for i=1 to n=5. At i=2 the encrypted message decrypts to a value z ≠0. So the minimum value is i-1 = 1.

Let us look into a numerical example as before using Domingo-Ferrer’s additive multiplicative Privacy Homomorphism [2]. Let d=2, m=28, r=3 and m’ = 7. Let (x1,x2,x3,x4,x5) = (1,2,3,0,0).

Ek(x1) = Ek(1) = Ek(10,5) = (2,17)  

Ek(x2) = Ek(2) = Ek(11,5) = (5,17)

Ek(x3) = Ek(3) = Ek(5,12) = (15,24)

Ek(x4) = Ek(0) = Ek(4,-4) = (12,20)

Ek(x5) = Ek(0) = Ek(2,-2) = (6,10)

Adding with encryption of 0 can further hide encryption of x, but the result is still x. Ek(x5)+ Ek(x6)=(18,2).

As before assume that n=5 and the 4 sensors (s1, s2, s3, s4) that monitor environmental data senses data as (1, 3, 4, 2) respectively. 

Sensor node encrypts the sensed data as in equation 4.3, using Domingo-Ferrer’s Privacy Homomorphism [2].

s1 : e(1)= Ek(0),Ek(3), Ek(1), Ek(2), Ek(3)

 
=(6,10),(15,24),(2,17),(5,17),(15,24)

s2 :e(3) = Ek(0),Ek(0), Ek(0), Ek(1), Ek(3)


 =(12,20),(6,10),(18,2),(2,17),(15,24)

s3 :e(4) = Ek(0),Ek(0), Ek(0), Ek(0), Ek(1)

 
=(18,2),(12,20),(6,10),(12,20),(2,17)

s4 :e(2) = Ek(0),Ek(0), Ek(3), Ek(1), Ek(2)


 = (12, 20),(18,2),(15,24),(2,17),(5,17)

These encrypted values are sent to the aggregator node by the sensor nodes.

The aggregator node calculates the minimum value by computing,

M = s1+ s2+ s3+ s4 = (6+12+18+12 mod 28, 10+20+2+20 mod 28), (15+6+12+18 mod 28, 24+10+20+2 mod 28), (2+18+6+15 mod 28, 17+2+10+24 mod 28), (5+2+12+2 mod 28, 17+17+20+17 mod 28), (15+15+2+5 mod 28, 24+24+17+17 mod 28)

M = (20, 24),(23,0),(13,25),(21,15),(9,26)

This minimum value M is transmitted to the sink node. 

The sink node decrypts the minimum value M from left to right. At i=1 the value (20, 24) decrypts to 0, at i=2 the value (23,0) decrypts to 3. Since at i=2 the encrypted value decrypts to a value z≠ 0, the minimum value is i-1=1.

In the next sub section we describe how to determine minimum value at the aggregator node in WSNs by using the multiplicative homomorphic property of the homomorphic encryption schemes.

4.3.2.1 Finding the minimum value by computing multiplication operation on the encrypted data at the aggregator node

To calculate the minimum value at the aggregator node in WSNs by using the multiplicative homomorphic property, the sensor nodes encrypts the sensed data by using the scheme proposed by the authors in [16]. The sensed data can be encrypted with ElGamal encryption scheme [16, 17], which exhibits the property of multiplicative homomorphism.
The sensor nodes encrypts the sensed value w as,

e(w) = (e1, e2,... en)

=E(1),...,E(1),E(z),...,E(z) 

  w              n-w

Here w is chosen such that w<=n where n is the maximum value sensed by the sensor nodes. Also, e(w) is the encryption of sensed value w, E(1) is the encryption of 1, E(z) is the encryption of z and z is any number not equal to 1.

The aggregator node calculates the maximum value by computing, 
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on the encrypted data received from all the sensor nodes. Here s is the number of sensor nodes in the network, sending data to the aggregator node and Ei,j(xj) is the encryption of either z≠1 or 1. The aggregator node transmits the calculated minimum value M = E1(x),E2(x),…,En(x) to the sink node.
The sink node decrypts the maximum value from e1 to en for i=1 to n until D (E(xi))≠1  and i-1 determines the minimum value sensed by the sensor nodes. 

As before let us consider an example to understand this in more details. Assume that n=5 and there are 4 sensors (s1, s2, s3, s4) that monitor environmental data with readings (1, 3, 4, 2) respectively.

The sensors nodes encrypts the sensed data as

s1 : e(1)=E1,1(1), E1,2(z), E1,3(z),E1,4(z), E1,5(z)

s2 :e(3) = E2,1(1), E2,2(1), E2,3(1),E2,4(z), E2,5(z)

s3 :e(4) = E3,1(1), E3,2(1), E3,3(1),E3,4(1), E3,5(z)

s4 :e(2) = E4,1(1), E4,2(1), E4,3(z),E4,4(z), E4,5(z)

z is any value not equal to 1.

The sensor node then transmits these 4 encrypted data to the aggregator node. 

The aggregator node computes e(1)*e(3)*e(4)*e(2) to get E(1),E(z),E(z2),E(z3),E(z4). This is the minimum value sensed by the sensor node. Aggregator node transmits the minimum value to the sink node.

Sink node decrypts the received encrypted message E(1),E(z),E(z2),E(z3),E(z4) from left to right for i=1 to 5. At i=2 the encrypted message decrypts to a value z not equal to 1. So the minimum value is 2-1=1.

The encrypted values E(z)s, and E(0)s can be placed at each sensor node during their predeployment stage, when the minimum/maximum value is determined at the aggregator node by computing addition operation on the encrypted data. When the minimum/maximum value is determine at the aggregator node by computing multiplication operation on the encrypted data the encrypted values E(z)s, E(1)s can be placed at each sensor nodes during the predeployment stage. The network administrator can determine the number of encrypted values to be stored at the senor nodes depending upon the storage limitation of the sensor nodes. The sensor node can randomize the values of E(z)s, E(0)s, by computing addition operation with E(0) and  can randomize E(z)s, E(1)s by computing multiplication operation with E(1). The sensor node has low computation power and encryption at the sensor node in WSNs is a very costly operation. By using these proposed schemes the sensor nodes need not encrypt any data and hence remove the computation cost of encryption all together. Sensor nodes need not store the encryption key and even if the node is tampered with, the key won’t be revealed. The sensor nodes after sensing the data transmit n encrypted values. The aggregator node performs minimum/maximum value by computing at most n*(s-1) addition operations or n*(s-1) multiplication operations resulting in n encrypted values. Here n is the number of encrypted values sent by each sensor node and s is the number of sensor nodes.

We have used privacy homomorphism as an example, but since they are vulnerable to known plaintext attacks it might be a problem. We can use any additive or multiplicative homomorphic encryption schemes, which is secure against known plaintext attacks. Okamota and Uchiyama’s new public-key cryptosystem [38], Paillier three new probabilistic encryption scheme [39], Elliptic curve ElGamal encryption scheme [40] are some of the additive homomorphic encryption scheme secure against known plaintext attacks. ElGamal encryption scheme [16, 17] is one of the multiplicative homomorphic encryption schemes secure against known plaintext attack, which can be also used. The encryption cost is not a problem as the encryption is done during the predeployment stage of the sensor nodes.

In the next section we conclude.

4.4 Summary

In this chapter we have shown that the aggregator node can perform aggregation function maximum/minimum by computing addition/multiplication operation and not comparison operation on the data encrypted using homomorphic encryption schemes. By pre-computing E(z)s, E(0)s or E(z)s, E(1)s we have eliminated the computation cost for encryption at the sensor nodes and solved the major problem in WSNs. By using our scheme one can use any additive or multiplicative homomorphic encryption schemes, as encryption cost at the sensor node in WSNs is not a problem. Furthermore, by performing addition/multiplication operation over encrypted data to calculate minimum/maximum we have eliminated the overhead of OPES required while calculating minimum/maximum.

12 Chapter - 5

13 Secure Message Transmission in Mobile Ad Hoc Networks (MANETs) using Homomorphic Encryption Schemes 
5.1 Introduction

In MANETs, mobile nodes communicate directly with each other in a pear to pear manner. Mobile nodes join in, on the fly, and create a network on their own, each node carrying out basic operations like routing and packet forwarding without the help of an established infrastructure. All the available nodes can join the network and carry out network operation. Due to this huge dependency's on the nodes, there are more security problems. In MANETs the nodes are capable of roaming independently. The node with inadequate physical protection can be easily captured, compromised and hijacked. Therefore the nodes in the network must be prepared to work in a mode that trusts no peer [12, 13]. 

In this chapter we look at the current security solutions for MANETs. We then propose a new scheme for secure transmission of message in MANETs as an alternative for threshold cryptography.

5.2 Current security solutions in MANETs

Security solutions in MANETs can be grouped as Secure routing and secure data forwarding. Lets have a look at these solutions in detail.

5.2.1 Secure routing

There are various secure routing protocols suggested for routing packets in MANETs. One such routing protocol is Secure Routing Protocol (SRP) [9, 10]. In SRP, only the end nodes have to be securely associated, with no need for cryptographic operations at the intermediate nodes. SRP provides one or more route replies, whose correctness is verified by the route “geometry” itself, while compromised and invalid routing information is discarded. Another routing protocol is secure link state protocol  (SLSP) [11] for MANETs. Its secure neighbor discovery and the use of neighbor lookup protocol (NLP) strengthen SLSP against attacks that attempt to exhaust network and node resources.  Furthermore, SLSP can operate with minimal or no interactions with a key management entity, while the credentials of only a subset of network nodes are necessary for each node to validate the connectivity information provided by its peers.

5.2.2 Secure Data Forwarding

We look at two major secure message transmission schemes secure message transmission and threshold cryptography.

5.2.2.1 Secure Message Transmission

Secure routing is the pre-requisite for implementing secure data forwarding. The motivation is to securely forward data in MANETs in the presence of malicious nodes after the route between the source and target is discovered. There are various schemes proposed for secure data forwarding such as data forwarding based on neighbor’s rating, implementing currency system in network for packet exchange, and redundantly dividing and routing message over multiple network routes. For example, Secure Message Transmission (SMT) is a secure data forwarding scheme in which first the active paths are discovered between two nodes using secure routing protocol. Based on N active paths, the message is divided into N different parts such that any M parts can be used to recover this message.  These N partial messages are then routed on the recognized paths. The destination can recover a message when M or more partial messages are received. Thus, this scheme ensures that the message reaches the destination even if a few packets are dropped in transit. Both the above security solutions are essential to ensure that the MANETs survive even in the presence of malicious nodes. Thus, by implementing the above solutions the nodes can communicate securely without relying on all nodes on only one route. Extending further the concept of dividing the message using SMT protocol, the threshold cryptography can be implemented to redundantly fragment the message into N parts such that using any t parts the message can be recovered [12, 13, 14].

5.2.2.2 Threshold Cryptography

Threshold cryptography (TC) [13, 14, 15] involves sharing of a key by multiple individuals called shareholders engaged in encryption or decryption. The objective is to have distributed architecture in a hostile environment. Other than sharing keys or working in distributed manner, TC can be implemented to redundantly split the message into n pieces such that with t or more pieces the original message can be recovered. This ensures secure message transmission between two nodes over n multiple paths. Threshold schemes generally involve key generation, encryption, share generation, share verification, and share combining algorithms. Share generation, for data confidentiality and integrity, is the basic requirement of any TC scheme. Threshold models can be broadly divided into single secret sharing threshold e.g. Shamir’s t-out-of-n scheme based on Lagrange’s interpolation and threshold sharing functions e.g. geometric based threshold. These schemes are being used to implement threshold variants of RSA, ElGamal, and ECC [13, 14].

RSA-TC and ECC-TC has been discussed in the papers [13, 14, 15]. It has been shown that RSA-TC using key sharing is unsuitable in resource constrained MANETs due to high storage, computation, and bandwidth requirements [13]. 

ECC-TC has been shown to be more efficient for resource constrained MANETs [14]. The authours in paper [14] has used variation of ECC such as Diffie-Hellman (DH), Menezes-Vanstone (MV) and Ertaul in MANETs. They have performed various  comparison tests in different scenarios between these different ECCs'. ECC-DH split before encryption has been proved to be better for resource constraint sender as the encryption timings are lowest. ECC-MV split before encryption has been proved to be best for decryption at the resource constraint receiver as the decryption time is lowest. The encryption and decryption time of ECC- MV and ECC-DH has been shown to vary significantly for encryption before split and encryption after split. The encryption and decryption time of ECC-Ertaul has been proved to be more moderate for varying key sizes, t and n for both encryption before split and encryption after split. As a result ECC-Ertaul has been suggested as a best variation of ECC for MANETs [14].

In the next section we show how homomorphic encryption scheme can be used as an alternative for TC to securely transmit the message in MANETs.

5.3 Homomorphic encryption schemes in MANETs

In ECC based TC there is an overhead of splitting the message using Lagrange Interpolation scheme. In our new scheme keeping the concept of threshold cryptography in mind, we split the messages and encrypt the message using homomorphic encryption scheme removing the overhead of Lagrange Interpolation scheme all together. In our scheme we increase the success rate as compared to RSA based TC. The Homomorphic encryption scheme used to encrypt the message are Domingo-Ferrer’s new privacy homomorphism, Domingo-Ferrer’s additive and multiplicative privacy homomorphism, Domingo-Ferrer’s privacy homomorphism allowing field operation on encrypted data and Mixed multiplicative homomorphism.

In this section we talk about a new scheme to transmit the message securely. We show that even if a node is compromised, the node will not be able to determine the sensitive information. If certain number of nodes are compromised and do not send the message, the message can still be recovered by the destination. The message is encrypted by using homomorphic encryption schemes.
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Figure: 5.1 The new scheme in MANETs

In our scheme we are not interested in how the path is established from the sender to the receiver. We are only interested in transmitting the message securely on the already established path. We assume that set of disjoint paths have already been established from the sender to receiver by MANETs routing protocols [9, 10]. We also assume that the key has already been established between the sender and receiver by using any of the key distribution schemes.

To transmit the message securely, the idea is to group the set of n disjoint paths from sender to receiver into g groups, each group having atleast n/g active disjoint paths. The message to be transmitted is split into number of messages equal to g and encrypted using homomorphic encryption schemes [2,3,4,5].  The encrypted split message is sent to each of the g groups, each group having only one encrypted split message. Each node (router) in the group will have the same split message and the node even if compromised will not get the entire message. As Homomorphic encryption schemes are used to encrypt the split message, the receiver can recover the entire encrypted message, by performing addition operation on the encrypted split messages and decryption the entire recovered message. This scheme is illustrated in the Figure 5.1.
In MANETs the nodes are always on the move. There will be scenarios where the intermediate node is out of range or may have been killed or out of the MANET all together. In such cases how would the receiver get all the split messages sent by the sender? To ensure that the receiver gets all the split messages, the sender sends the same split messages to more than one disjoint paths. Let us assume that there are n disjoint paths and the disjoint paths getting the same split message belongs to one group. Let us assume that there are g groups of disjoint path, with each group having atleast n/g disjoint paths. The sender splits a message into g splits, and sends each split to each group. The receiver recovers the entire message even if at-most (n/g)-1 disjoint paths are not active. A malicious node cannot recover the entire message as it gets only partial encrypted message. To ensure security the sender does not send more than one split message to the same group of nodes. 

5.4 Implementation of Homomorphic encryption schemes in MANETs

The MANET is simulated using the C programming language in the Unix environment. The simulation is done on a system having the Intel Pentium-III, 532 MHz CPU and 256 MB system memory running the Linux kernel –2.6.20-16-generic operating system. 

The assumptions during implementation are that there is a sender, receiver and multiple forwarding nodes between them. We assume that set of active disjoint paths have already been established from the sender to receiver by the routing protocols. We also assume that the key for homomorphic encryption scheme has already been established between the sender and receiver by using any of the key distribution schemes. The Homomorphic encryption scheme used to encrypt the message at the sender are Domingo-Ferrer’s new privacy homomorphism, Domingo-Ferrer’s additive and multiplicative privacy homomorphism, Domingo-Ferrer’s privacy homomorphism allowing field operation on encrypted data and Mixed multiplicative homomorphism.

In our simulation the active disjoint paths getting the same message are grouped as one group. Based on n active paths the groups g are determined. The sender splits the message and encrypts each split message with the one of the homomorphic encryption schemes. In our network, n and g are fixed to (10,{2,5,10}), (15,{2,7,15}) and (20,{2,10,20}). The success rate of our proposed network is computed as,

(No. of messages recovered by the receiver/No. of messages sent by the sender )*100  … (5.1)

The success rate of the network with n and g fixed to (10,{2,5,10}), (15,{2,7,15}) and (20,{2,10,20}) is determined by randomly killing the nodes. The nodes are killed randomly by using Exponential distribution provided by the function in GSL library [41].

In our implementation, the sender first splits the message into g partial messages where each partial message is sent to one of the g groups of the MANETs. Each of the partial messages are associated with a unique message split id. All the message split id’s of the partial messages forming the entire message is summed up to set up the message split id sum. The message id, message split id, message spit id sum and encrypted partial text is placed in the buffer so that the receiver can recover the entire message from the partial encrypted message. To recover the entire message sent by the sender, the receiver follows two steps. In the first step the receiver adds up all the partial encrypted message whose message id’s are same and message split id’s sums up to message split id sum. In the second step the receiver decrypts the sum of all partial encrypted messages to recover the entire message. As the same encrypted partial message is sent to all the active paths in the group the receiver is likely to get the same redundant message. The receiver discards the redundant message by discarding the already seen message with the same message id and message split id. 

In the next section we look at the buffer structure of the encrypted message.

5.4.1 Buffer structure of the encrypted message

The size of the buffer structure of the encrypted message sent form sender to receiver varies from one homomorphic encryption to another.

5.4.1.1 Domingo-Ferrer’s new privacy homomorphism (DF’s new PH)
In DF’s new PH the size of the ciphertext increases with the increase in the encryption split “d”. So the size of the buffer increases with the increase of the parameter d used in encryption.

Table: 5.1 Buffer structure of message encrypted with DF’s new PH with d=2
	Message Id
	Message split Id
	Message split Id sum
	Sizeof cipher

text
	Sizeof cipher

Text
	Sizeof cipher

text
	Sizeof cipher

text
	Cipher

text
	Cipher

text
	Cipher

text
	Cipher

text

	
	
	
	Size of ciphertext
	Ciphertext


In Table 5.1 the message Id field identifies different messages encrypted at the sender. The messages split at the sender is uniquely identified by message split Id. The sum of all the message split id is included in message split id sum. The rest of the buffer is used to contain the size of the cipher data and the ciphertext itself. The size of the ciphertext is essential in recovering the ciphertext by the receiver. The receiver recovers the entire message by adding up all the cipher values with the same message id and whose message split id’s adds up to message split id sum.

5.4.1.2 Domingo-Ferrer’s additive and multiplicative privacy homomorphism (DF’s additive and multiplicative PH)
In DF’s additive and multiplicative PH the size of the ciphertext increases with the increase in the encryption split “d”. So the size of the buffer increases with the increase of the parameter d used in encryption.

Table: 5.2 Buffer structure of message encrypted with DF’s additive and multiplicative PH with d=2

	Message  Id
	Message split Id
	Message split Id sum
	Sizeof ciphertext
	Sizeof ciphertext
	Ciphertext
	Ciphertext

	
	
	
	Size of ciphertext
	Ciphertext


In Table 5.2 the message id field identifies different messages encrypted at the sender. The messages split at the sender is uniquely identified by message split id. The sum of all the message split id is included in message split id sum. The rest of the buffer is used to contain the size of the ciphertext and the ciphertext itself. The size of the ciphertext is essential in reading the ciphertext from the buffer. The receiver recovers the entire message by adding up all the ciphertexts with the same message id and whose message split id’s adds up to message split id sum.

5.4.1.3 Domingo-Ferrer’s privacy homomorphism allowing field operations on encrypted data (DF’s field PH)
In DF’s field PH the buffer structure is represented in Table 5.3.

Table: 5.3 Buffer structure of message encrypted with DF’s field PH
	Message  Id
	Message split Id
	Message split Id sum
	Size of ciphertext
	Ciphertext


In Table 5.3 the message id field identifies different messages encrypted at the sender. The messages split at the sender is uniquely identified by message split id. The sum of all the message split id is included in message split id sum. The rest of the buffer is used to contain the size of the ciphertext and the ciphertext itself. The size of the ciphertext is essential in reading the ciphertext from the buffer. The receiver recovers the entire message by adding up all the cipher values with the same message id and whose message split id’s adds up to message split id sum.
5.4.1.4  Mixed Multiplicative Homomorphism (MMH)
In MMH the buffer structure is represented in Table 5.4. 

Table: 5.4 Buffer structure of message encrypted with MMH
	Message  Id
	Message split Id
	Message split id sum
	Size of cipher

Text
	Cipher

text


In Table 5.4 the message id field identifies different messages encrypted at the sender. The messages split at the sender is uniquely identified by message split id. The sum of all the message split id is included in message split id sum. The rest of the buffer is used to contain the size of the ciphertext and the ciphertext itself. The size of the ciphertext is essential in reading the ciphertext from the buffer. The receiver recovers the entire message by adding up all the cipher values with the same message id and whose message split id’s adds up to message split id sum.
5.4.2 Performance results of Homomorphic encryption schemes

In MANETs the nodes may have low computational power. In such cases we need to find an encryption scheme, which is computational much faster. In our implementation we do various tests to find a relatively faster encryption schemes among DF’s new PH, DF’s additive and multiplicative PH, DF’s field PH and MMH. 

In one of our tests we determine the encryption timing of all four encryption schemes by varying the key size to 512, 1024, 2048 bits and keeping the message size fixed to 512 bits. In another test we find the execution timing of all the four encryption schemes by keeping the key size fixed to 512 bits, 1024 bits , 2048 bits and varying message size. The timings are determined over 200 runs.

Table 5.5 represents the execution timing of DF’s new PH, DF’s additive and multiplicative PH, DF’s field PH and MMH in micro seconds by varying the key size to 512, 1024, 2048 bits and keeping the message size fixed to 512 bits. Figure 5.2 represents the execution timing of Table 5.5 in a chart. From Figure 5.2, it is clear that MMH is much faster than DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH. We also see that the encryption timing of DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH increases with the increase in encryption keys but the encryption timing of MMH remains almost the same with the increase in the encryption key size. 
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Figure: 5.2 Execution time of PHs with varying key sizes and message size fixed to 512 bits

Table: 5.5 Execution time of PHs with varying key sizes and message size fixed to 512 bits
	Key size in bits
	DF's new PH with d=2
	DF's additive and multiplicative PH with d=2
	DF's field PH 
	MMH

	512
	193
	87
	12
	6

	1024
	271
	150
	22
	6

	2048
	461
	224
	51
	8


Table 5.6 represents the execution timing of DF’s new PH, DF’s additive and multiplicative PH, DF’s field PH and MMH in micro seconds by increasing the message size to 100, 250 and 500 bits and by keeping the key size fixed to 512 bits. Figure 5.3 represents the execution timing of Table 5.6 in a chart. From Figure 5.3, it is clear that MMH is much faster than DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH. We also see that the encryption timing of DF’s new PH and DF’s additive and multiplicative PH increases with the increase in message size but the encryption timing of DF’s field PH and MMH remains almost the same with the increase in the message size.


[image: image10.wmf]Encryption time of PHs with 512 bit key size

0

20

40

60

80

100

120

140

160

100

250

500

Message size in bits

Time in µSec   . 

Domingo Ferrer's new PH

Domingo Ferrer's additive

and multiplicative PH

Domingo Ferrer's PH

allowing field operation on

encrypted data 

Mixed multiplicative

homomorphism


Figure: 5.3 Execution time of PHs in (Sec with 512 bit key size

Table: 5.6 Execution time of PHs (Sec with 512 bit key size
	Message size in bits
	100
	250
	500

	DF’s new PH with d=2
	115
	129
	150

	DF's additive and multiplicative PH with d=2
	70
	77
	84

	DF's field PH 
	10
	10
	10

	MMH
	6
	6
	6


Table 5.7 represents the execution timing of DF’s new PH, DF’s additive and multiplicative PH, DF’s field PH and MMH in micro seconds by increasing the message size to 250, 500 and 1000 bits and by keeping the key size fixed to 1024 bits. Figure 5.4 represents the execution timing of Table 5.7 in a chart. From Figure 5.4, it is clear that MMH is much faster than DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH. We also see that the encryption timing of DF’s new PH and DF’s additive and multiplicative PH increases with the increase in message size but the encryption timing of DF’s field PH and MMH remains almost the same with the increase in the message size.
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Figure: 5.4 Execution time of PHs in (Sec with 1024 bit key size

Table: 5.7 Execution time of PHs in (Sec with 1024 bit key size
	Message size in bits
	250
	500
	1000

	DF's new PH with d=2
	183
	235
	281

	DF's add and mul PH with d=2
	87
	101
	147

	DF's filed PH 
	19
	19
	20

	MMH
	8
	9
	6


Table 5.8 represents the execution timing of DF’s new PH, DF’s additive and multiplicative PH, DF’s field PH and MMH in micro seconds by increasing the message size to 500, 1000 and 2000 bits and by keeping the key size fixed to 2048 bits. Figure 5.5 represents the execution timing of Table 5.8 in a chart. From Figure 5.5, it is clear that MMH is much faster than DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH. We also see that the encryption timing of DF’s new PH and DF’s additive and multiplicative PH increases with the increase in message size but the encryption timing of DF’s field PH and MMH remains almost the same with the increase in the message size.
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Figure: 5.5 Execution time of PHs in (Sec with 2048 bit key size

Table: 5.8 Execution time of PHs in (Sec with 2048 bit key size
	Message size in bits
	500
	1000
	2000

	DF's new PH with d=2
	418
	550
	837

	DF's add and mul PH with d=2
	218
	294
	400

	DF's field PH 
	48
	48
	48

	MMH
	10
	9
	11


From Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5 and respective Tables it is clear that MMH is much faster than DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH. We also see from Figure 5.2 that the encryption timing of DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH increases with the increase in encryption keys but the encryption timing of MMH remains almost the same with the increase in the encryption key size. From Figure 5.3, Figure 5.4, Figure 5.5 and corresponding Tables we also see that the encryption timing of DF’s new PH and DF’s additive and multiplicative PH increases with the increase in message size. However the encryption timing of DF’s field PH and MMH remains almost the same with the increase in the message size. In determining the encryption timing of DF’s new PH and DF’s additive and multiplicative PH, the encryption split (d) is fixed to the value 2.
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Figure: 5.6 Execution time of DF’s new Ph and DF’s additive and multiplicative PH in (Sec with varying d

Table: 5.9 Execution time of DF’s new Ph and DF’s additive and multiplicative PH in (Sec with varying d
	D value
	2
	4
	6
	8
	10

	DF’s new PH with 

varying key size


	512
	193
	382
	713
	1285
	1856

	
	1024
	271
	764
	1642
	2970
	4900

	
	2048
	461
	1854
	4335
	8370
	95783

	DF’s additive and 

multiplicative PH with 

varying key size


	512
	87
	177
	352
	623
	973

	
	1024
	150
	395
	830
	1472
	2456

	
	2048
	224
	895
	2159
	4184
	6706


From the Figure 5.6 and Table 5.9 we see that the execution timing in micro seconds increases with the increase in key size and d (encryption split) value. Furthermore we also see that the encryption timing for DF’s new PH increases dramatically with the d=10. We also see that the encryption timing of DF’s additive and multiplicative PH is faster than DF’s new PH. The encryption scheme is said to be more secure with the increase with the increase in d value but with the increase in d value the encryption timing also increases.  So we need to determine the value of d so that the encryption time is less and provides high security.  The d value set to 4 seems reasonable for these encryption schemes.

5.4.3 Performance Results of our new scheme in MANETs

In MANETs the nodes are always on the move and there may be scenarios where the active path may no longer be active and as a result, the receiver may not receive all the packets sent by the sender. The success rate of the network is computed as in equation 5.1. Figure 5.6 depicts the success rate of the networks with n active paths and g groups fixed to (10,{2,5,10}), (15,{2,7,15}) and (20,{2,10,20}), by randomly killing the nodes. The nodes in the networks are killed randomly by using Exponential distribution provided by the function in GSL library [41]. The networks with n and g fixed to (10,{2,5,10}) defines 3 sets of networks with the first network having 10 active paths, 2 groups and 5 active paths in each group, second network with 10 active paths, 5 groups and 2 active paths in each group and third network with 10 active paths, 10 groups and 1 active path in each group. The networks with n and g fixed to (15,{2,7,15}) defines 3 sets of networks with first network having 15 active paths, 2 groups and 7 active paths in one group and 8 active paths in another group, second network with 15 active paths, 7 groups and 3 active paths in one group and 2 active paths in remaining groups and third network with 15 active paths, 15 groups and 1 active path in each group. The networks with n and g fixed to (20,{2,10,20}) defines 3 sets of networks with first network having 20 active paths, 2 groups and 10 active paths in each group, second network with 20 active paths, 10 groups and 2 active paths in each group and third network with 10 active paths, 20 groups and 1 active path in each group. 

From Figure 5.6 it is clear that the success rate increases by reducing the number of groups in the network. This is because by reducing the number of groups in the network we would increase the number of active paths in each group. Just one partial message from each group is enough to recover the entire message. From Figure 5.6 we see that the success rate is 100% with g=2 and n=10,15,20. This is because by increasing the number of paths in each group, the probability of one path in each group remaining active is high and with it the probability of recovery of the message at the receiver is also high. The success rate gradually decreases with the gradual increase in the number of groups in the network. With g=n we see that success rate is lesser than 50%. Therefore to get the success rate as 100% in the network it is better to reduce the number of groups, thus increasing the number of active paths in each group.
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Figure: 5.7 Success rate of the Network
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Figure: 5.8 Encryption timing of DF’s new Ph and DF’s additive and multiplicative PH in micro Seconds

Table 5.10 Encryption timing of DF’s new Ph and DF’s additive and multiplicative PH in micro Seconds
	groups out of n active paths
	2—10
	5--10
	10--10
	2--15
	7--15
	15--15
	2--20
	10--20
	20—20

	DF's new PH with key size in bits 
	512
	387
	950
	1850
	387
	1310
	2833
	387
	1850
	3784

	
	1024 
	540
	1270
	2600
	540
	1800
	3965
	540
	2600
	5261

	
	2048 
	890
	2340
	4560
	890
	3190
	7000
	890
	4560
	9500

	DF's add and mul PH with key size in bits
	512 
	133
	316
	610
	133
	442
	950
	133
	610
	1303

	
	1024 
	237
	515
	1022
	237
	695
	1533
	237
	1022
	2060

	
	2048 
	237
	516
	1022
	237
	786
	1555
	237
	1022
	2086
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Figure: 5.9 Encryption timing of DF’s field Ph and DF’s MMH in micro Seconds

Table 5.11 Encryption timing of DF’s field Ph and DF’s MMH in micro Seconds
	groups out of n active paths
	2--10
	5—10
	10--10
	2--15
	7--15
	15--15
	2--20
	10--20
	20--20

	DF's field PH with key size in bits
	512
	25
	70
	124
	25
	85
	177
	25
	124
	243

	
	1024 
	43
	112
	257
	43
	147
	330
	43
	257
	457

	
	2048 
	112
	254
	515
	112
	339
	760
	112
	515
	1008

	MMH with key size in bits
	512 
	10
	34
	55
	10
	50
	85
	10
	55
	112

	
	1024 
	11
	35
	60
	11
	50
	90
	11
	60
	115

	
	2048 
	14
	40
	68
	14
	55
	103
	14
	68
	140


In our proposed new scheme in MANETs the sender splits the message with respect to the value g. The sender using the homomorphic encryption scheme then encrypts all the split messages. As the number of splits at the sender is equal to the value g the total encryption timing of all the split messages increase with the value g. Figure 5.7, Figure 5.8 and the corresponding Tables represent the total encryption timing of all the split messages. From the Figures it is clear that the total encryption timing increase with the value g. Also from Figures we see that MMH is the fastest encryption scheme, followed by DF’s field PH, DF’s additive and multiplicative PH and finally DF’s new PH.

5.5 Alternative scheme for DF’s new Ph and DF’s additive and multiplicative PH

In DF’s new PH and DF’s additive and multiplicative PH the encrypted message results in d partial ciphertexts depending on the papremeter d. With the increase in d the size of the ciphertext increases and so does the buffer’s structure as shown in Table 5.1 and Table 5.2.

In order to keep the buffer stucture and so the packet size almost constant, the sender encrypts the message with either DF’s new PH and DF’s additive and multiplicative PH with the parameter d set to the value g. The sender then sends one of the partial ciphertexts to each of the groups g in the network. The receiver recovers the entire message by arranging all the partial ciphertexts in appropriate order to get the entire ciphertand then decrypting the ciphertext to get the message. This scheme is illustrated in the Figure 5.10.
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Figure: 5.10 The Alternative new scheme in MANETs for DF’s new Ph and DF’s additive and multiplicative PH

In this scheme with the increase in the number of groups g in the network the encryption is done only ones by setting the value d of the encryption scheme to g. But in our original proposed new scheme we do encryptions g times for g groups. In this alternative new scheme the encryption timing of DF’s new PH and DF’s additive and multiplicative PH is lesser than the original proposed scheme when the encryption schemes in both the proposed schemes uses the same d value. However from Figure 5.6 and Figure 5.8 we see that the encryption timing of original proposed new scheme as in Figure 5.1 is lesser than the encryption timing of the alternative proposed scheme as in Figure 5.10 when the groups g in the network increases. 

The security issues of both the proposed new schemes are the same. In the aslternative proposed new scheme, a single compromised node would not be able to determine the message as the node would get only the partial ciphertext.

5.6 Summary 

By using our proposed new scheme in MANETs as an alternative to RSA-TC and ECC-TC, we eliminate the overhead of Lagrange Interpolation Scheme associated with RSA-TC and ECC-TC. Furthermore in our scheme because of the grouped MANETs, if one of  the node is compromised the entire message would not be revealed. For the entire message to be recoverd by the attacker, the attacker needs to compromise atleast g nodes, one node from each group g and know the encryption keys to decrypt the message. The success rate of our proposed new scheme is 100% if there are more number of  active paths in each group of the network.

From our implementation results it is clear that MMH is the fastest homomorphic encryption scheme in comparison with DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH. But MMH homomorphic encryption scheme is susceptible to known plaintext attack.

In our propose new scheme the buffer size and so the packet size increases with the increase in the value d used in DF’s new PH and DF’s additive and multiplicative PH. To keep the buffer size constant for DF’s new PH and DF’s additve and multiplicative PH we propose an alternative new scheme for MANETs. The alternative new scheme is more efficient than the proposed new scheme for MANETs when both schemes uses the same d (encryption split) value for DF’s new PH and DF’s additve and multiplicative PH.

14 Chapter - 6

15 Conclusion

In this thesis we have provided new protocols to ensure security in computer networks, WSNs and MANETs by using existing homomorphic encryption schemes. We have also provided the encryption/decryption details and security issues of homomorphic encryption schemes such as Domingo-Ferrer’s new privacy homomorphism, Domingo-Ferrer’s additive and multiplicative privacy homomorphism, Domingo-Ferrer’s privacy homomorphism allowing field operation on encrypted data, Mixed multiplicative homomorphism, Elliptic Curve and ElGamal encryption scheme. We have provided the implementation issues of our new scheme in MANETs and suggested a suitable homomorphic encryption schemes for MANETs.

In computer networks the minimum optimal path is found securely to route the packets by using homomorphic encryption schemes such as ElGamal, Elliptic Curve, Mixed multiplicative homomorphism, Domingo-Ferrer’s additive and multiplicative privacy homomorphism, Domingo-Ferrer’s new privacy homomorphism and Domingo-Ferrer’s privacy homomorphism allowing field operation on encrypted data. Using these homomorphic encryption schemes, minimum weight of the two paths can be found without actually decrypting the entire resultant path. The minimum of the two paths can be found by decrypting the two paths at the minimum weight +1 position, thus reducing the computational power by not decrypting the entire path. These proposed protocols provide confidentiality as the minimum path is found securely. Using ElGamal and Elliptic Curve encryption schemes, confidentiality is achieved, as the intermediate nodes can neither determine the encrypted weight of the other nodes nor the minimum optimal path. The minimum optimal path is chosen by the source. An intruder can neither determine the encrypted weights nor the minimum optimal path without the knowledge of ElGamal or Elliptic Curve secret keys of every node. Using privacy homomorphism, confidentiality is also achieved, as an intruder cannot determine the weight or the optimal path without the knowledge of the secret key.
In WSNs we have shown that the aggregator node can perform aggregation function maximum/minimum by computing addition/multiplication operation and not comparison operation on the data encrypted using homomorphic encryption schemes. By pre-computing E(z), E(0), E(1) and storing these values in senor nodes we have eliminated the encryption cost at the sensor nodes and solved the major problem in WSNs. By using our scheme one can use any additive or multiplicative homomorphic encryption schemes, as encryption cost at the sensor node in WSNs is not a problem. Furthermore, by performing addition/multiplication operation over encrypted data to calculate minimum/maximum we have eliminated the overhead of OPES required while calculating minimum/maximum.

In MANETs we propose a new scheme in MANETs as an alternative to RSA-TC and ECC-TC, which eliminates the overhead of Lagrange Interpolation Scheme associated with RSA-TC and ECC-TC. Furthermore in our scheme because of the grouped MANETs, if one of  the nodes are compromised the entire message would not be revealed. For the entire message to be recoverd by the attacker, the attacker needs to compromise atleast g nodes, one node from each group g and know the encryption keys to decrypt the message. The success rate of our proposed new scheme is 100% if there are more number of  active paths in each group of the network. In our propose new scheme the buffer size and so the packet size increases with the increase in the value d used in DF’s new PH and DF’s additive and multiplicative PH. To keep the buffer size constant for DF’s new PH and DF’s additve and multiplicative PH we propose an alternative new scheme for MANETs. The alternative new scheme is more efficient than the proposed new scheme for MANETs when both schemes uses the same d (encryption split) value for DF’s new PH and DF’s additve and multiplicative PH. From our implementation results, it is clear that MMH is the fastest homomorphic encryption scheme in comparison with DF’s new PH, DF’s additive and multiplicative PH and DF’s field PH. But MMH homomorphic encryption scheme is susceptible to known plaintext attack.
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17 Appendix - I

18 Implementation Details of Homomorphic encryption schemes in Mobile Ad Hoc Networks (MANETs)

A.1 Introduction

The MANET is simulated using the C programming language in the Unix environment. 
The simulation is done on a system having the Intel Pentium-III, 532 MHz CPU and 256 MB system memory running the Linux kernel –2.6.20-16-generic operating system.
In the simulation, the MANET has a sender, multiple routers and a receiver nodes as shown in Figure 5.1, that are hosted on a single machine, where sender, routers and the receiver are different processes created using the fork system call [42] from a controlling parent process.  

Nodes communicate with each other through the POSIX IPC (Interprocess Communication) such as Message Queues [43] and Shared Memory [44]. The processes are synchronized using the Semaphores [45].

A controlling parent process started initially, forks off child processes sender, multiple routers and a receiver. The children processes are forked off in an order, first the sender process followed by the router processes and in the end the receiver process. This ordering ensures certain resources being created before the consumers start using them. The number of router processes to be forked off is determined by an hard coded program global variable.

The nodes (processes) communicate with one another using the POSIX message queue. A message queue [43] can be thought of as a linked list of messages. Processes with adequate permission can put messages into the queue and remove messages from the queue. The sender, routers and receiver create the message queue named /route.<PID>, PID being the process ids of the respective processes. All the message queues are opened in blocking mode, which ensures the consumers being blocked until the message arrives in the message queue.

The nodes when started make an entry of itself in the route table and various route table fields are automatically updated. The nodes determine the neighboring nodes by looking up the route table. The route table is a shared memory named /route_table_memory.
The sender and the receiver share certain information like the encryption keys and the encryption scheme using the Shared Memory. The sharing is synchronized using the Semaphores.

The messages are encrypted in the sender using the Symmetric Encryption key and the messages are decrypted in the receiver using the same Symmetric Encryption key. The key is made visible to the sender and the receiver by placing it in the Shared Memory named /enc_keys_table_memory. Using the semaphores the parent process writes the key(s) into the shared memory and using the same semaphores the sender and the receivers read the key(s) from the shared memory.

A.2 Simulation Flow Chart

The program has three phases

· Initialization 

· Message Traversal

· Termination
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A.3 Headers and Libraries

The simulation uses large numbers for messages and various encryption keys. These numbers so large that they cannot be represented using the conventional datatypes like int, long, long long and double. Hence, a  high level signed integer library GNU Multiple Precision Arithmetic Library (GMP) [46] is used to satisfy the requirement. Including the gmp.h in the program would provide all the functions that are necessary to handle the large numbers. During the compilation of the program it has to be linked with libgmp.

The POSIX message queue is used to simulate the network between nodes in the MANET.    Message queue functions are referred by  including the header file mqeue.h in the program and linking against the library libmqueue.

A.4 Parent process

Operation performed by the parent process

· Creates the shared memories for the route table and the symmetric key by calling functions create_shared_memory().

· Initializes the symmetric key shared memory by calling function init_enc_keys().

· Initializes the route table shared memory by calling function init_route_table().

· The parent process forks off the following child processes

· Sender  -- started by calling the function named sender().
· Router --  Created by calling function named router(). The number of routers to be started up is specified in the preprocessor macro  MAX_NODES. So the function router() is invoked MAX_NODES-1 times.
· Receiver -- started by calling the function named receiver().
The parent process is implemented in the function named start_nodes() having the prototype void start_nodes().

A.4.1 Sender Process

Operations performed by the sender process

· Calls the signal handler when the sender receives the SIGINT signal.

· Calls function add_node() to make an entry of itself in the route table.

· Creates, opens and reads the message queue “/route.<PID>” to get the user input message. Here PID is the process id of the sender process.

· Splits the message into partial messages depending on the SENDER_MSG_SPLIT_COUNT (hash defined). 

· Gets various encryption keys by calling function get_various_encryption_keys().

· Encrypts the partial messages by calling function encrypt().

· Gets the neighbouring nodes message queues by calling function get_next_node().

· Opens up the neighbouring nodes message queues and sends the partial messages to these nodes.
The sender functionality is encapsulated in the function named sender() having the prototype void sender().

A.4.1.1 Details of the functions used in sender()

add_node()

void add_node(

int pid          

);

Input Parameter

· pid— process id of the node.

Operations of the function 

· Opens up the route table shared memory.

· Sets up the message queue, path, level, group and status of the new node 

encrypt()

void encrypt(

mpz_t msg    

, char sender_msg_split_buff[]    

, int message_id                  

, int message_split_id         

, int message_split_id_sum        

, mpz_symmetric_key *mpz_keys_ptr

);

Input  Parameters

· mpz_t msg   – the message to be encrypted 

· int message_id -- id of the message 

· int message_split_id --  partial message id  

· int message_split_id_sum – sum of partial message ids 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

Output Parameter

· char sender_msg_split_buff[] -- the byte array with encrypted data

Operation of the function

Based on the value of the enc_scheme parameter one of the following encryption functions are called:

· df_add_mul_Ph_encryption()

· df_new_Ph_encryption()

· df_field_encryption()

· mmh_encryption()

df_add_mul_Ph_encryption() 

The function is invoked when the encryption scheme is Domingo -Ferrer's additive and multiplicative privacy homomorphism. 

void df_add_mul_Ph_encryption(

mpz_t msg                        

, char sender_msg_split_buff[]    

, int message_id                  

, int message_split_id            

, int message_split_id_sum        

, mpz_symmetric_key *mpz_keys_ptr 

, FILE *encrypt_time_file_handle  

);

Input  Parameters

· mpz_t msg – partial message to be encrypted 

· int message_id -- id of the message 

· int message_split_id -- partial message id 

· int message_split_id_sum -- sum of partial message ids 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

Output Parameters

· char sender_msg_split_buff[] -- encrypted message
· FILE *encrypt_time_file_handle -- file with the encryption time

Operation performed by the function

· Encrypts the message using Domingo-Ferrer's additive and multiplicative privacy homomorphism.

· Calculates the encryption time and writes to a file named encryption_exec_time.log 

· Places the encrypted value in a character buffer
df_new_Ph_encryption() 

The function is invoked when the encryption scheme is Domingo -Ferrer's New  privacy homomorphism. 

void df_new_Ph_encryption(

mpz_t msg                        

, char sender_msg_split_buff[]    

, int message_id                  

, int message_split_id            

, int message_split_id_sum        

, mpz_symmetric_key *mpz_keys_ptr 

, FILE *encrypt_time_file_handle  

);

Input  Parameters

· mpz_t msg – partial message to be encrypted 

· int message_id -- id of the message 

· int message_split_id -- partial message id 

· int message_split_id_sum -- sum of partial message ids 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

Output Parameters

· char sender_msg_split_buff[] -- encrypted message
· FILE *encrypt_time_file_handle -- file with the encryption time

Operation performed by the function

· Encrypts the message using Domingo-Ferrer's new privacy homomorphism.

· Calculates the encryption time and writes to a file named encryption_exec_time.log 

· Places the encrypted value in a character buffer
df_field_encryption() 

The function is invoked when the encryption scheme is Domingo -Ferrer's privacy homomorphism allowing field operation on encrypted data.

void df_field_encryption(

mpz_t msg                        

, char sender_msg_split_buff[]    

, int message_id                  

, int message_split_id            

, int message_split_id_sum        

, mpz_symmetric_key *mpz_keys_ptr 

, FILE *encrypt_time_file_handle  

);

Input  Parameters

· mpz_t msg – partial message to be encrypted 

· int message_id -- id of the message 

· int message_split_id -- partial message id 

· int message_split_id_sum -- sum of partial message ids 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

Output Parameters

· char sender_msg_split_buff[] -- encrypted message
· FILE *encrypt_time_file_handle -- file with the encryption time

Operation performed by the function

· Encrypts the message using Domingo-Ferrer's privacy homomorphism allowing field operation on encrypted data.

· Calculates the encryption time and writes to a file named encryption_exec_time.log 

· Places the encrypted value in a character buffer
mmh_encryption() 

The function is invoked when the encryption scheme Mixed Multiplicative Homomorphism.

void mmh_encryption(

mpz_t msg                        

, char sender_msg_split_buff[]    

, int message_id                  

, int message_split_id            

, int message_split_id_sum        

, mpz_symmetric_key *mpz_keys_ptr 

, FILE *encrypt_time_file_handle  

);

Input  Parameters

· mpz_t msg – partial message to be encrypted 

· int message_id -- id of the message 

· int message_split_id -- partial message id 

· int message_split_id_sum -- sum of partial message ids 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

Output Parameters

· char sender_msg_split_buff[] -- encrypted message
· FILE *encrypt_time_file_handle -- file with the encryption time

Operation performed by the function

· Encrypts the message using Mixed multiplicative homomorphism.

· Calculates the encryption time and writes to a file named encryption_exec_time.log 

· Places the encrypted value in a character buffer
get_next_node()

void get_next_node(

int pid                    

, char msg_queue[][100]

, int neighbouring_groups[]

, int *count

);

Input Parameter

· int pid – process id of the node 

Output Parameter

· char msg_queue[][100] --  message queues of the neighbouring node

· int neighbouring_groups[] -- group id of the neighbouring nodes 

· int *count -- number of neighbouring nodes 

Operations performed by the function

· Opens up the route table shared memory.

· Get the message queues and group id of the neighbouring nodes.

A.4.2 Router Process

Operations performed by the router process

· Calls the signal handler when the router receives the SIGINT signal.

· Calls function add_node() to make an entry of itself in the route table.

· Creates, opens and reads the message queue to get the message sent by the sender.

· Gets the neighbouring nodes message queues by calling function get_next_node().

· Opens up the neighbouring nodes message queues and sends the messages to these nodes.

The router functionality is encapsulated in the function named router() having the prototype void router().
A.4.3 Receiver Process

Operation performed by the receiver process

· Calls the signal handler when the receiver receives the SIGINT signal.

· Calls function add_node() to make an entry of itself in the route table.

· Creates, opens and reads the message queue to get message sent by the nodes.

· Decrypts the partial messages by calling functions buff_to_mpz_array() and decrypt().

The functionality of the receiver is encapsulated in the function named receiver() having the prototype void receiver().

A.4.3.1 Details of the functions used in receiver process

buff_to_mpz_array()

void buff_to_mpz_array(

char receivebuff[]               

, mpz_t encryption_msg_split_array[]

, int encryption_split_number       

, enc_scheme encryption_scheme     

);

Input  Parameters: 

· char receivebuff[] --  partial message in buffer

· int encryption_split_number -- symmetric key 

· enc_scheme encryption_scheme -- encryption scheme 

Output Parameter

· mpz_t encryption_msg_split_array[] -- partial message in mpz array 

Operation performed by the function

Chooses one of the functions based on the value of the enc_scheme

· df_add_mul_buff_to_mpz_array() – function is chosen when the encryption scheme is Domingo-Ferrer’s additive and multiplicative privacy homomorphism.

· df_new_ buff_to_mpz_array() – function is chosen when the encryption scheme is Domingo-Ferrer’s new privacy homomorphism.

· df_field_mmh_ buff_to_mpz_array() -- function is chosen when the encryption scheme is either Domingo -Ferrer's a privacy homomorphism allowing field operation on encrypted data or Mixed Multiplicative Homomorphism.

df_add_mul_buff_to_mpz_array

The function is invoked when the encryption scheme is Domingo -Ferrer's additive and multiplicative privacy homomorphism. 

void df_add_mul_buff_to_mpz_array(

char receivebuff[]       

, mpz_t encryption_msg_split_array[] 

, int encryption_split_number   

);

Input  Parameters: 

· char receivebuff[] -- partial message in buffer 

· int encryption_split_number -- symmetric key 
Output Parameter

· mpz_t encryption_msg_split_array[] -- partial message in mpz array 

Operation performed by the function

· Places the encrypted message value in the char buffer to the mpz array.

df_new_buff_to_mpz_array

The function is invoked when the encryption scheme is Domingo -Ferrer's New privacy homomorphism. 

void df_new_buff_to_mpz_array(

char receivebuff[]       

, mpz_t encryption_msg_split_array[] 

, int encryption_split_number   

);

Input  Parameters: 

· char receivebuff[] -- partial message in buffer 

· int encryption_split_number -- symmetric key 
Output Parameter

· mpz_t encryption_msg_split_array[] -- partial message in mpz array 

Operation performed by the function

· Places the encrypted message value in the char buffer to the mpz array.

df_field_mmh_buff_to_mpz_array()

The function is invoked when the encryption scheme is either Domingo -Ferrer's a privacy homomorphism allowing field operation on encrypted data or Mixed Multiplicative Homomorphism.

void df_field_mmh_buff_to_mpz_array(

char receivebuff[]       

, mpz_t encryption_msg_split_array[] 

);

Input  Parameters: 

· char receivebuff[] -- partial message in buffer 

· int encryption_split_number -- symmetric key 
Output Parameter

· mpz_t encryption_msg_split_array[] -- partial message in mpz array 

Operation performed by the function

· Places the encrypted message value in the char buffer to the mpz array.

decrypt()

void decrypt(

mpz_t encryption_msg_split_array[][255] 

, mpz_t plaintext                 

, int previous_counter         

, mpz_symmetric_key *mpz_keys_ptr

);

Input  Parameters: 

· mpz_t encryption_msg_split_array[][255] -- messages to be decrypted 

· int previous_counter -- number of partial messages

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys

Output Parameter

· mpz_t plaintext -- decrypted plaintext 
Operation performed by the function

Chooses one of the functions based on the value of the enc_scheme

· df_add_mul_Ph_decryption()

· df_new_Ph_decryption()

· mmh_decryption()

· df_field_decryption()

df_add_mul_Ph_decryption()

The function is invoked when the decryption function to be used is Domingo -Ferrer's additive and multiplicative privacy homomorphism.

void df_add_mul_Ph_decryption(

mpz_t encryption_msg_split_array[][255]

, mpz_t plaintext                       

, int previous_counter                  

, mpz_symmetric_key *mpz_keys_ptr

, FILE *decrypt_time_file_handle       

);

Input  Parameters: 

· mpz_t encryption_msg_split_array[][255] -- messages to be decrypted 

· int previous_counter -- number of partial messages 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

· FILE *decrypt_time_file_handle -- file with the decryption time 

Output Parameter

· mpz_t plaintext -- the entire decrypted message(plain text).

Operations performed by the function

· Sums up all the partial messages to get the entire message.

· The message is then decrypted by using Domingo-Ferrer's additive and multiplicative privacy homomorphism. 

· Calculates the decryption time and writes to a file named decryption_exec_time.log
df_new_Ph_decryption()

The function is invoked when the decryption function to be used is Domingo -Ferrer's new privacy homomorphism.

void df_new_Ph_decryption(

mpz_t encryption_msg_split_array[][255]

, mpz_t plaintext                       

, int previous_counter                  

, mpz_symmetric_key *mpz_keys_ptr

, FILE *decrypt_time_file_handle       

);

Input  Parameters: 

· mpz_t encryption_msg_split_array[][255] -- messages to be decrypted 

· int previous_counter -- number of partial messages 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

· FILE *decrypt_time_file_handle -- file with the decryption time 

Output Parameter

· mpz_t plaintext -- the entire decrypted message(plain text).

Operations performed by the function

· Sums up all the partial messages to get the entire message.

· The message is then decrypted by using Domingo-Ferrer's new privacy homomorphism. 

· Calculates the decryption time and writes to a file named decryption_exec_time.log
df_field_decryption()

The function is invoked when the decryption function to be used is Domingo -Ferrer's a privacy homomorphism allowing field operation on encrypted data.

void df_field_decryption(

mpz_t encryption_msg_split_array[][255]

, mpz_t plaintext                       

, int previous_counter                  

, mpz_symmetric_key *mpz_keys_ptr

, FILE *decrypt_time_file_handle       

);

Input  Parameters: 

· mpz_t encryption_msg_split_array[][255] -- messages to be decrypted 

· int previous_counter -- number of partial messages 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

· FILE *decrypt_time_file_handle -- file with the decryption time 

Output Parameter

· mpz_t plaintext -- the entire decrypted message(plain text).

Operations performed by the function

· Sums up all the partial messages to get the entire message.

· The message is then decrypted by using Domingo-Ferrer's privacy homomorphism allowind field operation on encrypted data.

· Calculates the decryption time and writes to a file named decryption_exec_time.log
mmh_decryption()

The function is invoked when the decryption function to be used is Mixed Multiplicative Homomorphism.

void mmh_decryption(

mpz_t encryption_msg_split_array[][255]

, mpz_t plaintext                       

, int previous_counter                  

, mpz_symmetric_key *mpz_keys_ptr

, FILE *decrypt_time_file_handle       

             
);

Input  Parameters: 

· mpz_t encryption_msg_split_array[][255] -- messages to be decrypted 

· int previous_counter -- number of partial messages 

· mpz_symmetric_key *mpz_keys_ptr -- various encryption keys 

· FILE *decrypt_time_file_handle -- file with the decryption time 

Output Parameter

· mpz_t plaintext -- the entire decrypted message(plain text).

Operations performed by the function

· Sums up all the partial messages to get the entire message.

· The message is then decrypted by using Mixed multiplicative homomorphism.

· Calculates the decryption time and writes to a file named decryption_exec_time.log
A.5 Data structures

Enumeration  enc_scheme

It is used to define the various encryption schemes used in the program. It is shared between the sender and the router processes.

typedef enum enc_scheme{

    DA

  , DF

  , DN

  , MMH

} enc_scheme;

The enumerator values 

· DA --- represents the encryption scheme Domingo -Ferrer's additive and multiplicative privacy homomorphism.

· DF --- represents the encryption scheme Domingo -Ferrer's new privacy homomorphism

· DN -- represents the encryption scheme Domingo -Ferrer's a privacy homomorphism allowing field operation on encrypted data.

· MMH -- represents the encryption scheme Mixed multiplicative homomorphism.

Shared Memory Structure symmetric_key

The structure symmetric_key has the keys used for the encryption schemes Domingo -Ferrer's additive and multiplicative privacy homomorphism, Domingo -Ferrer's new privacy homomorphism, Domingo -Ferrer's a privacy homomorphism allowing field operation on encrypted data and Mixed multiplicative homomorphism.


struct symmetric_key{


long r_count;


long md_count;


long m_count;


char r_buff[512];


char md_buff[512];


char m_buff[512];


long d;


long p_count;


long q_count;


long rp_count;


long rq_count;


long mpq_count;


char p_buff[512];


char q_buff[512];


char rp_buff[512];


char rq_buff[512];


char mpq_buff[512];


enc_scheme Ph;

};

Domingo -Ferrer's additive and multiplicative privacy homomorphism uses the keys in the buffers

· r_buff[] -- is the byte array with the “r” key

· md_buff[] -- is the byte array with “m'” key

· m_buff[] --- is the byte array with the “m” key

· d--- is the key “d”, which is used to split the message during encryption.

Domingo -Ferrer's new privacy homomorphism uses the keys in the buffers

· p_buff[]-- byte array with the key “ p”

· q_buff[]-- byte array with the key “ q”

· rp_buff[]-- byte array with the key “ rp”

· rq_buff[]--byte array with the key “ rq”

· mpq_buff[]--byte array with the key “m”

Domingo -Ferrer's a privacy homomorphism allowing field operation on encrypted data and Mixed multiplicative homomorphism uses the keys in the buffer

· p_buff[]-- byte array with the key “ p”

· q_buff[]-- byte array with the key “ q”

· mpq_buff[]--byte array with the key “m”

The structure element 

· enc_scheme Ph --- has the encryption scheme chosen by the user. This field specifies which encryption and decryption scheme to use.

Shared Memory Structure route_table

The structure route_table has fields, which determines the neighboring nodes of a particular node.
typedef struct route_table{

  int pids[MAX_NODES];

  int levels[MAX_NODES];

  int groups[MAX_NODES];

  unsigned char message_queues[MAX_NODES][100];

  int paths[MAX_NODES];

  int status[MAX_NODES];

  int node_counter;

  int group_counter;

  int level_counter;

  int path_counter;

}route_table;

The various fields of the structure are:

· pids[] – the process id of the process making an entry of itself in the route table.

· levels[] – the level of the process.

· groups[] – the sub group the process belongs to.

· message_queues[] – the message queues of the process making an entry of itself in the route table.

· paths[] – the path the process belong to.

· status[] – the process status is 1 if alive and 0 otherwise.

A.6 Other Important Functions Details

parenthandler()

void parenthandler(

int signum   

);

Input Parameter

· int signum – signal number   

Operations performed by the function

· Sends the signal SIGINT to all the nodes.

· Unlinks the symmetric key and route table shared memory.

senderhandler()

void senderhandler(

int signum

   
);

Input Parameter

· int signum – signal number   

Operations performed by the function

· Closes the file descriptors opened by the sender process.

· Unlinks the message queue created by the sender process.

receiverhandler()

void receiverhandler(

int signum

   
);

Input Parameter

· int signum – signal number   

Operations performed by the function

· Closes the file descriptors opened by the receiver process.

· Unlinks the message queue created by the receiver process.

routerhandler()

void routerhandler(

int signum

   
);

Input Parameter

· int signum – signal number   

Operations performed by the function

· Closes the file descriptors opened by the router process.

· Unlinks the message queue created by the router process.

create_shared_memory()

void create_shared_memory();

Operations performed by the function
· Creates the symmetric key shared memory by calling function shm_open();

· Creates the route table shared memory by calling function shm_open();

init_enc_keys()

void init_enc_keys();

Operations performed by the function

· Opens the symmetric key shared memory by calling function shm_open().

· Sets the values of the symmetric keys to a default value.

init_route_table()

void init_route_table();

Operations performed by the function

· Opens the symmetric key shared memory by calling function shm_open().

· Initializes the  route table counter values.

set_encryption_scheme()

void set_encryption_scheme(

 
enc_scheme encryption_scheme

);

Input Parameter

· enc_scheme encryption_scheme – is used to set the enc_scheme field in the symmetric key shared memory. This field specifies which encryption and decryption scheme to use.

Operations performed by the function

· Opens the symmetric key shared memory by calling function get_symmetric_key().

· Sets the encryption scheme in the shared memory.
get_encryption_scheme()

enc_scheme get_encryption_scheme();

Operations performed by the function

· Opens the symmetric key shared memory by calling function get_symmetric_key().

· Returns the encryption scheme from the shared memory.
set_df_add_mul_ph_keys()

void set_df_add_mul_ph_keys();

Operations performed by the function

· Takes in the Domingo_Ferrer's additive multiplicative privacy homomorphism   symmetric keys as user input.

· Sets the user input symmetric keys into the symmetric key shared memory. 

set_df_new_ph_keys()

void set_df_new_ph_keys();

Operations performed by the function

· Takes in the Domingo_Ferrer's new  privacy homomorphism symmetric keys as user input.

· Sets the user input symmetric keys into the symmetric key shared memory. 

set_df_field_mmh_ph_keys()

void set_df_field_mmh_ph_keys();

Operations performed by the function

· Takes in the Domingo_Ferrer's field privacy homomorphism and mixed multiplicative homomorphism symmetric keys as user input.

· Sets the user input symmetric keys into the symmetric key shared memory. 

set_df_mul_ph_rd_keys()

void set_df_mul_ph_rd_keys(

mpz_t value

);

Input Parameter

· mpz_t value -- choosing the appropriate symmetric key to be set in shared memory 
Operations performed by the function

· Chooses the appropriate Domingo-Ferrer's additive multiplicative privacy homomorphism symmetric key as user input depending upon the parameter value.

· Sets the user input symmetric key into the symmetric key shared memory. 

set_df_new_ph_rp_p_d_keys()

void set_df_new_ph_rp_p_d_keys(

mpz_t value

);

Input Parameter

· mpz_t value -- choosing the appropriate symmetric key to be set in shared memory 
Operations performed by the function

· Chooses the appropriate Domingo-Ferrer's new privacy homomorphism symmetric key as user input depending upon the parameter value.

· Sets the user input symmetric key into the symmetric key shared memory. 

set_df_field_mmh_ph_p_r_keys()

void set_df_field_mmh_ph_p_r_keys(

mpz_t value 

);

Input Parameter

· mpz_t value -- choosing the appropriate symmetric key to be set in shared memory 
Operations performed by the function

· Chooses the appropriate Domingo_Ferrer's field privacy homomorphism and mixed multiplicative privacy homomorphism symmetric key as user input depending upon the parameter value.

· Sets the user input symmetric key into the symmetric key shared memory. 

get_various_encryption_keys()

void get_various_encryption_keys(

mpz_symmetric_key *mpz_keys_ptr

);

Input Parameter

· mpz_symmetric_key *mpz_keys_ptr -- structure with the symmetric keys 

Operations performed by the function

· Open up the symmetric key shared memory by calling function get_symmetric_key()

· Get various encryption keys from the shared memory 
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20 Installation guide for MANETs Simulation
The MANETs simulation is done using the C Programming Language in a Linux environment.

Installation guide in Linux

· Download GMP library from http://gmplib.org/#DOWNLOAD. GMP is distributed under the GNU LGPL. The library has to be linked during compilation as –lgmp.

· Download GSL from ftp://ftp.gnu.org/gnu/gsl/. The library has to be linked during compilation as –lgsl and -lgslcblas

· Download manets_simulation.tar tar file and install in a directory.

· tar –vxf manets_simulation.tar

· Set up the environment variable MANETS_HOME to the directory structure where the tar file is untared.

export MANETS_HOME=”directory structure” in “bash” or “ksh” shells.

Compilation

· Run the compile.sh file in directory structure ‘$MANETS_HOME/thesis/bin/” with optional arguments to compile the simulation source files.

Synopsis

./compile.sh  [-DNEIGHBOURING NODES=] 


          [-DSENDER_MSG_SPLIT_COUNT=] [-DLEVELS=] 

                      [-DEXP_DIST_MEAN =] [-DNOALARM=]

Description




-DNEIGHBORING_NODES






Number of neighboring nodes to the Sender. This is the optional 





argument with the default value set to 2.

       
-DSENDER_MSG_SPLIT_COUNT 

             

Number of times the message to be split at the sender. This is the 





optional argument with the default value set to 2.

           -DLEVELS 





Depth of path between the Sender and the Router. This is the 





optional argument with the default value set to 2.

          -DNO_ALARM 

             
If set to 0, program generated alarm system would kill 


       
intermediate routers.

             
If set to 1, intermediate routers are not killed.





This is the optional argument with the default value set to 0.

          -DEXP_DIST_MEAN 

             
Mean time given to the Exponential distribution function that 


determines the alarm time to kill the intermediate router nodes. 
This is the optional argument with the default value set to 50.

· The compiled executable file is named as “manets_simulation” and is placed in the directory structure “$MANETS_HOME/thesis/bin/”

Usage of manets_simulation

Name


manets_simulation – Manets simulation executable.

Synopsis

manets_simulation –r | -e {dn| da| df| mmh} –m 

Description

-r
start up all nodes equal to (NEIGHBOURING_NODES *LEVELS) +2

-e  {dn| da| df| mmh}




Select the encryption scheme depending on the value of the argument.



The arguments are:

dn – Domingo Ferrer’s new Privacy Homomorphism encryption

        scheme.

da – Domingo Ferrer’s additive and multiplicative Privacy 

        Homomorphism encryption scheme.



df – Domingo Ferrer’s privacy homomorphism allowing field 

       operation on encrypted data encryption scheme.



mmh – Mixed Multiplicative Homomorphism encryption sheme.

-m
Enters the manets_simulation command  prompt to accept various internal 

commands to specify the encryption keys, sleep time and the messages 

that need to be sent.

· When Domingo Ferrer’s new Privacy Homomorphism is specified 
by ‘-e dn’ following commands are allowed.
2
Enter the sleep time in seconds

11
Enter the p key value

12
Enter the rp key value

13
Enter the q key value

14
Enter the rq key value

15
Enter the d key value

· When Domingo Ferrer’s additive and multiplicative Privacy Homomorphism is specified by ‘-e da’ following commands are allowed.

2 Enter the sleep time in seconds

11 Enter the r key value

12 Enter the m’ key value

13 Enter the m key value

14 Enter the d key value

· When Domingo Ferrer’s Privacy Homomorphism allowing field operations on the encrypted data is specified by ‘-e df’ following commands are allowed
2
Enter the sleep time in seconds

11
Enter the p key value

· When Mixed Multiplicative Homomorphism is specified by ‘-e mmh’ following commands are allowed.

2
Enter the sleep time in seconds

11
Enter the p key value

Running the simulation

The simulation executable file are located in the directory $MANETS_HOME/thesis/bin”

· Start up all the nodes of MANETs.

· Run  “manets_simulation –r”  to start up sender, receiver and the intermediate nodes from sender to receiver.

· Send message from the sender to the receiver using four different encryption schemes.

· For Domingo Ferrer’s new Privacy Homomorphism

· manets_simulation –e dn –m

When prompted for the message, key in the numeric messages.

The message is encrypted with Domingo Ferrer’s new Privacy Homomorphism and transmitted from sender to receiver.

Example can be found in the shell script  

“$MANETS_HOME/ thesis/test/bin/df_new_msg_512_500.sh”

· For Domingo Ferrer’s additive and multiplicative Privacy Homomorphism

· manets_simulation –e da –m

When prompted for the message, key in the numeric messages.

The message is encrypted with  Domingo Ferrer’s additive and multiplicative Privacy Homomorphism and transmitted from sender to receiver.

Example can be found in the shell script 

 “$MANETS_HOME/ thesis/test/bin/df_add_msg_512_500.sh”

· For Domingo Ferrer’s Privacy Homomorphism allowing field operations on encrypted data.

· manets_simulation –e df –m

When prompted for the message, key in the numeric messages.

The message is encrypted with Domingo Ferrer’s Privacy Homomorphism allowing field operations on encrypted data and transmitted from sender to receiver.

Example can be found in the shell script 

 “$MANETS_HOME/thesis/test/bin/df_field_msg_512_500.sh”

· For Mixed Multiplicative Homomorphism

· manets_simulation –e mmh –m

When prompted for the message, key in the numeric messages.

The message is encrypted with Mixed Multiplicative Homomorphism and transmitted from sender to receiver.

Example can be found in the shell script  

“$MANETS_HOME/ thesis/test/bin/mmh_msg_512_500.sh”

· The output is written to two different files 

· $MANETS_HOME/thesis/log/encryption_exec_time.log :  has the execution timing

· $MANETS_HOME/thesis/log/decryption_exec_time.log :  has the decryption timing and the recovered message.

EXAMPLE

manets_simulation -r

manets_smulation –e dn –m

<p key value…>

<rp key value…>

<q key value…>

<rq key value…>

<d key value…>

<message value to be encrypted…>

11

<p key value…>

12

<rp key value…>

2

<sleep time in seconds…>

<message value to be encrypted…>

List of files included

Compile script

· thesis/bin/compile.sh

Simulation Source files

· thesis/src/manets_simulation.c

· thesis/src/manets_simulation.h

Test Scripts

· thesis/test/bin/df_new_msg_512_500.sh

Domingo Ferrer’s new Privacy Homomorphism with 512 bit key and 500 bit messages.

· thesis/test/bin/df_new_prpqrq_512.sh

Domingo Ferrer’s new Privacy Homomorphism with various 512 bit keys and 512 bit messages.

· thesis/test/bin/df_add_msg_512_500.sh

Domingo Ferrer’s additive and multiplicative Privacy Homomorphism with 512 bit key and 500 bit messages.

· thesis/test/bin/df_add_rmpm_512.sh

Domingo Ferrer’s additive and multiplicative Privacy Homomorphism with various 512 bit keys and 512 bit messages.

· thesis/test/bin/df_field_msg_512_500.sh

Domingo Ferrer’s Privacy Homomorphism allowing field operations with 512 bit key and 500 bit messages.

· thesis/test/bin/df_field_p_512.sh

Domingo Ferrer’s Privacy Homomorphism allowing field operations with various 512 bit keys and 512 bit messages.

· thesis/test/bin/mmh_msg_512_500.sh

Mixed multiplicative Homomorphism with 512  bit key and 500 bit messages.

· thesis/test/bin/mmh_p_512.sh

Mixed multiplicative Homomorphism with various 512 bit keys and 512 bit messages.

Log files

· thesis/log/df_add_msg_512_500_dec.log

thesis/log/df_ add_msg_512_500_enc.log


Log files of thesis/test/bin/df_add_msg_512_500.sh 

· thesis/log/df_field_msg_512_500_dec.log

thesis/log/df_field_msg_512_500_enc.log

Log files of thesis/test/bin/df_field_msg_512_500.sh

· thesis/log/df_new_msg_512_500_dec.log

thesis/log/df_new_msg_512_500_enc.log

Log files of thesis/test/bin/df_new_msg_512_500.sh

· thesis/log/mmh_msg_512_500_dec.log

thesis/log/mmh_msg_512_500_enc.log

Log files of thesis/test/bin/mmh_msg_512_500.sh

Batch scripts 

· thesis/test/bin/master.sh

Script that compiles and runs the following scripts 

thesis/test/bin/df_new_msg_512_500.sh

thesis/test/bin/df_add_msg_512_500.sh

thesis/test/bin/df_field_msg_512_500.sh

thesis/test/bin/mmh_msg_512_500.sh 

· thesis/test/bin/master_manets.sh

Script that checks the success rate of the networks with n active paths and g groups fixed to (10,{2,5,10}), (15,{2,7,15}) and (20,{2,10,20}), by randomly killing the nodes.

Source files to generate the test scripts

· thesis/src/generate_msg_val.c

The source file that generates 100, 250, 500, 1000, 2000 bits message size.

· thesis/src/generate_prpqrq_val.c

The source file that generates 512, 1024 and 2048 bit key sizes for Domingo Ferrer’s new Privacy Homomorphism. 

· thesis/src/generate_p_val.c

The source file that generates 512, 1024 and 2048 bit key sizes for Domingo Ferrer’s Privacy Homomorphism allowing field operations on encrypted data and Mixed multiplicative homomorphism.

· thesis/src/generate_rmpm_val.c

The source file that generates 512, 1024 and 2048 bit key sizes for Domingo Ferrer’s additive and multiplicative Privacy Homomorphism.
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