

Novel Obfuscation Algorithms for Software Security

 Levent Ertaul Suma Venkatesh

Department of Mathematics & Computer Science Department of Mathematics & Computer Science
 California State University, Hayward, California State University, Hayward

 Hayward, CA, USA. Hayward, CA, USA.

Abstract - Over the years, several software protection
techniques have been developed to avoid global
software piracy, which has increased over 40% and
has caused $11 billion loss. Code Obfuscation is one
of these techniques and it is very promising one. Code
obfuscation is a form of software protection against
unauthorized reverse-engineering. In this paper, we
give information about available software obfuscation
tool kits in the market, along with JHide and their
comparison. We propose three new obfuscation
techniques, based on composite functions, which are
Array Index Transformation, Method Argument
Transformation and Hiding Constants. In addition to
that, we also propose a new obfuscation algorithm
based on Discrete Logs to Pack the Words and
another one, based on Affine Ciphers, to Encode
String Literals. Finally, we conclude our paper
identifying the need for reviewing the performance of
the algorithms as the future scope of our work.

Keywords: Software Security, Software Protection
Techniques, Code Obfuscation.

1. Introduction
Fast developments in multimedia and internet

technologies have created the need for
researching in the areas of securing data. Every
company has an intellectual property to protect
which often includes algorithms built right into
the software that is sold to customers. The
secrecy of such software is an edge to beat their
competition in the market, so it is not surprising
that the approach taken for their protection makes
a great deal of difference [1],[2],[3],[4], [5].

Traditionally techniques for securing data
resided in the firewalls and gateways of a
network or on the operating system of the host. A
new idea is to put these defensive mechanisms
inside the application software. Vendors of this
software distribute them as mobile code in
architectural independent formats [1], [2], [4],
[5].

Recent statistics [6] show that four out of
every ten software programs is pirated
worldwide. This is definitely a threat to clean
players and thus the global economy. There are
two common practices of protecting an
intellectual property of a software producer -
Legal and Technical methods. Legal methods
include getting copyrights on the software and
signing legal contracts against creating
duplicates. Technical methods include: Code
Authentication, Server side execution, Program
Encoding, Code Obfuscation [1], [4], [7], [8], [9],
[10], [11].

Obfuscation is a new area of research in the
field of software protection and gaining more
attention in recent years [1], [4], [9]. Although
the history of first traits of obfuscation techniques
dates back to 1990 [12], their impact got higher
as Java technologies dominated the software
development world. Java is designed to be
compiled into a platform independent byte code
format, which means decompilation is easier than
with traditional native codes. As a result, the Java
code can always be reverse-engineered to extract
proprietary algorithms from compiled Java
programs. Code obfuscation applies
transformations to the code to make their analysis
very hard and thus safer from being reverse-
engineered. They do not change the functionality
of the program though. Software protection tools
like Sand Mark [7], Dot Obfuscator [13],
JMangle [14], JObfuscator [15] and JHide [16]
are all designed based on the principal theories of
code obfuscation techniques. Based on our
research in the software security field and the
capabilities of the existing players we strongly
believe in the potential of “code obfuscation“
techniques as a major software protection tool in
the near future and hence we created an

obfuscation tool kit JHide [16]. In this paper, we
propose new obfuscation algorithms based on
composite functions, affine ciphers and discrete
logs to improve capabilities of JHide.

In real world, a change in a quantity is a
relative term and can be expressed as a
mathematical function. Whenever there is a
change in one quantity producing a change in
another which, in turn, produces a change in a
third quantity then these chain of changes can be
represented as a function of functions which are
termed as composite functions [17], [18] in
mathematics. This phenomenon occurs very
frequently in the world of software programs
where a change in a constant can cause changes
in the way two quantities are compared in a
control block. If an attacker manages to change
this constant then he can manipulate the results of
the control block. To prevent this, a constant can
be represented as a complex mathematical
function, which is hard and time consuming to be
resolved.

In the following sections we discuss software
protection techniques in general and present new
obfuscation algorithms based on composite
functions and other known mathematical
techniques [17], [18], [19] such as discrete logs
and affine ciphers.

2. Software Protection Techniques
Generally, software code is mobile and

distributed across untrusted networks. Their
protection must be incorporated into the software
and be hardware independent. The main functions
of any software protection technique can be listed
as detection of pirate attempts to tamper or
misuse software, protection against such attempts
and alteration of software to ensure that it
functionality degrades in an undetectable manner
if protection fails. The most common techniques
available are Protection by Server-Side
Execution, Hardware based solutions, Protection
by Encryption, Protection through Signed Native
Code, Tamper Proofing, Software Aging,
Watermarking and Code Obfuscation [1], [4], [7],
[8], [9], [10], [11]. Code obfuscation is the idea to
hide the code. In this technique, the application is
transformed so that it is functionally identical to
the original but it is much more difficult to
understand. This technique preserves platform
independence.

Advantages and disadvantages of the above
techniques can be found in [1], [4], [7], [8], [9],
[10], [11].

Java is designed to be compiled into a platform
independent byte code format, which means that
decompilation is easier than with traditional
native codes. As a result, the Java code can
always be reverse-engineered to extract
proprietary algorithms from compiled Java
programs. All the drawbacks in other protection
techniques make code obfuscation a stronger tool
for securing programs written in Java. Although
obfuscation attempts to make decompilation a
harder task, given enough time and effort, it is
possible to retrieve important algorithms and data
structures from such an obfuscated code. The aim
here is to increase the time and effort required so
that it is economically infeasible for a company
to reverse-engineer a rival's application [8], [10],
[11]. In the next section, we give a brief
overview of JHide [16] an obfuscation tool kit for
Java programs and compare JHide with other
available tool kits in the market.

3. JHide Tool Kit
JHide is an obfuscation tool kit for securing

Java programs. It provides a good starting point
for beginners to understand various obfuscation
algorithms and the issues involved during their
implementation. Details of JHide and its
implementation can be found in [16]. Here we
discuss JHide in comparison to other available
obfuscation tool kits.
3.1. Comparison of JHide with other
obfuscation tool kits

We have studied the behaviors of obfuscation
tool kits which work only on Java source code
such as Sand Mark [7], JMangle [14],
JObfuscator [15] and JHide [16] with respect to
parameters like the number of obfuscation
algorithms supported by these tool kits, the ease
of their use, flexibility of these tools when a new
algorithm has to be added, the efficiency of
obfuscation on complex Java programs,
resources like memory requirement for the tool
kits and also the cost incurred to use them
Summary of these differences is shown in Table
1 below.

3.2. Obfuscation Algorithms in JHide
An obfuscator is a program used to transform

program code. The output of an obfuscator is
program code that is more difficult to understand
but is functionally equivalent to the original.
Obfuscation transformations are classified into
the following main groups [21]: Layout, Control,
Data, Preventive, Splitting, Merging, Reordering,
and Miscellaneous like Method Inliner,
Method2RMadness, and Name Overloading
transformations. JHide primarily supports 30
different obfuscation algorithms. Detailed
explanations of these algorithms can be found in
[16], [23].

Table 1. Comparison of Obfuscation Tool Kits

 JHide Sand

Mark
JObfuscator JMangle

Supported
Algorithms

30 25 1 1

User
Interface

GUI GUI C L GUI and
CL

Flexibility High High Low Low

Complexity Medium High High High

Resource Low High Medium Medium

Cost Free Free Trial Free

3. 3. New Obfuscation Techniques in JHide
In JHide we have proposed 5 new obfuscation

algorithms primarily based on composite
functions and known mathematical concepts of
discrete logs and affine ciphers.

A function, in mathematics, is a rule, which
allows us to work out one set of numbers from
another set of numbers [17], [18], [19]. By
knowing the fixed cost of renting a telephone for
the month, we can calculate the cost per minute
to make calls. To do this, we can set up a function
to work out the total cost based on the total length
of the calls we have made. Combination of two or
more such functions will give us a result, which
is composite in nature. Such functions are called
as composite functions [17], [18], [20], [22].

In general, for any two functions f and g, the
composite function f o g is defined by f o g (x) = f
(g(x)) [17], [18], [20], [22]. The domain of f o g is
the set of all numbers, x, in the domain of g for
which g(x) is in the domain of f. In the following

sections, we will discuss further on the usage of
these composites to represent software programs,
which would make the code more complex and
hard for the hacker to reverse engineer.
3.3.1. Composite functions in code obfuscation.

One of the classifications of obfuscation
transformations is data transformations [16].
They affect the way data structures are used by a
program and the way a data is stored in the
memory. For instance, a local variable in the
source program can be changed to be global in
the obfuscated program. In this section, we
discuss on how we can manipulate the data read
and interpreted. For example, position of an
array element, method arguments and constants
in a program can all be represented as a complex
mathematical function and confuse the reverse
engineer.
a) Array index transformation using composite
functions: Let I = f (i) = 2 * i + 3, be a function
representing the new value of I. Let J = g (I) = f
((I – 3)/2) be a function representing the new
position of the i’th element in the reordered array.
Therefore, member variable i can be shown as a
composite function of f (g (i)). Program segment
in Table 2 shows the use of composite functions
to hide the position indicator element of an array.
Results tabulated show that the value of i remains
same before and after obfuscation.

Table 2. Variations in i, I = f (i), J = g (I)
Before After
int i = 1;
while (i <1000) {
 A[i];
 i++;
}

int I = f (i);
while (I < f (1000)) {
 A [g (I)];
 I = I+2;

}

i I = f(i) = 2* i + 3 J = g(i) = f((I-3)/2)

1 5 1

2 7 2

3 9 3

4 11 4

Adjustments to the value of the member
variable I will need to be made based on the
functions f and g. For the example, in Table 2, the
value I is incremented by 2 in the obfuscated
program unlike in the original one.
b) Method Argument transformation using
composite functions: The use of composite
functions can be extended to hide method

arguments. Let f(i)=i+1 be a function
representing the method argument of a method B.
Let g(i)=f (i)+2 be a function representing the
return value of the method B. The composite of
functions f and g can be used in a program
segment as in Table 3. Let A = f(i) = i+ 1, B =
g(i) = f(i) + 2 and j = B(i) after obfuscation, j =
B(i) + 1 before obfuscation. The values of A, B
and j is shown in Table 3 for j = 0, 1, 2, 3, 4. The
grey column represents the values before
obfuscation and the white column represents
values after obfuscation.

The results in Table 3 show that although the
intermediate values using composite functions are
different, the final value ‘j’ remains the same.
c) Hiding constants using composite functions

Composite functions can also be used to hide a
constant value in a program segment. Generally,
constants are either strings or integers. An integer
constant y can be represented as (Y =a*n + y)
where n is a composite of two numbers whose
sum is a prime. The operation y = Y mod n will
de-obfuscate the value Y.

Table 3. Variations in i, f (i), g (i) and j
Before After
 int j =0;
 for (int i = 0; i< 5; i++) {
 j = B (i) + 1;
 }
 int method B (int a) {

 int b = a + 2;
 return (b);
 }

int j =0;
for (int i = 0; i< 5; i++){
 j =B (i);
}
int method B (f (i)) {
 return (g (i));
}

i 0 0 1 1 2 2 3 3 4 4

A - 1 - 2 - 3 - 4 - 5

B 2 3 3 4 4 5 5 6 6 7

j 3 3 4 4 5 5 6 6 7 7

Program segment in Table 4 shows this technique
in action for hiding integer constant y = 2 for a
generic value of a = 1, 2, 3...etc. The iterations
shown in Table 4 lists values of n, Y and y when y
= 2 and a = 1. Note that the value of ‘a’ is
hidden inside ‘y’, which is the first argument of
the function ‘F’ in the code segment shown in
Table 4.

Table 4. Iteration for representing constant y = 2,
a =1

Before After

public static final
int y = 2;
int x = 2 * y;
System.out.println
 (“Value of x” + x);

public static final
int y = F (41 mod 23 , 2);
int x = 2 * y;
System.out.println
 (“Value of x” + x);

int F(int y, int count){

/* this array can be a dynamic
list of pairs of numbers whose
sum gives a prime */

int[][] y_factors = new
int[2][count] ;

/* Assign values to y_factors
based on the rule that n1+n2
results in a prime number. */
y _factors = [2,3],[5,6];

for(int i = count ; i > 0 ; i--)
{
 int y1 = (sum of elements in)
 y_factors[i -1] ;
 /* Here y1 =
 y_factors[5+6],
 y_factors[2+3]
 */
 y = y mod y1;
 }
 return y;
 }

ni Y y = Y mod n
2 + 3 = 5 5 + 2 = 7 7 mod 5
5 + 6 = 11 11 + 7 = 18 18 mod 11

11 + 12 = 23 23 + 18 = 41 41 mod 23

Here p represents the pair of numbers chosen.
The primary rule is to choose two numbers n1, n2
such that n1 + n2 results in a prime number. This
rule is needed to form the dynamic 2-dimensional
array of factors of ‘n’ as in program segment in
Table 4.

To recover y, the adversary will have to
calculate the function, ((41 mod 23) mod 11) mod
5). As in Table 4, to deobfuscate ‘y’, the additive
factors of the last two intermediate modulus are
placed in a dynamically generated 2-dimensional
array ‘y_factors’. The variable ‘count’ represents
the depth of the modulus applied to hide y. The
first parameter in ‘y_factors’ represents the pairs
p1 and p2 (n1) while the second parameter
indicates the p3 and p4 (n2) value. For each
iteration of ‘count’, modulus y_factor is applied

to ‘y’ to ultimately get ((41 mod 23) mod 11) mod
5). In general, a hacker will not be able to
deobfuscate the value of ‘y’ without knowing the
additive factors of ‘n’. As ‘n’ is made larger,
knowing its additive factors becomes hard as
well. This technique produces larger obfuscated
values as ‘n’ is made larger by using additive
factors whose sum produces a large prime
number. Complexity of obfuscating integer
constants using this technique can be increased
by representing Y = a*n + y as a composite of
two functions Y1 = a*n1 + y and Y2 = a*n2. For Y
= 2, a =1, n1 = 2 and n2 = 3, Y1= 2*1+2, Y2 =
3*1 and Y = Y1 + Y2 = 4 + 3= 7.

In the next section, we focus on using other
mathematical techniques such as affine ciphers
and discrete logs to implement obfuscation
transformations.
3.3.2. Affine ciphers & discrete logarithms in
code obfuscation.
a) Affine cipher technique to encode string
literals: String literals in a program can be
obfuscated into a cipher text based on affine
cipher [22], [24], [25] technique. Here every
alphabet in the string will be pushed forward by a
definite number (obfuscation parameter) of
alphabets, which is chosen at random. Each
string is "encrypted" in the obfuscated program.
To get the de-obfuscated value of the string
literals, on the receiving end any string reference
should be replaced by a call to a method that
"decrypts" it. Program segment in Table 5 shows
the use of affine ciphers to encode string
constant.

Consider a string name = “Caser”. Let the
obfuscation parameter chosen at random be 5.
This means each letter in the string literal will be
pushed forward by 5 letters. Therefore, encrypted
value of string name is “igykx“. To recover the
value of name, the deobfuscation program, will
call a function f’ (where ‘ means Inverse) which
would have the value of the obfuscation
parameter 5 used to encrypt the message during
obfuscation. Using this, the function f’ will
decrypt name by pushing each alphabet backward
by 5 letters.

This technique can easily be compromised if
an adversary hacks the obfuscation parameter. If
obfuscation parameter can be hidden as
composite of some numbers whose sum gives a

prime number, then it is hard for the reverse-
engineer to compromise the system in a cost
effective manner. Hence, it is evident that affine
cipher techniques [24], [25] in combination with
composite numbers can be used to obfuscate a
software program.

Table 5. Affine Cipher Obfuscating String

Constants
Before After
public static final
String name = “Caser”;
System.out.println
(“Before obfuscation” +
 name);

public static final
String name =
f (name, random_number);
System.out.println
(“Before obfuscation” +
 name);
 String method f (String
 name, int i) {
 //routine to push the
 //string forward by
 //random number of
 //letters
}

b) Discrete logarithms to pack words:
Fundamentals of discrete logarithm [18], [19],
[20] can be used to protect variables from
dynamic analysis of memory references. Instead
of separate words being used to store different
variables, multiple variables can be packed into
the same word so that the adversary is presented
with a storm of events if he sets a break point on
all references to a word during dynamic analysis.
According to Euler’s theorem for every a and n
that are relatively prime, aφ () n = 1 mod n, an
integer z can be expressed in the form z = q + k φ
(n), with 0 = q = φ (n). Where φ (n) is called
Euler’s totient function and is defined as the
number of positive integers less than n and
relatively prime to n. Therefore by generalizing
the Euler’s theorem, an integer can be written as
y = gx mod p (Note that unique discrete
logarithms mod m is exist only to some base g if
g is a primitive root of m). This is called discreet
logarithms [18], [19], [20], [24]. Based on this
theorem the value of a word which is treated as
an unsigned integer mod a prime number is the
value of a separate variable.

For example if a word that is assigned to 4 can
be used to represent two variables, one variable
containing 25 (mod 7) and the other variable
containing 58 (mod 19). We can express 4 as 32

mod 7 = 4*7 + 4 and 390625 mod 19 = 20559*19
+ 4.

Euler’s theorem can also be used to obfuscate
Boolean operators in a program segment.
Boolean variables can be represented by Integer
variables and be assigned many possible integer
values to true and similarly for false. Example in
Table 6 shows how a logical AND – OR can be
obfuscated.

Let the obfuscation parameter be assigned a
value 4 and the logical operation tied to this
parameter is AND. We know that 4 can be
represented as 32 mod 7 and 390625 mod 19. If
values of x and y maps to one of these two then
AND condition will be satisfied. Similarly
logical OR operation can be tied to an
obfuscation parameter where either x or y should
be one of 32 mod 7 or 390625 mod 19. Table 6
explains this technique of AND-OR operation.

Here obfuscation parameters are some values
specific to program segments and are
infrequently available to the adversary. They are
randomly chosen from a definite set of numbers,
which map to a single value. The set of possible
values for a variable should be large enough and
be uniformly randomly distributed.

Table 6. Obfuscation of AND–OR Operations
Before After
if ((x AND y)) {
 total = total +1;
 System.out.println
 (“Before
 obfuscation” +
 name);
}

if ((x is a
 F (obfuscation_param)
 AND y is a
 F (obfuscation_param)) {
 total = total + 1;
 }

Similarly, for logical OR we can use
Before After
if ((x OR y)) {
 total = total +1;
}

if ((x is a F
 (obfuscation_param)
 OR y is a
 F (obfuscation_param))
 {
 total = total + 1;
 }

This can be achieved by using discrete logs as

discussed above. This application of Euler’s
theorem can be extended to present other
operators like =, <, > and XOR operations in a
program segments.

4. Conclusions
In this paper, we have presented the scope of

using composite functions in combination with

other mathematical techniques such as affine
ciphers and discrete logs as means of obfuscating
a software program especially for reading and
interpreting data. We have introduced five new
obfuscation techniques which are array index
transformations, method argument
transformation, hiding constants using composite
functions, affine cipher technique to encode
string literals and discrete logarithms to pack
words. With these methodologies, we can hide
constants, Boolean operators and method
arguments effectively. We have also presented a
comparison of JHide based on certain parameters
with other Java obfuscation tool kits such as
JObfuscator, Sand Mark and JMangle. We have
compared them based on the number of
algorithms supported, complexity of code, user
interface and cost incurred to use them. Currently
JHide provides only a show case of obfuscation
algorithms and does not support any interface to
measure their efficiency in terms of level of
obfuscation achieved (Potency) and the
maximum execution time/space that the
obfuscated code adds to the application (Cost)
[30]. We want to implement such an interface in
our future work where the user would select the
percentage of obfuscation needed and JHide
obfuscation interface would automatically apply
all the required algorithms to achieve that
percentage level of obfuscation.

5. References

[1] M.R. Stytz, J. A. Whittaker, “Software Protection-
Security’s Last Stand”, IEEE Security and Privacy,
January/February 2003, pp. 95-98.

[2] G.McGraw, ”Software Security”, IEEE Security
&Privacy, March/April 2004.

[3] C. Cowan, “Software Security for open source systems”,
IEEE Security & Privacy, February 2003

[4] M.R Stytz, “Considering Defense in Depth for Software
Applications”, IEEE Security & Privacy, February 2004.

[5] J.Whittaker, “Why Secure Applications are difficult to
write”, IEEE Security & Privacy, April 2003

[6] Business Software Alliance
http://global.bsa.org/usa/press/newsreleases/2002-06-
10.1129.phtml?CFID=4661&CFTOKEN=73044918

[7] C. Collberg, G. Myles and A.H. Work, “Sand Mark – A
Tool for Software Protection Research”, IEEE Security &
Privacy July/August 2003.

[8] C.Collberg, C.Thomborson, “Watermarking, Tamper
Proofing and Obfuscation – Tools for Software Protection”,
Technical Report, February 2000-03.

[9] P. Tyma, “Encryption, hashing, & obfuscation”, ZD Net
April 2003

[10] G. Naumovich, N. Memon, “Preventing Privacy,
Reverse Engineering & Tampering“, Innovative Technology
for Computer Professionals , July 2003

[11]D. Low, “Java Control Flow Obfuscation”, Thesis
Report University of Auckland, June 3 1998

[12] G.Wrobliwski, “General Method of Program Code
Obfuscation”, PhD Dissertation, Wroclaw University of
Technology, Institute of Engineering Cybernetics, 2002

[13] DashO and Dot Obfuscator
http://www.preemptive.com/

[14] JMangle, “The Java Class Mangle”
http://www.elegant-software.com/software/jmangle/

[15]Jobfuscator http://download.com.com/3000-2417-
10205637.html

[16] L Ertaul, S Venkatesh, “JHide –A tool kit for code
obfuscation” , The 8th IASTED International Conference on
Software Engineering and Applications – SEA,MIT
Cambridge, MA – USA, Nov 2004 .

[17] D. Austin, “UBC Calculus Online Lecture Notes”
Department of Mathematics, University Of Columbia.

[18] W. J. Hane,“Conquering calculus the easy road to
understanding mathematics”, Peruses publishing, 1998

[19]K Ming Teo, ”Teaching mathematics and its
applications”, International Journal of the IMA, Volume 21
Issue 4, Dec 2002

[20] W.A.J. Kosmala, ”Advanced Calculus a Friendly
Approach”, Prentice Hall, 1998

[21] D. Low, “Protecting Java Code via Code Obfuscation“,
ACM Crossroads Student Magazine, Spring 1998

[22] S. Katzenbeisser, “Information Hiding Techniques for
Steganography and Digital Watermarking”, Boston Artech
House, 2000

[23] C. Collberg, C. Thomborson and D. Low, “Taxonomy
of Obfuscation Transformations”, Technical Report #148,
July 1997

[24] L. Ertaul, “Cryptography and Data Security Lecture
notes”, CSU-Hayward Department of Computer Science,
http://www.mcs.csuhayward.edu/~lertaul/CS6520CourseWI
NTER2005.html

[25] P. Garrett, “Making, Breaking Codes: An Introduction
to Cryptology”, Prentice Hall, Upper Saddle River, NJ,
2001

[26] L Badger, L Anna ,D Kilpatrick, B Matt, A Reisse and
T Vleck , “Self-Protecting Mobile Agents obfuscation”, NAI
Labs Report #01-036, November 2001

[27] J. Algesheimer, C. Cachin, J. Camenisch, and G.
Karjoth., “Cryptographic security for mobile code”, IEEE
Symposium on Security and Privacy, May 2001, pp. 2-11.

[28] C. Collberg, J. Thomborson, and D. Low,
“Manufacturing Cheap, Resilient, and Stealthy Opaque
Constructs”, IEEE International Conference on Computer
Languages, May 1998.

[29] C. Collberg, P. Clark, “Breaking abstractions and
structuring data structures”, IEEE Computer Language
ICCL’98

[30] D. E. Bakken, A. A. Franz, T. J. Palmer, R.
Paramesvaran, D. M. Blough, “Data Obfuscation: Providing
Anonymity and Desensitization of Usable Data Sets”, IEEE
Security & Privacy, Vol:2, No:6, Nov/Dec, 2004.

