
An Efficient Private Matching and Set Intersection
Protocol: Implementation PM-Malicious Server

G. Saldamli, L. Ertaul, K. Dholakia, U. Sanikommu

 Abstract – The Private Set Intersection (PSI) is a
privacy based service in which the service adaptation
depends on the intersection set of two clients each of which
has a large domain. The goal is to know only the common
part and not to disclose unnecessary information. With the
growing demand in privacy based services, in this paper we
show how to implement the well-known Pinkas algorithm
for malicious server. As smart phones are becoming
extremely popular and most trusted computing device so
we implement Pinkas protocol using Java language to
make an Android application on Eclipse IDE interface. We
would also show how the protocol would perform for
different set of inputs.

I. INTRODUCTION
 The enormous growth of computers and users and their
interaction of sharing data have led to a number of concerns
like protecting data, preventing resources, guarantee
authentication etc. Our paper deals with one of these
concerns, which is sharing of data between two parties
without disclosing additional information but only to share
the information, which is common between the two. Not
only this but to find a secure method to do the same. In a
private set intersection protocol a client ‘C’ and a server ‘S’
jointly work out the intersection of their private sets in a
way that they find ‘C∩S’ at the end. If the client learns the
intersection and the server learns nothing, this method is
called one way Private Set Intersection. If both learn about
the intersection then it is known as mutual Private Set
Intersection. [1][2][3]
 This type of protocol is necessary when two parties
don’t trust each other and don’t want to disclose all of their
information. One such example can be two pharmaceutical
companies want to know if any of their customers have been
using illegal prescriptions but don’t want to share all their
customer information. Then they can use this protocol to see
if there is any common customer who is committing the
fraud. There can be many other implementation of this
protocol like online dating service, it can be used by
government for security purposes, or any other organization
which want their data to be private and share data at the
same time.

G. Saldamli is with Computer Engineering Department at San Jose
State University, San Jose, CA, USA
L.Ertaul is with Department of Computer Science at California
State University, East Bay, Hayward, CA, USA
K.Dholakia is a student at California State University, East Bay,
Hayward, CA, USA
U.sanikommu is a student at California State University, East Bay,
Hayward, CA, USA

In this paper we use Private Matching (PM) protocol [2]
which is based on homomorphic encryption and
randomization of the results. This protocol is efficient for
both semi honest parties and malicious adversaries. The
protocol is flexible and can also calculate the intersection
size of two sets. We can modify it for some function to be
performed on the intersection set. The protocol can also be
extended for multi-parity intersection or for several
instances. [9][7][12][13][14][15][16][17]
 The rest of the paper is organized as follows. Section 2
describes some of the related work and preliminary terms.
Section 3 explains PSI based issues. Section 4 illuminates
the protocol for malicious adversaries. Section 5 illustrates
and implements our work on Private Matching for malicious
servers. Section 6 shows screenshots of our implementation
and finally in Section 7 we give a conclusion with a short
discussion.

II. RELATED WORK AND PRELIMINARIES
 In this section first we describe some of the related work
and then we describe some basic terms.
 Some of the related work are: Private Set Equality test is
another implementation of private matching which is
securely computed through gates but it had overheads which
you can see in [4][5]. Disjointness function used DISJ (a, b)
[10] where it returns 1 if the intersection was null. A lot of
research has been done to study the complexity of this
function. Conclusion was that even excluding the privacy
factor the complexity of private matching will be at least
proportional to the input size. One solution to this was to
approximate the intersection size by private approximation
protocol [20].
 Before we explain the protocol some of the terms that
you should know about are: Private Matching of client ‘C’
and server ‘S’ where size of client set is kc from some large
domain N and size of server set is ks from the same domain.
Let us suppose C input is X = (x1… xkC) and S input is Y=
(y1… ykS), Then C learns

 X∩Y = {xu| v; xv = yv}

But S learns nothing about the intersection. Some other
variants used by PM are (i) Private Cardinality matching
PMC which helps the client to find out exactly what it shares
with the server. (ii) Private threshold matching PMt which
helps the client to know whether the intersection was above
or below a certain threshold. A threshold that was predicated
before the intersection. (iii) Based on the output of PMC and
PMt we can make arbitrary private matching protocol.
 To know about the malicious party first you should
know what is a semi honest model as it is derived from it.

16 Int'l Conf. Security and Management | SAM'19 |

ISBN: 1-60132-509-6, CSREA Press ©

Semi-honest model is the one in which both client and server
act according to the protocol. The client privacy is
indistinguishable, in more general term it means that for
different input sets of client the server wouldn’t know the
difference because the server doesn’t get any output anyway.
Also the client wouldn’t get any false information than what
is it supposed to get. We can make sure of this by
introducing a trusted third party who ensures authentication
and integrity. For malicious adversary model there can be
three cases: (i) the client or server can refuse to take part in
the protocol, (ii) or it can modify its input to a false value,
(iii) else it can abort the protocol prematurely. Our main
concern for this protocol implementation is to ensure its
security rather than its privacy. We can enforce the privacy
and correctness issues of the protocol and is explained in [6].
The protocol is also limited when only one party is honest
either the client or the server.
 We can use either of the homomorphic encryption
schemes - additive homomorphic or multiplicative
homomorphic. In Additive homomorphic addition is done on
cyphertext and on decryption it gives us the same result as
the addition of all plaintext. Suppose we have Enc (m1) and
Enc (m2) then their additive homomorphic encryption will
be Enc (m1+m2). For multiplicative homomorphic
encryption we multiply it with some constant from the same
domain and on decryption it will give us the multiplication
of all plain text. It can be represented as Enc (cm) where c is
constant. Another homomorphic scheme is mixed
multiplicative homomorphic encryption, this a multiplication
of two large prime no p and q represented as m=p*q. We
will discuss about this scheme in other section. [21][22][23]

III. PSI- SECURITY ISSUES AND CONCERNS
 This section explains how security is maintained in
Private Set Intersections. The privacy of both client and
server are preserved because the client data is private as the
encryption in PSI [18][19] is semantic and server won’t be
able to distinguish for two different input of client. The data
of sever is private because for C operating in idle model and
C* operating in real model won’t be able to distinguish
between its Y input for the server. The security of hashing
based protocol [11] is also preserved for client and server as
client still uses semantic encryption and key chosen is not
dependent of client input. Hence sever can never know the X
as neither the key nor set is disclosed. For server the privacy
is preserved by using non-zero roots for the polynomial.
 Another famous PSI protocol is oblivious transfer
protocol [4] where the sender sends a part of its input to the
client such that both the parties are protected hence the
sender wouldn’t know which part was transferred and the
client wouldn’t know which part it received. You should
have noticed that the sender view is independent of client
and this would guarantee the client even if server tires to
cheat. The security of the sender when the client is semi-
honest is preserved by S where output is indistinguishable
from C(x1, x2). In case of intersection the client should learn
the set of X ∪ Y but not the sets of these elements. We only
need to make few changes in server if we want to add this

functionality. Server has to compute Enc (rP(y) + 0+). Then
the client calculates the number of ciphertext from the server
which then decrypts it to string 0+ and gives c. These are
few schemes that help us maintain integrity and privacy.

IV. EXPLANATION- PM-MALICIOUS-SERVER
 How to securely communicate the information in
presence of malicious parties is the main goal of our paper.
First we have to understand that either the server or the
client any one can be malicious. We have different protocol
for both the client and the server. Though our
implementation result is only for the server side. What we
should keep in mind is that the sever protocol is secure in
random oracle model but the client protocol is analyzed in
the standard model. Let us first start our discussion with the
malicious client.

A. Malicious Client
 For a malicious client we must keep in mind that the
input of client set in ideal model can effectively simulated in
his view of real model. The protocol can work with and
without hashing technique. When we don’t using hashing
technique in protocol we enforce that the client sends the
polynomial coefficients which has at least one non zero
input, if it doesn’t do so then it can’t distinguish whether the
input was present in the server side. In case of hashing
technique we use the method of cut-and-choose [8] with B
polynomials with each of degree M. Cut-and-choose method
ensures the server that it used the same technique for
hashing as it was agreed upon. Here the client chooses a key
for the pseudo-random function and hashes the function and
sends it to the server, it adds a lot of zero’s so that the degree
is M. These steps are repeated L times till L copies are
created with each having a different key. Once the server
gets the input he asks the client for L/2 copies, it does but
without revealing the keys. The server then verifies each of
the copies with the hash function to generate his own
pseudo-random identities, and runs it for each of his
polynomial. Then the server sends the result to client and it
decrypts the L/2 set and compares it with own set to find the
intersection.

B. Malicious Server
 Like we mentioned above the protocol will first
compute the polynomial of roots of the input set. It can be
calculated by the following equation:

 P(y) = (x1-y)(x2-y)….(xkc-y)= a0 + a1y
+….+ akyk (1)

Then it performs homomorphic encryption on each of the
coefficients of the polynomial equation. The encryptions are
then sent to the server. The server along with its input
evaluates each of the polynomial using the homomorphic
properties. The server then multiplies each result with a
random number ‘r’ to get an intermediate result. Hence
server computes Enc (r.P(y)) + y). So in the end we will
have the inputs of the common elements along with the

Int'l Conf. Security and Management | SAM'19 | 17

ISBN: 1-60132-509-6, CSREA Press ©

random number that were added. Else the intersection will
just have the random number if there is no common input.
One thing to notice is that there can be overhead which is
exponential. For a balanced allocation function [7] we must
perform mapping, where elements are thrown to bins of
range size B which is selected by the client. We use
balanced allocation hashing scheme in which the element is
put into a bin which is less occupied. And the set we obtain
is

(e,h) (Enc(r’.P(y) +s), H2 (r”,y)) (2)

 A malicious server can play tricks on his input; it can
give ‘C’ two different sets, it can modify the value of
encryption of polynomial. We make few changes in the
protocol to ensure security against malicious sever. If we
force our server to follow a specific procedure then it can
ensure integrity. The protocol ensures the security of the
client. It does so assuming there are two servers: one for the
real model S* and one for the ideal model S. If S sends it
value to a trusted third party and if the output of S and S*
match we know the server is not malicious. The figure below
describes how the set (e, h) is computed on server side and
later how it is decrypted by the client.

Figure1. Encryption and decryption scheme

 There can also be a case where we can have both client
and server as malicious. Here the client generates B bins as
it did before and a polynomial is generated with degree M,
here the L/2 copies are opened by the client and it recovers
the S from it and follows the same procedure as PM-
Malicious Server. But a question arises that are the
malicious parties secure in standard model, as the proof we
have are only for random oracle model. Also how secure and
efficient is the protocol. The figure below describes the steps
that we followed to implement this protocol.

Figure2. Steps for Protocol PM-Malicious-Server

V. IMPLEMENTATION
 The scenario we use for this protocol is client and server
based. We decided to implement Pinkas Algorithm for
malicious server by using an Android application which we
built using Eclipse IDE. The name of the android application
is Online Dating. Our application basically tells if two
people have any common interest without disclosing their
private information to each other. Only the client learns
about the intersection set and server learns nothing. Since
we have implemented an online dating application we used
the logic that each number represents a unique interest. So
instead of entering the interests a user enters the number
which will represent an interest. Let us say that Music=1,
Sports=2, Dancing 3 and so on. These numbers will be
inputs of server and client. And then the client encrypts these
numbers using the encryption technique described below.

A. Mixed Multiplicative Homomorphic Encryption (MMH)
 As we mentioned in the introduction we use Mixed
Multiplicative homomorphic encryption scheme which uses
p and q that are large prime no and m= p*q, here p and q are
kept secret. The set of original plaintext messages is Zp=
{x|x <= p}, Zm = {x|x <m} is the set of cipher text messages
and Qp = {a|a Zp} be the set of encryption clues. For the
encryption scheme we perform is on a plaintext say x which
is from the set Zp and let ‘a’ be any random no from Qp then
x=a mod p and then cipertext is calculated by y=Enc(x) = a
mod m. The decryption is also performed in the same way as
x= Dec(y) = y mod p.
Let us see an example: Let p=17 and q=13 then
m=p*q=17*13= 221. Let x1=8, then Enc (8) = 59 and let x2=
2 then Enc (2) = 36. So (59*36) mod 221= 135
So when we decrypt 135 we get 16= 135 mod 17 which is
same as the multiplication of x1*x2= 8*2= 16

18 Int'l Conf. Security and Management | SAM'19 |

ISBN: 1-60132-509-6, CSREA Press ©

The advantages of using this scheme is that it’s very fast and
doesn’t take time for long values of p and q. Also this type
of encryption can be performed in real time as encryption
function is called only once
 The hash functions that we use for equation (2) and for
randomization are SHA1 and MD5 as both of them give
good performance results and also they are quiet secure. For
the bit size of p and q we vary our results

B. Platform details
 We developed the protocol as client server TCP/IP
model on Windows 7 operating system. The table below
gives a brief of implementation details

Table I
Platform Details

Programming
Language

Java

Network Model TCP/IP
Operating System Windows 7 64bit
RAM 8GB
CPU Intel i5 2.50GHz
Workstation VMware 10.0.1
Android Version X86-4.3.iso
Platform Eclipse ADT Build-

v22.3.0

. The following steps will show step by step what happens
when we run our application

• We launch our application in eclipse IDE using
VMware workstation on which two android iso are
already installed

• We run the application, one of them is the server
and other one is the client.

• The figure below shows the server and also
displays the set of the server.

Figure 3.Server Interface

• Enter the IP address on the client side to connect it
to the client. (IP address of server is displayed on
the server side). In this case it is 192.168.14.128

Figure 4.Connecting to Server

• As we can the client enter the IP address od server

and then enters 7 numbers each of which represents
his interests. The values of p and q are
automatically generated. Then we hit the button
“generate coeff and send”

• Once the connection is established the server and
the client start communicating. In other words the
polynomial equation is generated as mentioned in
equation (1) and coefficients of the equation are
being encrypted using mixed multiplicative
homomorphic encryption and sent to the server

• All the information that is being generated on the
server side can be seen on the screen. It receives the
public key, encrypted coefficients and it generates
the (e.h) pair as described in the equation (2)

Figure 5.Output on server side

• The (e,h) pair are then sent to the client and it

decrypts the pair and find the common intersection
• In the client output we can see the polynomial

equation, the encrypted coefficients, the (e,h) pair
received and finally the common intersection set

Int'l Conf. Security and Management | SAM'19 | 19

ISBN: 1-60132-509-6, CSREA Press ©

Figure 6. Output on client side

• Here we see that on client side we get the

intersection set as (1, 2, 3, 4, 5, 6, 7). Which means
the common interest of these two people were
music, painting, reading, gardening, dancing,
cooking and sleeping.. We have assigned a number
to each of the interest that a person has, this way it
is easy for us to encrypt the number rather than
encrypting the whole word.

 Let us take another example where we begin our
calculations by first selecting two sets, let the client have the
set C (1,12,13,14,6,9,11) and server be composed of S
(1,2,3,4,5,6,7). The client has to select a public key and two
large prime that are generated automatically. Now the client
constructs polynomial equation using equation (1) and we
get the coefficients and then these coefficients are encrypted
using mixed multiplicative homomorphic encryption. After
encrypting these coefficients we send them over to the server
and using homomorphic encryption it computes the set (e, h)
using equation (2) and sends it to the client. Now the client
decrypts e to find out r and then matches with its own set, if
any element is common then the client puts it in the
intersection set. Here we get the common intersection as
(1,6).

Figure7. Client Output

VI. PERFORMANCE
 The above results are when the size of p and q is 32 bits.
We ran more tests to observer the run time for 16, 32, 128,
256, 512 and 1024 bits. We repeated each test several
number of times to get an average result. We observed that
as the no bits keep on increasing the time also keeps on
increasing which means it’s directly proportional to time.
But the increase in time is quiet small which won’t result in
many delays. Keep in mind that for all the results below we
used SHA1 as the hash algorithm. The results were similar
when we used MD5 algorithm. The graph below shows us
the results.

Figure 8. Time to generate encrypted coefficients

 The above results are when we use SHA1 algorithm.
But if we change the hash function to MD5 we see almost
similar results as shown in graph below

Figure9. SHA1 v/s MD5

 While implementing this application we faced a major
problem that was the emulator on Eclipse IDE used to take a
long time to boot up which was a hindrance as we wanted
quick results. To fix this problem instead of running our
application on emulator we ran our application on VMware
workstation. All we did was we installed android-x86-iso on
VMware workstation and connected our project on Eclipse

20 Int'l Conf. Security and Management | SAM'19 |

ISBN: 1-60132-509-6, CSREA Press ©

IDE to Android-x86-iso installed on VMware. Once you
install android-x86-iso on VMware workstation go to
terminal emulator and run the command netcgf to know the
IP address of the device. Then open the command prompt
and go the android sdk platform-tools and run adb connect
<ip address>. This will connect my android device on
VMware to my eclipse. Go to eclipse and run the project
run android application VMware. Select the machine
where you want to run your application. The figure below
shows what the screen will look like.

Figure 10. Running Application on Eclipse

 After this little experiment there was a huge difference in
the run time of our android application. The table below will
show our results.

Table II

Compares the result of run time when application was run on
an emulator v/s application running on VMware Workstation

No of Repetition Application in

VMware (sec)
Application in
Eclipse
Emulator(sec)

1 55 240
2 49 310
3 64 200
4 50 380

VII.CONCLUSION

 In this paper we used PSI method to find the common
intersection of two sets without reveling actual sets. This
scheme is useful as it keeps the sets of two parties secret,
thus implementing privacy and integrity. To implement PSI
we used PM-Malicious-Server protocol commonly known as
Pinkas algorithm.
 We made an android application to show our
computation of this protocol, as smartphones are the new
platform for privacy concerns. Instead of using any complex
encryption technique we used MMH, which is one of the
fastest and easiest encryption techniques. But MMH
encryption method is susceptible to plaintext attack.

This type of privacy scheme is important in today’s world as
smartphones are becoming popular and people use it to share
their sensitive information. However, there is a long way to
go before we reach optimum results.

REFRENCES
[1] Emiliano De Cristofaro and Gene Tsudik: “Practical
Private Set Intersection Protocols with Linear
Computational and Bandwidth Complexity “. University of
California, Irvine.
[2] Yaping Li, J. D. Tygar and Joseph M. Hellerstein:
“Private Matching”, Intel Research Berkeley.
[3] G. Sathya Narayanan, T. Aishwarya, Anugrah Agrawal,
Arpita Patra, Ashish Choudhary, and C. Pandu Rangan:
“Multi Party Distributed Private Matching, Set Disjointness
and Cardinality of Set Intersection with Information
Theoretic Security”.
[4] Moni Naor and Benny Pinkas: “Oblivious transfer and
polynomial evaluation”. InProc. 31st Annual ACM
Symposium on Theory of Computing, pages 245{254, At-
lanta, Georgia, May 1999.
[5] Ronald Fagin, Moni Naor, and Peter Winkler:
“Comparing information without leaking it”.
Communications of the ACM, 39(5):77{85, 1996.
[6] Oded Goldreich: “Secure multi-party computation”. In
Available at Theory of Cryptography Library,
http://philby.ucsb.edu/cryptolib/BOOKS, 1999.
[7] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli
Upfal: “Balanced allocations”. SIAM Journal on
Computing, 29(1):180{200, 1999.
[8]. Yehuda Lindell and Benny Pinkas: “Secure Two-Party
Computation via Cut-and-ChooseOblivious Transfer”.
Theory of Cryptography Lecture Notes in Computer Science
Volume 6597, 2011, pp 329-346.
 [9] Helger Lipmaa and Veri_able :“Homomorphic oblivious
transfer and private equality test”. In Advances in
Cryptology|ASIACRYPT 2003, pages 416{433, Taipei, Tai-
wan, November 2003.
[10] Bala Kalyanasundaram and Georg Schnitger: “The
probabilistic communication complexity of set intersection”.
SIAM J. Discrete Mathematics, 5(4):545{557, 1992.
[11] Andrei Z. Broder and Michael Mitzenmacher: “Using
multiple hash functions to improve ip lookups”. In IEEE
INFOCOM'01, pages 1454{1463, Anchorage, Alaska, April
2001.
[12] Alexandre Evmievski, Johannes Gehrke, and
Ramakrishnan Srikant: “Limiting privacy breaches in
privacy preserving data mining”. In Proc. 22nd ACM
Symposium on Principles of Database Systems (PODS
2003), pages 211{222, San Diego, CA,June 2003.
 [13] Justin Brickell and Vitaly Shmatikov :“Privacy-
Preserving Graph Algorithms in the Semi-honest Model”.
The University of Texas at Austin, Austin TX 78712, USA.
[14] Keita Emura, Atsuko Miyaji and Mohammad Shahriar
Rahman “Eficient Privacy-Preserving Data Mining in
Malicious Model”.

Int'l Conf. Security and Management | SAM'19 | 21

ISBN: 1-60132-509-6, CSREA Press ©

[15] Michael J. Freedman, Kobbi Nissim and Benny Pinkas:
“Efficient Private Matching and Set Intersection”. Advances
in Cryptology - EUROCRYPT 2004.
[16] Bo YANG, Aidong SUN, Wenzheng ZHANG: “Secure
Polynomial Computation in the Semi-honest Model”. Journal
of Computational Information Systems 6:6(2010) 1907-
1921.
[17] Craig Gentry:“A Fully Homomorphic Encryption
Scheme”. A Dissertation Submitted To The Department Of
Computer Science And The Committee On Graduate Studies
Of Stanford University September 2009
[18] Yan Huang, Peter Champan and David Evans “Privacy-
Preserving Applications on Smartphones”. In 6th USENIX
Workshop on Hot Topics in Security, San Francisco, 9
August 2011.
[19] Seny Kamara,Payman Mohassel, Mariana Raykova,
Saeed Sadeghian: “Scaling Private Set Intersection to
Billion-Element Sets”.
[20] David P. Woodruff: “Near-Optimal Private
Approximation Protocols via a Black Box Transformation”.
 [21] Josep Domingo-Ferrer: “A Provably Secure Additive
and Multiplicative Privacy Homomorphism”, in A.H. Chan
and V. Gligor (Eds.): ISC 2002, LNCS 2433, pp. 471–483,
2002
[22] K.Gopi:”Homomorphic Encryption Schemes for Secure
Packet Forwarding in Mobile Ad hoc Networks”.
[23] Aditya, Riza, Boyd, Colin, Dawson, Edward, Lee,
Byoungcheon, & Peng: “ Multiplicative Homomorphic E-
Voting”, in Canteaut, A & Viswanathan, K (Eds.) Progress
in Cryptography.

22 Int'l Conf. Security and Management | SAM'19 |

ISBN: 1-60132-509-6, CSREA Press ©

