

Implementation of Domingo Ferrer’s a New Privacy
Homomorphism (DF a New PH) in Securing Wireless

Sensor Networks (WSN)
Levent Ertaul Johan H. Yang

Department of Mathematics & Computer Science Department of Mathematics & Computer Science
California State University, EastBay California State University, EastBay

Hayward, CA, USA. Hayward, CA, USA.
levent.ertaul@csueastbay.edu s3cur3lab@gmail.com

Abstract- Wireless Sensor Networks’ (WSN) Data
aggregation is substantial in eliminating information
redundancy and increasing the lifetime of the network.
However, in its implementation, the data are being
transmitted in clear hence are prone to security attacks.
The Homomorphic Encryption Schemes (HES) provide
the most advantage in securing the data on limited-
resourced WSN devices by allowing operations to be
performed on the ciphertext as if the operations are
performed on the plaintext. The other conventional
encryption schemes fall short compared with HES
because they demand too much of resources. The HES
that secures WSN’s data aggregation can conserve the
much needed power source while providing the
security. When HES is used, the End-to-End encryption
is achieved where the information is secured from the
source to the destination. In this paper, we show the
performance, the feasibility and the scalability of
Domingo Ferrer’s a New Privacy Homomorphism (DF
a New PH) on large scale simulation framework
OMNet++. In this simulation MICA2 sensor nodes are
used and up to 11000 sensors are deployed. We also
show that DF a New PH algorithm, implemented in
C++, has fast performance and low power
requirements, feasible to be implemented inside MICA2
sensor nodes and scalable to thousands of sensor nodes
without straining the lifetime of the whole network.

Index Terms—Wireless sensor networks, Data
aggregation, Homomorphic encryption schemes.

1 Introduction

A WSN consists of inexpensive and low power
sensor nodes that are capable of computation, storage
and communication. The sensor node by itself has
limited capabilities: limited computing resource (slow
computing, small storage, and limited power source),
unreliable type of communication (unreliable data
transfer, limited data rate, and limited communication
range), unattended operation (limited trust, complex

remote management). However, adding more nodes,
these seemingly limited devices start creating a
powerful infrastructure which a user can use for a
particular application of providing high resolution
information about sensed phenomena[1] [2] [3] [4] .

Because of the nature of WSN data driven networks,
it raises new threats that are different from what we
faced before. WSN allows massive data collection,
coordinated analysis, and automated event correlation.
For instance, WSN enables routine tracking of
people/vehicles over long periods of time, with
troubling implications. With that in mind, the need of
securing the data kept inside WSN is paramount [1] [2]
[3] [4] [5] [6] [7] [8] [9].

The data gathered by the sensor nodes in most
scenarios are environmental data (e.g. temperature)
which will be processed inside the network and will end
up at one central point, the Sink node. Since the energy
consumption increases linearly with the amount of
transmitted data, a data aggregation approach helps
increase the overall lifetime of WSN [6] [7] [8] [9].

s1 s3s2 sn

S1 to Sn are the sensor nod
sink node. S’n are the valu
function (addition)

Figure 1: Represen
node a

s’n

s’3s’1 s’2

A

M
es,
e se

tati
nd

A i
nse

on
Si
M=s’1+s’2+…+s’n
s the aggregator node and R is the
d by the sensors. M is the aggregator

 of Sensor node, Aggregator
nk node in WSN

R

In WSN, the nodes are functionally separated into
sensor, forwarding, aggregator, and sink node. Figure 1
explains the data flow from sensor nodes to sink node.
Sensor nodes sense the environment and send the data
to the aggregator node. Aggregator node aggregates the
data received from the sensor nodes. The aggregation
function may be the function of Counting (sum,
average, etc), Comparing (maximum, minimum), or
Detecting (motion). The forwarding node just forwards
the data and its function usually is combined with the
aggregator node. Sink node, assumed to have more
resource than the other nodes, is where the information
ends up [6] [7] [8] [9] [10].

Aggregator nodes, located in the middle of the
network, are maintaining the infrastructure of the
network. The lost of an aggregator node situated on the
network critical point might cripple the network.
Whereas the sensor nodes, located on the edges of the
network, persist mostly in sleep mode until the sink
node queries the network or the environment triggers
the event which requires them to activate [6] [7] [8] [9].

Two important issues in securing WSN are node
capture and power conservation. Wide deployment in
an open area makes WSN prone to node attacks. Most
conventional security measures are infeasible to be
implemented in limited-resource WSN because they
consume too much energy which shortens the node
lifetime[1] [2] [3] [5] [11]. The HES can secure WSN’s
data aggregation while conserve the much needed
power source [6] [7] [8] [9].

The HES have the property of additive or
multiplicative homomorphism. In additive
homomorphism, decrypting the sum of two ciphertext is
same as addition of two plaintext (x,y) represented as
x+y=Dk(Ek(x)+Ek(y)). In multiplicative homomorphism,
decrypting the product of two ciphertext is same as
multiplication of two plaintext. Multiplicative
homomorphism is mathematically represented as
x*y=Dk(Ek(x)*Ek(y)). The advantage of using
homomorphic encryption is that the intermediate
aggregator node need not decrypt and then encrypt data
to perform the aggregation operation [6] [7] [8] [9]. It
can perform the aggregation operation using only
encrypted data.

 Before committing time and money on the actual
WSN deployment, we used a robust simulation
framework, OMNet++[12] based on C++[13], to test the
feasibility of the DF a New PH scheme on the
MICA2[14] sensor nodes. Up to 11000 MICA2 sensor
nodes are deployed in this simulation.

This paper is organized as follows. In section 2, we
briefly describe the overview of homomorphic
encryption schemes. In section 3, we briefly describe
the implementation of DF a New PH in the simulation.
In section 4, we discuss the simulation results. Finally,

in section 5 conclusions are given.
2 Homomorphic Encryption

Schemes (HES)

In this section, we give an overview of the HES

advantages which benefit WSN. And also one particular
HES, DF a New PH scheme is discussed.

2.1 The HES Advantages

Formally HES is described as: given two ciphertext
resulted from two values x and y, one can do operations
directly on the ciphertext without knowing the plaintext
or the decryption keys[5] [6] [7] [8] [9] [15].

Traditional WSN data aggregation requires repeat
cycles of decryption-re-encryption-operation every time
the sensor node sends encrypted data. The HES cuts
down those steps. The sensor nodes can spend most of
their time in sleep mode which in turn prolong the node
lifetime.

End to End Security, where the information is
concealed from the source through the destination, is
achieved because the infrastructure nodes, such as
aggregator nodes, do not have to keep or know any
secret keys[6] [7] [8] [9].

2.2 Domingo Ferrer’s a New Privacy

Homomorphism (DF a New PH)

DF a New PH is introduced in [16] which is a
homomorphic encryption scheme not vulnerable to
Known Ciphertext Attacks[17]. Once the value is
acquired by the sensor node, the algorithm splits the
value into several parts. Each of split value then is
encrypted and sent to Aggregator node. The values are
then can be added in the aggregator node. Only the Sink
node will be able to decrypt aggregated data to get the
real value.

Let us look into the protocol in detail as given in [6]
[8][16]. In this protocol n and m are the public
parameters (available to every sensor node). The secret
parameters, two large prime numbers p and q, where
m= p * q, are only available to the Sink and sensor
nodes. The number 'n' represents the split of the
plaintext. The secret keys are p, q, xp, xq. Here, xp ∈ Zp

and xq ∈ Zq.
Encryption operation is performed by selecting the

plaintext a∈ Zm. We then split a into secret numbers
 a1, a2 ... an, such that a = (a1+a2 ..+ai+..an)mod m and ai∈Zm.
Ek (a) = (a1 xp mod p, a1 xq mod q), (a2 x2

p mod p, a2 x2
q mod

q)... (an xn
p mod p, an xn

q mod q)
Decryption operation is performed by computing

scalar product of the ith pair [mod p, mod q] by [x-i
p mod

p, x-i
q mod q] to get [ai mod p, ai mod q]. The pairs are

then added up to get [a mod p, a mod q]. Finally,
Chinese remainder theorem (CRT) [18] is performed to
get a mod m.

This homomorphic scheme has the property of
additive and multiplicative homomorphism. We have to
acknowledge that this scheme is not secure against
Known Plaintext Attacks [17].

3 Implementation of DF a New PH

algorithm on Large Scale
Simulation

OMNet++ [12] [19], based on C++[13], is a discrete

event driven platform in which we perform the steady
state simulation. Even though the transient state
simulation which focuses on the initial configuration is
also important, we focus on the long term effect of the
security implementation to the performance of the
sensor nodes[20].

The simulator enables us to control the time frame
and the level of details of the results. When it performs
the encryption, the simulation goes into unit time
advance which captures the minute details of the CPU,
Memory and Radio operations. When the sensor nodes
are in the sleeping mode, the simulator goes into event
advance which progress the simulation quicker [20].

To identify the algorithm parameters which give the
best performance and the longer lifetime along with the
desired security, we will compare the performance of
the sensor node in performing the algorithm on different
parameters. On larger scale, we simulate the sensor
node within a cluster and within a network, up to 11000
sensor nodes to identify the performance of the
aggregator node.

3.1 The measurements of Performance,

Feasibility, and Scalability.

 In order to compare the Performance, the Feasibility
and the Scalability of the implemented encryption
scheme, we measure the power usage (in milliAmpere)
and the execution time (in µs) that a sensor node
requires to complete its operation.
 The dynamics of power usage and execution time are
important to determine the node’s lifetime and
ultimately to the network’s lifetime. For example, one
activity might consume high energy, but if it is done
sparingly, it might still be feasible for WSN. On the
other hand, a small power usage activity, like SLEEP, if
done continuously might tremendously shortened the
node’s lifetime[21].

 On the simulation, we compare of three major energy
consumer node devices; they are: the CPU, the
Memory, and the Radio. The CPU will be active the
whole time while the sensor node is encrypting the data.

The memory has two states: READ and WRITE
states, where the WRITE state consumes higher energy
than READ states. The ideal algorithm is to have lesser
WRITE states and lesser execution time. The Radio
module will employ several Transmission power level
depending the inter-node distant, the length of the
message, and traffic condition of the wireless
communication channels [21] [22] [23].

3.2 The Simulation Specifications

The simulation environment is an Intel Pentium Xeon
dual-core 2GHz, 2GB RAM at CompCore facility at
CSU East Bay (www.compcore.csueastbay.edu). The
Operating System is Ubuntu Linux 6.10 [24]. The code
is developed in C++[13] .

Due to the in depth research and the wide adoption
on current WSN applications, we based the simulation
on MICA2™ sensor nodes[14][22].

The randomly sampled sensor node is situated within
a cluster of sensor nodes consists of ten sensor nodes
and one aggregator node (Figure 2). The sampling size
is from 100 simulation runs to get the average
performance of the sensor node in performing the same
encryption with the same plaintext size and key size
parameters.

 Sink

Figure 2: Simulation configuration

Figure 2 shows the simulation configuration of one
cluster of sensor nodes. The ten sensor nodes are
reporting the sensed data to the Aggregator node in the
middle. After the data values are added up (we selected
addition aggregation function in this simulation), the
result is sent to the Sink. Then the Sink decrypts the
aggregated data to recover the real value.
 On larger level simulation, the network level, we
simulate the cluster of clusters nodes to see the effect of

Aggregator

Sensor

larger number of sensor nodes, up to 11000 sensor
nodes, to the lifetime of the aggregator node.

4 Simulation Results

We measure one cycle of node operation on the
sensor node performing the following tasks: reading the
random environment value, performing the encryption
on the value, putting the encrypted value into 802.11
MAC [25][26] data frame, waiting for clear wireless
channel, transmitting the data frame, and putting the
node into SLEEP state until the next sampling time
interval.

To illustrate the simulation result, Figure 3 is used.
OMNet++’s Plove[12] captured the four lines which
depict the CPU operation (blue line), the Memory (red
line), the Radio (green line), and the orange line which
is the sum of these three operations (total power usage).
In the next discussions, we only use the sum line to
compare different parameters used in DF a new PH
algorithm.

Figure 3: The detailed graph result example

 Figure 3 shows one cycle of sensor node operation as
an example. It consists of four major activities. It starts
with executing the security algorithm, waiting for clear
channel, sending the data, and SLEEP (not shown on
the graph).
 On the first activity, Executing the security
algorithm, it shows the CPU is active from 0 to 140µs.
During that time the node completes the following
tasks: getting the random environment value,
performing the encryption on the value, putting the
encrypted value into 802.11 MAC data frame. The
Memory is also performing READs (the bottom red-
lines) and WRITEs (the upper red-lines). The Radio is
idle most of the time reflected on the low green line.

The node is Waiting for 80µs for clear channel,
before it send the data over to the Aggregator node.

On the third activity, Sending the data, shows all
three devices activated. During the 400µs, the CPU is
active the whole time, the Memory performs 3 READs

and 3 WRITEs, the Radio goes up and down reflecting
the use of several levels of Transmission power [23].

The fourth activity, SLEEP, even though it also
consumes energy, is omitted from the graph because we
only want to focus on comparing the performance of
sensor node in executing the algorithm.

In the next section, we will compare the performance
results of implemented DF a New PH algorithm with
different parameters. To see which parameters provide
the best performance, we will show only the first
activity, Executing the algorithm, and the sum of power
usage of three devices (the sum of CPU, Memory, and
Radio). And also we will determine the life time of the
sensor nodes and the aggregator node.

4.1 Different DF a New PH parameters in

the Sensor Node Simulation.

We implement three different parameters of DF a

New PH with twenty one alternatives. The first is nine
alternatives of Different Key Sizes and Fixed Message
Sizes. The second is Different Message Sizes and Fixed
Key Sizes, also with nine alternatives. The third is
Different Message Split and Fixed Message Size, with
three alternatives.

1. Executing
security
algorithm 4. SLEEP;

not shown 2. Waiting
3. Sending
data 4.1.1 Different Key Sizes, Fixed Message

Sizes, Message Split 2

In this implementation, we are changing the key size
parameter while keeping the message size fixed.

a

b

c

d

e

f

g

h

i

a. 128/128bits (msg size/key size), b. 128/256bits, c.128/512bits,
d. 256/256bits, e. 256/512bits, f. 256/1024bits,
g. 512/512bits, h. 512/1024bits, i. 512/2048bits.

Figure 4: Performance results of DF a New PH with
different key sizes

 In terms of total power usage, the lowest is 128/128
(msg/key - figure 4a) and the highest is 502/2048

(msg/key – figure 4i). Above results confirm that the
longer the size of key and message, the longer the
sensor node to complete its cycle of operation.
4.1.2 Different Message Sizes, Fixed Key

Sizes, Message Split 2

In this implementation, we are changing the message
size parameter while keeping the key size fixed.

a

b

c

d

e

f

g

h

i

a. 100/512bits (msg size/key size), b. 250/512bits, c. 500/512bits,
d. 250/1024bits, e. 500/1024bits, f. 1000/1024bits,
g. 500/2048bits, h. 1000/2048bits, i. 2000/2048bits.

Figure 5: Performance results of DF a New PH with
different message sizes

In terms of total power usage, the lowest is 512/100

(key/msg - figure 5a) and the highest is 2048/2000
(key/msg – figure 5i). Results confirm that the longer
the size of key and message, the longer the sensor node
to complete its cycle of operation.

4.1.3 Different Message Split (Split 3),

Fixed Message Size, Different Key
Sizes

In this implementation, we are changing the message

split parameter to 3 splits while keeping the message
size fixed.

a

b

c

a. 512/512bits (msg size/key size), b. 512/1024bits,
c. 512/2048bits
Figure 6: Performance results of DF a New PH with

message split 3
When we compare the same message/key size

between different splits (Figures 4g-4i and Figures 6a-
6c), by increasing the message split to 3, the sensor

node requires more resources (longer CPU active, more
Memory’s READs and WRITEs) to accommodate
bigger data processing.

Across the board, the best performance is on the
fixed message size 128/128bits (msg/key – figure 4a)
and the worst performance is tied between the fixed key
size 2000/2048bits (msg/key – figure 5i) and the
message split 3 on 512/2048bits (msg/key – figure 6c).

The higher the power consumed the shorter the
sensor node’s lifetime is. For illustration, on the
sampling time interval of once per 1 minute (the sensor
is active once per 1 minute and SLEEP until the next
cycle), the sensor node of fixed message size
128/128bits (msg/key – Figure 4a) can survive for
14.39 days. While the fixed key size 2000/2048
(msg/key – Figure 5i) can only survive for 4.72 days.
And on the message split 3, 512/2048 (msg/key –
Figure 6c), the node survives for 4.75 days.

If we increase the sampling time interval, we get a
substantial improvement of node lifetime. For example,
if we increase sampling time interval from
once/1minute to once /4minute, sensor node of
128/128bits (Figure 4a) lasts 230.23 days, while
2000/2048bits (Figure 5i) survive for 75.53days. And
on the message split 3, 512/2048 (msg/key – Figure 6c),
the node survives for 75.93 days.

a.
 1

28
/1

28

b.
 1

28
/2

56

c.
 1

28
/5

12

d.
 2

56
/2

56

e.
 2

56
/5

12

f.
25

6/
10

24

g.
 5

12
/5

12

h.
 5

12
/1

02
4

i.
51

2/
20

48

j.
10

00
/1

02
4

k.
 5

00
/2

04
8

l.
10

00
/2

04
8

m
 .2

00
0/

20
48

fixed msg
fixed key

split 3

0

2

4

6

8

10

12

14

16

message/key size (bits)

lifetime (days)

Figure 7: Node lifetime (in days) of DF a New PH

implementation

Figure 7 shows the node’s lifetimes of DF a New PH
implementation, the back row (blue boxes) is on
different key sizes and fixed message size, the middle
row (purple boxes) is on different message sizes and
fixed key size, and the front row (yellow boxes) is on
message split 3.

When we increase the key size to four times of the
message size (from 512/512 to 512/2048bits, split 2
Figure 7g to 7i), the sensor node lifetime decreases,
approximately 27.9%.

This decrease is much worse on the message split 3.
For example, with the same parameters, the node

lifetime decreases by 48%. As a result, we expect
substantially shorter lifetimes of sensor nodes for
message split more than 3. The bigger the message
splits, the more resources that the sensor node uses to
accommodate bigger data processing.

Since the Aggregator node only computes (addition)
on the encrypted values and no decryption or encryption
process is required, in this simulation, we also found
that the Aggregator node performance is not related to
encryption algorithm performance on the sensor nodes.
On the other hand, its performance is determined by the
number of sensor nodes which reports back to it. For
instance, on cluster of 5 sensor nodes, the aggregator
node can survive for 9.61 days, as opposed to a 20
sensor nodes cluster survives for only 3.42 days.

Figure 8: The last aggregator node lifetime (in days)

of DF a New PH implementation

Figure 8 shows the large scale network level

simulation model which consists of 1000 clusters (total:
11000 sensor nodes). In this level, sampling time
interval is once/4minute and all sensor nodes perform
DF a New PH with split 2, 512/512bits (msg/key)
parameters. Sensing area is 500 x 500 square meters.
The network configuration is based on Djikstra’s
Shortest Open Path Algorithm[27]. We collected
information about the life time of the last aggregator
node which is an aggregator node directly connected to
the sink node based on two network configurations. In
the first configuration where all clusters formed a single
line – Figure 8, left, and in the second configuration
where all clusters formed a balanced tree – Figure 8,
right. The last aggregator node that directly connected
to the Sink node in first configuration can survive for
0.52 days and 20.48 days in second configuration. This
result shows that network configuration rather than the
security algorithm that is used for end-to-end encryption
affects the life time of the last aggregator node.

5 Conclusion

In this paper, we have shown that the DF a New PH
is feasible to be implemented on MICA2™ sensor
nodes. We conclude that the shorter the key and the
message sizes will yield the better sensor node
performance, while the longer the key and message
sizes with the bigger message split will yield poor
performance and shorter sensor node lifetimes.

While more message splits offer stronger security
level, it has the consequence of performance penalty
therefore the message split should be kept at minimum.
To balance the acceptable level of service and level of
security, other parameters should be selected based on
desired performance and the lifetime of sensor nodes.

There are other potential HES such as DF Allowing
Field Operations, DF Additive & Multiplicative and
Mixed Multiplicative (MMH) available [28] [29] [30].
These algorithms could also be feasible to be
implemented on WSN. In the future, we are planning to
implement these algorithms to find best possible HES
for providing WSN security.

Last
aggregator
20.48 days Last

aggregator
0.52 days

7 REFERENCES

[1] Y. Xiao, "Security in Sensor Networks," Auerbach

Publications, pp. 275-290, 2007.
[2] D. Integrity, P. Sakarindr, and N. Ansari, "Security

Services IN Group Communications OVER
Wireless Infrastructure, Mobile Ad Hoc, AND
Wireless Sensor Networks," IEEE Wireless
Communications, pp. 9, 2007.

[3] B. Sun, L. Osborne, Y. Xiao, and S. Guizani,
"Intrusion detection techniques in mobile ad hoc
and wireless sensor networks," Wireless
Communications, IEEE [see also IEEE Personal
Communications], vol. 14, pp. 56-63, 2007.

[4] J. C. Lee, V. C. M. Leung, K. H. Wong, J. Cao, and
H. C. B. Chan, "Key management issues in wireless
sensor networks: current proposals and future
developments," Wireless Communications, IEEE
[see also IEEE Personal Communications], vol.
14, pp. 76-84, 2007.

[5] K. Jones, A. Wadaa, S. Olariu, L. Wilson, and M.
Eltoweissy, "Towards a new paradigm for securing
wireless sensor networks," Proceedings of the 2003
workshop on New security paradigms, pp. 115-121,
2003.

[6] J. Girao, D. Westhoff, M. Schneider, N. E. C. E.
Ltd, and G. Heidelberg, "CDA: concealed data
aggregation for reverse multicast traffic in wireless
sensor networks," Communications, 2005. ICC
2005. 2005 IEEE International Conference on, vol.
5, 2005.

[7] M. Acharya, J. Girao, and D. Westhoff, "Secure
Comparison of Encrypted Data in Wireless Sensor
Networks," Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks, 2005. WIOPT
2005. Third International Symposium on, pp. 47-
53, 2005.

[8] D. Westhoff, J. Girao, and M. Acharya, "Concealed
Data Aggregation for Reverse Multicast Traffic in
Sensor Networks: Encryption, Key Distribution and
Routing Adaptation," IEEE Transactions on Mobile
Computing, October, 2006.

[9] D. Westhoff, J. Girao, and A. Sarma, "Security
Solutions for Wireless Sensor Networks," Nec
Technical Journal, vol. 1, 2006.

[10] E. Vaidehi, "Computing Aggregation Function
Minimum/Maximum using Homomorphic
Encryption Schemes in Wireless Sensor Networks
(WSNs)," 2007.

[11] T. Sander and C. F. Tschudin, "Protecting Mobile
Agents Against Malicious Hosts," Mobile Agents
and Security, vol. 60, 1998.

[12] A. Varga, "OMNeT++ User Manual," Department
of Telecommunications, Technical University of
Budapest, 1997.

[13] B. Stroustrup, "The C++ Programming Languge,"
1997.

[14] I. C. Technology, "MICA2: Wireless Measurement
System," Mica2 Datasheet. Available in:
http://www.xbow.com/products/Product_pdf_files/
Wireless_pdf/MICA2_Datasheet. pdf.

[15] M. Yokoo and K. Suzuki, "Secure multi-agent
dynamic programming based on homomorphic
encryption and its application to combinatorial
auctions," Proceedings of the 1st International
Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pp. 112-119, 2002.

[16] Domingo-Ferrer, "A new privacy homomorphism
and applications," Information Processing Letters,
vol. 60, pp. 277-282, 1996.

[17] W. Stallings, "Cryptography and Network Security:
Principles and Practice," 2006.

[18] C. Ding, D. Pei, and A. Salomaa, "Chinese
remainder theorem," 1996.

[19] C. Mallanda, A. Suri, V. Kunchakarra, S. S.
Iyengar, R. Kannan, and A. Durresi, "Simulating
Wireless Sensor Networks with OMNeT++," Dept.
of Computer Science, Louisiana State Univ.
Retrieved, vol. 9, pp. 2005, 2005.

[20] K. Pawlikowski, H. D. J. Jeong, and J. S. R. Lee,
"On credibility of simulation studies of
telecommunication networks," Communications
Magazine, IEEE, vol. 40, pp. 132-139, 2002.

[21] S. Roundy, D. Steingart, L. Frechette, P. Wright,
and J. Rabaey, "Power Sources for Wireless Sensor

Networks," Energy (J/cm 3), vol. 3780, pp. 1200,
2004.

[22] V. Shnayder, M. Hempstead, B. rong Chen, and M.
Welsh, "PowerTOSSIM: Efficient power
simulation for TinyOS applications," Proc. SenSys,
2004.

[23] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen,
and M. Welsh, "Simulating the power consumption
of large-scale sensor network applications,"
Proceedings of the 2nd international conference on
Embedded networked sensor systems, pp. 188-200,
2004.

[24] C. Negus, "Linux Bible: Boot Up to Fedora,
KNOPPIX, Debian, SUSE, Ubuntu, and 7 Other
Distributions," 2006.

[25] G. Bianchi, L. Fratta, and M. Oliveri, "Performance
Evaluation and Enhancement of the CSMA/CA
MAC Protocol for 802.11 Wireless LANs," Proc.
PIMRC, pp. 392-396, 1996.

[26] M. S. Gast, "802.11 Wireless Networks: The
Definitive Guide," 2002.

[27] B. Liu, S. H. Choo, S. L. Lok, S. M. Leong, S. C.
Lee, F. P. Poon, and H. H. Tan, "Finding the
shortest route using cases, knowledge, and
Djikstra'salgorithm," Expert, IEEE [see also IEEE
Intelligent Systems and Their Applications], vol. 9,
pp. 7-11, 1994.

[28] J. Domingo-Ferrer and J. Herrera-Joancomarti, "A
privacy homomorphism allowing field operations
on encrypted data," I Jornades de Matematica
Discreta i Algorismica, Universitat Politecnica de
Catalunya, 1998.

[29] J. Domingo-Ferrer, "A Provably Secure Additive
and Multiplicative Privacy Homomorphism,"
Information Security Conference, pp. 471–483,
2002.

[30] H. Lee, J. Alves-Foss, and S. Harrison, "The use of
encrypted functions for mobile agent security,"
System Sciences, 2004. Proceedings of the 37th
Annual Hawaii International Conference on, pp.
297-306, 2004.

