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Abstract- Wireless Sensor Networks’ (WSN) Data 
aggregation is substantial in eliminating information 
redundancy and increasing the lifetime of the network. 
However, in its implementation, the data are being 
transmitted in clear hence are prone to security attacks. 
The Homomorphic Encryption Schemes (HES) provide 
the most advantage in securing the data on limited-
resourced WSN devices by allowing operations to be 
performed on the ciphertext as if the operations are 
performed on the plaintext. The other conventional 
encryption schemes fall short compared with HES 
because they demand too much of resources. The HES 
that secures WSN’s data aggregation can conserve the 
much needed power source while providing the 
security. When HES is used, the End-to-End encryption 
is achieved where the information is secured from the 
source to the destination. In this paper, we show the 
performance, the feasibility and the scalability of 
Domingo Ferrer’s a New Privacy Homomorphism (DF 
a New PH) on large scale simulation framework 
OMNet++. In this simulation MICA2 sensor nodes are 
used and up to 11000 sensors are deployed. We also 
show that DF a New PH algorithm, implemented in 
C++, has fast performance and low power 
requirements, feasible to be implemented inside MICA2 
sensor nodes and scalable to thousands of sensor nodes 
without straining the lifetime of the whole network.  
 

Index Terms—Wireless sensor networks, Data 
aggregation, Homomorphic encryption schemes. 
 

1 Introduction 
 

A WSN consists of inexpensive and low power 
sensor nodes that are capable of computation, storage 
and communication. The sensor node by itself has 
limited capabilities: limited computing resource (slow 
computing, small storage, and limited power source), 
unreliable type of communication (unreliable data 
transfer, limited data rate, and limited communication 
range), unattended operation (limited trust, complex 

remote management). However, adding more nodes, 
these seemingly limited devices start creating a 
powerful infrastructure which a user can use for a 
particular application of providing high resolution 
information about sensed phenomena[1] [2] [3] [4] . 

Because of the nature of WSN data driven networks, 
it raises new threats that are different from what we 
faced before. WSN allows massive data collection, 
coordinated analysis, and automated event correlation. 
For instance, WSN enables routine tracking of 
people/vehicles over long periods of time, with 
troubling implications. With that in mind, the need of 
securing the data kept inside WSN is paramount [1] [2] 
[3] [4] [5] [6] [7] [8] [9].  

The data gathered by the sensor nodes in most 
scenarios are environmental data (e.g. temperature) 
which will be processed inside the network and will end 
up at one central point, the Sink node. Since the energy 
consumption increases linearly with the amount of 
transmitted data, a data aggregation approach helps 
increase the overall lifetime of WSN [6] [7] [8] [9]. 
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In WSN, the nodes are functionally separated into 
sensor, forwarding, aggregator, and sink node. Figure 1 
explains the data flow from sensor nodes to sink node. 
Sensor nodes sense the environment and send the data 
to the aggregator node. Aggregator node aggregates the 
data received from the sensor nodes. The aggregation 
function may be the function of Counting (sum, 
average, etc), Comparing (maximum, minimum), or 
Detecting (motion). The forwarding node just forwards 
the data and its function usually is combined with the 
aggregator node. Sink node, assumed to have more 
resource than the other nodes, is where the information 
ends up [6] [7] [8] [9] [10].  

Aggregator nodes, located in the middle of the 
network, are maintaining the infrastructure of the 
network. The lost of an aggregator node situated on the 
network critical point might cripple the network. 
Whereas the sensor nodes, located on the edges of the 
network, persist mostly in sleep mode until the sink 
node queries the network or the environment triggers 
the event which requires them to activate [6] [7] [8] [9].  

Two important issues in securing WSN are node 
capture and power conservation. Wide deployment in 
an open area makes WSN prone to node attacks. Most 
conventional security measures are infeasible to be 
implemented in limited-resource WSN because they 
consume too much energy which shortens the node 
lifetime[1] [2] [3] [5] [11]. The HES can secure WSN’s 
data aggregation while conserve the much needed 
power source  [6] [7] [8] [9].  

The HES have the property of additive or 
multiplicative homomorphism. In additive 
homomorphism, decrypting the sum of two ciphertext is 
same as addition of two plaintext (x,y) represented as 
x+y=Dk(Ek(x)+Ek(y)). In multiplicative homomorphism, 
decrypting the product of two ciphertext is same as 
multiplication of two plaintext. Multiplicative 
homomorphism is mathematically represented as 
x*y=Dk(Ek(x)*Ek(y)). The advantage of using 
homomorphic encryption is that the intermediate 
aggregator node need not decrypt and then encrypt data 
to perform the aggregation operation  [6] [7] [8] [9]. It 
can perform the aggregation operation using only 
encrypted data. 

 Before committing time and money on the actual 
WSN deployment, we used a robust simulation 
framework, OMNet++[12] based on C++[13], to test the 
feasibility of the DF a New PH scheme on the 
MICA2[14] sensor nodes. Up to 11000 MICA2 sensor 
nodes are deployed in this simulation.  

This paper is organized as follows. In section 2, we 
briefly describe the overview of homomorphic 
encryption schemes. In section 3, we briefly describe 
the implementation of DF a New PH in the simulation. 
In section 4, we discuss the simulation results. Finally, 

in section 5 conclusions are given. 
2 Homomorphic Encryption 

Schemes (HES) 
 
In this section, we give an overview of the HES 

advantages which benefit WSN. And also one particular 
HES, DF a New PH scheme is discussed.  
 
2.1 The HES Advantages 
 

Formally HES is described as: given two ciphertext 
resulted from two values x and y, one can do operations 
directly on the ciphertext without knowing the plaintext 
or the decryption keys[5] [6] [7] [8] [9] [15]. 

Traditional WSN data aggregation requires repeat 
cycles of decryption-re-encryption-operation every time 
the sensor node sends encrypted data. The HES cuts 
down those steps. The sensor nodes can spend most of 
their time in sleep mode which in turn prolong the node 
lifetime. 

End to End Security, where the information is 
concealed from the source through the destination, is 
achieved because the infrastructure nodes, such as 
aggregator nodes, do not have to keep or know any 
secret keys[6] [7] [8] [9].  
 
2.2 Domingo Ferrer’s a New Privacy 

Homomorphism (DF a New PH) 
 

DF a New PH is introduced in [16] which is a 
homomorphic encryption scheme not vulnerable to 
Known Ciphertext Attacks[17]. Once the value is 
acquired by the sensor node, the algorithm splits the 
value into several parts. Each of split value then is 
encrypted and sent to Aggregator node. The values are 
then can be added in the aggregator node. Only the Sink 
node will be able to decrypt aggregated data to get the 
real value. 

Let us look into the protocol in detail as given in [6] 
[8][16]. In this protocol n and m are the public 
parameters (available to every sensor node). The secret 
parameters, two large prime numbers p and q, where 
m= p * q, are only available to the Sink and sensor 
nodes. The number 'n' represents the split of the 
plaintext. The secret keys are p, q, xp, xq. Here, xp ∈ Zp 

and xq ∈ Zq. 
Encryption operation is performed by selecting the 

plaintext a∈ Zm.  We then split a into secret numbers 
 a1, a2 ... an, such that a = (a1+a2 ..+ai+..an )mod m and ai∈Zm.
Ek (a) = (a1 xp mod p, a1 xq mod q), (a2 x2

p mod p, a2 x2
q mod 

q)... (an xn
p mod p, an xn

q mod q) 
Decryption operation is performed by computing 

scalar product of the ith pair [mod p, mod q] by [x-i
p mod 



 

p, x-i
q mod q] to get [ai mod p, ai mod q]. The pairs are 

then added up to get [a mod p, a mod q]. Finally, 
Chinese remainder theorem (CRT) [18] is performed to 
get a mod m. 

This homomorphic scheme has the property of 
additive and multiplicative homomorphism. We have to 
acknowledge that this scheme is not secure against 
Known Plaintext Attacks [17].  

     
3 Implementation of DF a New PH 

algorithm on Large Scale 
Simulation 

 
OMNet++ [12] [19], based on C++[13], is a discrete 

event driven platform in which we perform the steady 
state simulation. Even though the transient state 
simulation which focuses on the initial configuration is 
also important, we focus on the long term effect of the 
security implementation to the performance of the 
sensor nodes[20].  

The simulator enables us to control the time frame 
and the level of details of the results. When it performs 
the encryption, the simulation goes into unit time 
advance which captures the minute details of the CPU, 
Memory and Radio operations. When the sensor nodes 
are in the sleeping mode, the simulator goes into event 
advance  which progress the simulation quicker [20]. 

To identify the algorithm parameters which give the 
best performance and the longer lifetime along with the 
desired security, we will compare the performance of 
the sensor node in performing the algorithm on different 
parameters. On larger scale, we simulate the sensor 
node within a cluster and within a network, up to 11000 
sensor nodes to identify the performance of the 
aggregator node. 

 
3.1 The measurements of Performance, 

Feasibility, and Scalability. 
 

 In order to compare the Performance, the Feasibility 
and the Scalability of the implemented encryption 
scheme, we measure the power usage (in milliAmpere) 
and the execution time (in µs) that a sensor node 
requires to complete its operation.  
 The dynamics of power usage and execution time are 
important to determine the node’s lifetime and 
ultimately to the network’s lifetime. For example, one 
activity might consume high energy, but if it is done 
sparingly, it might still be feasible for WSN. On the 
other hand, a small power usage activity, like SLEEP, if 
done continuously might tremendously shortened the 
node’s lifetime[21]. 

 On the simulation, we compare of three major energy 
consumer node devices; they are: the CPU, the 
Memory, and the Radio. The CPU will be active the 
whole time while the sensor node is encrypting the data.
  

The memory has two states: READ and WRITE 
states, where the WRITE state consumes higher energy 
than READ states. The ideal algorithm is to have lesser 
WRITE states and lesser execution time. The Radio 
module will employ several Transmission power level 
depending the inter-node distant, the length of the 
message, and traffic condition of the wireless 
communication channels [21] [22] [23]. 
 
3.2 The Simulation Specifications 
 

The simulation environment is an Intel Pentium Xeon 
dual-core 2GHz, 2GB RAM at CompCore facility at 
CSU East Bay (www.compcore.csueastbay.edu). The 
Operating System is Ubuntu Linux 6.10 [24]. The code 
is developed in C++[13] . 

Due to the in depth research and the wide adoption 
on current WSN applications, we based the simulation 
on MICA2™ sensor nodes[14][22]. 

The randomly sampled sensor node is situated within 
a cluster of sensor nodes consists of ten sensor nodes 
and one aggregator node (Figure 2). The sampling size 
is from 100 simulation runs to get the average 
performance of the sensor node in performing the same 
encryption with the same plaintext size and key size 
parameters. 

 Sink 

 
Figure 2: Simulation configuration 

Figure 2 shows the simulation configuration of one 
cluster of sensor nodes. The ten sensor nodes are 
reporting the sensed data to the Aggregator node in the 
middle. After the data values are added up (we selected 
addition aggregation function in this simulation), the 
result is sent to the Sink. Then the Sink decrypts the 
aggregated data to recover the real value.  
 On larger level simulation, the network level, we 
simulate the cluster of clusters nodes to see the effect of 

Aggregator 

Sensor



 

larger number of sensor nodes, up to 11000 sensor 
nodes, to the lifetime of the aggregator node. 
 
4 Simulation Results 
 

We measure one cycle of node operation on the 
sensor node performing the following tasks: reading the 
random environment value, performing the encryption 
on the value, putting the encrypted value into 802.11 
MAC [25][26] data frame, waiting for clear wireless 
channel, transmitting the data frame, and putting the 
node into SLEEP state until the next sampling time 
interval. 

To illustrate the simulation result, Figure 3 is used. 
OMNet++’s Plove[12] captured the four lines which 
depict the CPU operation (blue line), the Memory (red 
line), the Radio (green line), and the orange line which 
is the sum of these three operations (total power usage). 
In the next discussions, we only use the sum line to 
compare different parameters used in DF a new PH 
algorithm. 

 
 

 
Figure 3: The detailed graph result example 

 Figure 3 shows one cycle of sensor node operation as 
an example. It consists of four major activities. It starts 
with executing the security algorithm, waiting for clear 
channel, sending the data, and SLEEP (not shown on 
the graph). 
 On the first activity, Executing the security 
algorithm, it shows the CPU is active from 0 to 140µs. 
During that time the node completes the following 
tasks: getting the random environment value, 
performing the encryption on the value, putting the 
encrypted value into 802.11 MAC data frame. The 
Memory is also performing READs (the bottom red- 
lines) and WRITEs (the upper red-lines). The Radio is 
idle most of the time reflected on the low green line. 

The node is Waiting for 80µs for clear channel, 
before it send the data over to the Aggregator node.  

On the third activity, Sending the data, shows all 
three devices activated. During the 400µs, the CPU is 
active the whole time, the Memory performs 3 READs 

and 3 WRITEs, the Radio goes up and down reflecting 
the use of several levels of Transmission power [23]. 

The fourth activity, SLEEP, even though it also 
consumes energy, is omitted from the graph because we 
only want to focus on comparing the performance of 
sensor node in executing the algorithm. 

In the next section, we will compare the performance 
results of implemented DF a New PH algorithm with 
different parameters. To see which parameters provide 
the best performance, we will show only the first 
activity, Executing the algorithm, and the sum of power 
usage of three devices (the sum of CPU, Memory, and 
Radio). And also we will determine the life time of the 
sensor nodes and the aggregator node. 
 
4.1 Different DF a New PH parameters in 

the Sensor Node Simulation. 
 
We implement three different parameters of DF a 

New PH with twenty one alternatives. The first is nine 
alternatives of Different Key Sizes and Fixed Message 
Sizes. The second is Different Message Sizes and Fixed 
Key Sizes, also with nine alternatives. The third is 
Different Message Split and Fixed Message Size, with 
three alternatives. 

 

1. Executing 
security 
algorithm 4. SLEEP; 

not shown 2. Waiting  
3. Sending 
data 4.1.1 Different Key Sizes, Fixed Message 

Sizes, Message Split 2 
 

In this implementation, we are changing the key size 
parameter while keeping the message size fixed. 
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a. 128/128bits (msg size/key size), b. 128/256bits, c.128/512bits,  
d. 256/256bits, e. 256/512bits, f. 256/1024bits,  
g. 512/512bits, h. 512/1024bits, i. 512/2048bits. 

Figure 4: Performance results of DF a New PH with 
different key sizes 

 In terms of total power usage, the lowest is 128/128 
(msg/key - figure 4a) and the highest is 502/2048 



 

(msg/key – figure 4i). Above results confirm that the 
longer the size of key and message, the longer the 
sensor node to complete its cycle of operation. 
4.1.2 Different Message Sizes, Fixed Key 

Sizes, Message Split 2 
 

In this implementation, we are changing the message 
size parameter while keeping the key size fixed. 
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a. 100/512bits (msg size/key size), b. 250/512bits, c. 500/512bits, 
d. 250/1024bits, e. 500/1024bits, f. 1000/1024bits,  
g. 500/2048bits, h. 1000/2048bits, i. 2000/2048bits. 

Figure 5: Performance results of DF a New PH with 
different message sizes 

 
In terms of total power usage, the lowest is 512/100 

(key/msg - figure 5a) and the highest is 2048/2000 
(key/msg – figure 5i). Results confirm that the longer 
the size of key and message, the longer the sensor node 
to complete its cycle of operation. 
 
4.1.3 Different Message Split (Split 3), 

Fixed Message Size, Different Key 
Sizes 

 
In this implementation, we are changing the message 

split parameter to 3 splits while keeping the message 
size fixed. 

 

 
a 

 
b 

 
c 

a. 512/512bits (msg size/key size), b. 512/1024bits,  
c. 512/2048bits 
Figure 6: Performance results of DF a New PH with 

message split 3 
When we compare the same message/key size 

between different splits (Figures 4g-4i and Figures 6a-
6c), by increasing the message split to 3, the sensor 

node  requires more resources (longer CPU active, more 
Memory’s READs and WRITEs) to accommodate 
bigger data processing. 

Across the board, the best performance is on the 
fixed message size 128/128bits (msg/key – figure 4a) 
and the worst performance is tied between the fixed key 
size 2000/2048bits (msg/key – figure 5i) and the 
message split 3 on 512/2048bits (msg/key – figure 6c). 

The higher the power consumed the shorter the 
sensor node’s lifetime is. For illustration, on the 
sampling time interval of once per 1 minute (the sensor 
is active once per 1 minute and SLEEP until the next 
cycle), the sensor node of fixed message size 
128/128bits (msg/key – Figure 4a) can survive for 
14.39 days. While the fixed key size 2000/2048 
(msg/key – Figure 5i) can only survive for 4.72 days. 
And on the message split 3, 512/2048 (msg/key – 
Figure 6c), the node survives for 4.75 days. 

If we increase the sampling time interval, we get a 
substantial improvement of node lifetime. For example, 
if we increase sampling time interval from 
once/1minute to once /4minute, sensor node of 
128/128bits (Figure 4a) lasts 230.23 days, while 
2000/2048bits (Figure 5i) survive for 75.53days. And 
on the message split 3, 512/2048 (msg/key – Figure 6c), 
the node survives for 75.93 days. 
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Figure 7: Node lifetime (in days) of DF a New PH 

implementation 
 

Figure 7 shows the node’s lifetimes of DF a New PH 
implementation, the back row (blue boxes) is on 
different key sizes and fixed message size, the middle 
row (purple boxes) is on different message sizes and 
fixed key size, and the front row (yellow boxes) is on 
message split 3. 

When we increase the key size to four times of the 
message size (from 512/512 to 512/2048bits, split 2 
Figure 7g to 7i), the sensor node lifetime decreases, 
approximately 27.9%.  

This decrease is much worse on the message split 3. 
For example, with the same parameters, the node 



 

lifetime decreases by 48%. As a result, we expect 
substantially shorter lifetimes of sensor nodes for 
message split more than 3. The bigger the message 
splits, the more resources that the sensor node uses to 
accommodate bigger data processing. 

Since the Aggregator node only computes (addition) 
on the encrypted values and no decryption or encryption 
process is required, in this simulation, we also found 
that the Aggregator node performance is not related to 
encryption algorithm performance on the sensor nodes. 
On the other hand, its performance is determined by the 
number of sensor nodes which reports back to it. For 
instance, on cluster of 5 sensor nodes, the aggregator 
node can survive for 9.61 days, as opposed to a 20 
sensor nodes cluster survives for only 3.42 days. 

 
 

 
 
Figure 8: The last aggregator node lifetime (in days) 

of DF a New PH implementation 
 
Figure 8 shows the large scale network level 

simulation model which consists of 1000 clusters (total: 
11000 sensor nodes). In this level, sampling time 
interval is once/4minute and all sensor nodes perform 
DF a New PH with split 2, 512/512bits (msg/key) 
parameters. Sensing area is 500 x 500 square meters. 
The network configuration is based on  Djikstra’s 
Shortest Open Path Algorithm[27]. We collected 
information about the life time of the last aggregator 
node which is an aggregator node directly connected to 
the sink node based on two network configurations. In 
the first configuration where all clusters formed a single 
line – Figure 8, left, and in the second configuration 
where all clusters formed a balanced tree – Figure 8, 
right. The last aggregator node that directly connected 
to the Sink node in first configuration can survive for 
0.52 days and 20.48 days in second configuration. This 
result shows that network configuration rather than the 
security algorithm that is used for end-to-end encryption 
affects the life time of the last aggregator node. 

 
 
 

5 Conclusion 
 

In this paper, we have shown that the DF a New PH 
is feasible to be implemented on MICA2™ sensor 
nodes. We conclude that the shorter the key and the 
message sizes will yield the better sensor node 
performance, while the longer the key and message 
sizes with the bigger message split will yield poor 
performance and shorter sensor node lifetimes. 

While more message splits offer stronger security 
level, it has the consequence of performance penalty 
therefore the message split should be kept at minimum. 
To balance the acceptable level of service and level of 
security, other parameters should be selected based on 
desired performance and the lifetime of sensor nodes. 

There are other potential HES such as DF Allowing 
Field Operations, DF Additive & Multiplicative and 
Mixed Multiplicative (MMH) available [28] [29] [30]. 
These algorithms could also be feasible to be 
implemented on WSN. In the future, we are planning to 
implement these algorithms to find best possible HES 
for providing WSN security. 
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