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Abstract- Software implementations of public-key 
algorithms such RSA and Diffie-Hellman are often 
desired because of their flexibility and cost 
effectiveness. In order to obtain the required level of 
performance on a selected platform, developers turn to 
implement efficient algorithms in machine (assembly) 
languages for basic (kernel) operations. Among these 
basic operations, modular multiplication and 
exponentiation operations play an important role. This 
study concerns with fast software implementations of 
the Montgomery multiplication algorithms. 
Montgomery multiplication algorithms, which are the 
most popular algorithms used in public-key 
cryptography, serve as efficient algorithms for modular 
multiplication and exponentiation operations. In this 
paper implementations of five well known algorithms of 
Montgomery multiplication are given. Algorithms are 
implemented in assembly languages of Intel Pentium 
family and Sun Sparc family microprocessors. In order 
to get comprehensive performance results, they run on 
Windows 95, Windows 98, Windows NT 4.0, and Solaris 
2.5.1 operating systems. The performance results are 
summarized with a comparison of the algorithms based 
on their software performances. 

 
Index Terms — Montgomery Multiplication, RSA and 

Diffie-Hellman Cryptosystems, Public-key cryptography. 
 

1 Introduction 
 

The design and evaluation of a cryptosystem is a 
special topic which requires advanced knowledge of 
combinatorial mathematics, number theory, abstract 
algebra and theoretical computer science. In addition to 
that, high-speed implementations of cryptosystems are 
always an issue in the design and evaluation of a 
cryptosystem. Particularly, many public-key 
cryptosystems [1] [2], such as RSA [3] and Diffie-
Hellman [4] require fast, efficient implementations. 
These cryptosystems employ basic modular operations 
(addition, multiplication and exponentiation) with large 
integer numbers. These integer numbers are generally in 

the range of 1024 to 2048 bits, if not bigger, in many 
today’s public-key cryptosystems. This indicates that 
efficient implementations for these basic modular 
operations are critical for the overall performance of 
many public-key cryptosystem. The performance 
criteria for the modular operations in these public-key 
cryptosystems may be vital since modular operations 
with such large numbers usually cause timing 
variations. This unintentional timing characteristic can 
be used by an attacker to mount timing attacks against 
the public-key cryptosystem to discover the entire 
private secret key [5]. These considerations turn 
developers into implementations of high-speed and 
space efficient algorithms [6] [7] [8]. 

By choosing proper mathematical algorithms for 
implementation of basic modular operations, especially 
for multiplication and exponential operations that are 
clearly the most time consuming operations, overall 
performances of much public-key cryptosystems can be 
improved considerably and this way the non-fixed 
execution time can be avoided. 

There exist some mathematical algorithms to perform 
fast and efficient modular multiplication and modular 
exponentiation operations [9]. In this study, one of these 
efficient algorithms called as Montgomery 
multiplication algorithms, introduced by Peter L. 
Montgomery [10], is investigated and software 
implementations of these algorithms are performed on 
different platforms. Montgomery multiplication 
algorithms constitute the core of the modular 
exponentiation operation used in many public-key 
algorithms. Particularly, Diffie-Hellman and RSA 
private key operations consist of computing C= Ma mod 
n, where M is a massage, n is modulus which is public 
and a is the secret private key. Modular reduction steps 
in this operation usually cause most of the timing 
variations. Montgomery multiplication eliminates the 
mod n reduction steps and as a result, tends to reduce 
the size of the timing characteristics. Also Montgomery 
multiplication algorithms speed up the computation 
operation for modular exponentiations and modular 
multiplications [11]. 



 

In general, Montgomery multiplication algorithm 
computes the Montgomery product as defined by 

 
MonPro(a, b)= a .b .r-1 (mod n) 

 
where the integers a and b are smaller than the modulus 
n and r is relatively prime number to n (gcd (n, r)= 1). 
Even if the algorithm works for any randomly chosen r, 
it is more reasonable to choose r as a power of 2. This is 
because that the operations, particularly divisions with 
power of 2 are fast operations on general-purpose 
microprocessors, resulting in faster implementations. 
The modulus value n then can be taken as an odd 
integer to satisfy the condition gcd (n, r) = 1. 

The computation of MonPro (a-, b-) is achieved as 
follow, 

 
Function MonPro (a-, b-) 

Step1. t:= a- .b-  

Step2. u:= (t + [ t. n' mod r ]. n) / r 
Step3. if u ≥n then return (u-n) else return u 
 

As seen from the MonPro ( ) function above, a-, b- 
numbers which represent the n-residues [12] of the 
numbers a and b should be precalculated and also the 
number n' with property r.r-1-n.n'=1 should be 
precalculated. The integers r-1 and n' can be both 
calculated by using the Extended Euclidean algorithm 
[13]. 

In modular multiplication with c = a.b (mod n) the 
division by n operation is required [14] [15]. In 
Montgomery multiplication the division by r in Step2 is 
a fast operation since r is a power of 2. This shows that 
Montgomery multiplication is a faster algorithm than 
the ordinary multiplication algorithm. However MonPro 
( ) function is useful when there is a need for repeated 
modular multiplication operations. Otherwise 
conversion from an ordinary residue to an n-residue and 
conversion back from an n residue to an ordinary 
residue and computation of n' operations are time 
consuming for a single modular multiplication 
operation. 

In this paper, the five well-known algorithms of 
Montgomery multiplication are studied and these 
algorithms are implemented in the assembly languages 
of Intel Pentium family and Sun Sparc family 
microprocessors. The main objective of the study 
focuses on finding the most efficient algorithm, between 
these five algorithms, that gives best software 
performance results. In order to obtain comprehensive 
performance results, algorithms are run on Windows 95, 
Windows 98, Windows NT 4.0 and Solaris 2.5.1 
operating systems. These algorithms are namely [23], 

 
- Separated Operand Scanning (SOS) 
- Coarsely Integrated Hybrid Scanning (CIHS) 

- Coarsely Integrated Operand Scanning (CIOS)  
- Finely Integrated Operand Scanning (FIOS) 
- Finely Integrated Product Scanning (FIPS) 
 

These algorithms can be organized basically based on 
two factors. The first factor is the one whether 
algorithms perform multiplication and reduction 
operations by integrating them or by separating them. In 
the separated approach, algorithms firstly perform 
multiplication and then perform reduction operations. In 
the integrated approach, algorithms integrate 
multiplication and reduction operations. This 
integration can be either coarse-gained or fine-gained; 
depending on how often algorithm integrates 
multiplication and reduction operations. 

The second factor is the general form of the 
multiplication and reduction. One form is the operand 
scanning and the other form is the product scanning. In 
the operand scanning method, an outer loop moves 
through the words of one of the operands, on the other 
hand in the product scanning method, the loop moves 
through the word of the product itself. This second 
factor is independent from the first factor.   

In the next section implementation methods of the 
Montgomery multiplication algorithms are presented. In 
section 3, Implementation results are discussed and 
finally the conclusions are given in section 4. 

 
2 Implementation of the 

Montgomery Multiplication 
Algorithms 

 
Almost all the implementations of basic functions in 

many cryptosystem are performed in assembly 
languages in order to take the advantage of the specific 
architectural properties of the processor [16] [17]. The 
Montgomery multiplication algorithms listed above, 
require operations with elements of a large finite group 
and need to be optimized on the chosen platform in 
order to obtain the desired high-speed performance. 
Therefore, in the implementations of these algorithms, 
assembly languages of Intel Pentium and Sun Sparc 
family processors are used.  

Each algorithm is implemented as ‘in-line’ assembly 
functions with specific assembly language of related 
microprocessors. Particularly, on Pentium platforms, 
algorithms are written as C functions with in-lined 
assembly and on Sparc platforms they are written as 
complete assembly functions since in-line assembly is 
not flexible due to inability to access the C variables 
within the in-lined assembly code in UNIX (Solaris 
2.5.1) machines.  

Algorithms require nearly same or slightly different 
amount of memory spaces during the execution. This 



 

results from the general form of the algorithms and 
from the way they perform Montgomery multiplication.  

The algorithmic codes for the implemented 
Montgomery multiplication algorithms are presented in 
Table 1 and in Table 2. 

Table 1. Algorithmic codes of SOS, CIHS and CIOS 

 
 

Table 2. Algorithmic codes of FIOS and FIPS 

 
After investigating the algorithmic codes of the 

Montgomery multiplication methods, it can be seen that 
some algorithms are similar to the other one in a way 
they perform Montgomery multiplication such as CIOS 
and FIOS methods. This similarity comes from their 
embedded shifting and interleaving the products.  

The five algorithms perform the Montgomery 
multiplication with the combination of the factors 
mentioned before. For example, Separated Operand 
Scanning (SOS) method performs Montgomery 
multiplication by separating the multiplication and 
reduction operations. In this method, first the product 
a.b is computed with the pseudo code giving below. 

 
for i := 0 to s-1 
C:=0 
for j:= 0 to s-1 
(C,S):=t[i+j]+a[j].b[i]+C 
t[i+j]:=S 
t[i+s]:=C 
 

where the variables a, b and t are arrays of type word, s 
is the number of words of these arrays, C and S are one 
word variables and C represents carry operations. The 
computed product a.b is hold in the memory space of t 
array where t is initially assumed to be zero. Since both 

a and b numbers are s-word numbers, their product will 
result in a t array number with 2s-word length (2ws). 
This operation is illustrated in Figure 1 for input arrays 
whose s=3, 

 
Figure 1. The Partial Products Generated in a 3x3 Array 

Multiplication and Computation of the Product a .b 
In order to multiply two unsigned integers, partial 

products are accumulated in the 2sword array t as 
shown above. The accumulation requires the addition of 
the previous product ti, j, to the partial product xi, j. In 
order to add the previous carry, computed product and 
the accumulated result, the following operation is 
performed, 

 
( C i, j , ti , j ) = a i . b j + C i, j-1 + t i, j 
 

This operation can be accomplished using the code 
segments shown in Table 3 for Intel assembly and for 
Sun Sparc assembly languages respectively.  
 

Table 3. Implementation of Multiplication Operation for Intel and 
Sparc Processors. 

 
 
After finding the t value, SOS algorithm performs the 
second operation in MonPro ( ) function and it 
computes the u using the formula; 
 

u := ( t + m .n ) / r 
 

where m:= t.n'(mod r). In order to compute u value, the 
product m.n is computed with multiplication as shown 
above and this product is added to the t array. This 
operation is shown with next pseudo code below; 
 

for i:= 0 to s-1 
C:=0 
m:=t[i]. n' mod W 
for j:=0 to s-1 
(C,S):= t[i+j]+m.n[j]+C 
t[i+j]:= S 
ADD(t[i+s],C) 
 



 

The ADD function above performs a carry 
propagation adding C to t array. This addition starts 
from its given argument and propagates it until no 
further carry is generated. This ADD function is also 
present in the FIOS and FIPS algorithms as seen in 
Table 1. In Table 4, the codes for performing ADD 
function are shown for both Intel and Sparc assembly 
languages. 

 
Table 4: Implementation of ADD Function for Intel and Sparc 

Processors. 

 
 
Finally the resultant t value is divided with r=2ws to 
find the u array. The division of computed t with r=2ws 
is accomplished by ignoring the lower s words of t 
which is shown with the following pseudo code, 
 

for j:=0 to s 
u[ j]:=t[i+s] 
 

After this shift operation, the u array occupies s+1 
word-length. Finally the third and last operation in 
MonPro( ) function is carried. The multi-precision 
subtraction in Step3 of MonPro( ) is performed to 
reduce u if necessary. 
 

B:=0 
for i:=0 to s-1 
(B,D):=u[i]-n[i]-B 
t[i]:=D 
(B,D):=u[s]-B 
t[s]:=D 
if B=0 then return t[0],t[1],....t[s-1] 
else return u[0],u[1],...,u[s-1] 
 

In above code, B indicates borrow operations. This last 
operation, performs a subtraction of modulus from the 
computed u value, is the same in all implemented 
algorithms. This is also shown in the in Table 1 and 2. 
[for a detailed computation of this final subtraction refer 
to [18]]. 

 On Pentium platforms, the efficiency and the 
performance of an algorithm depends on a number of 
factors, such as parameter size, time-memory tradeoffs, 
processing power availability, software optimization 
and the properties of the algorithms. Also an efficient 
assembler software development requires many 
considerations about the algorithms with a full 
understanding of the microprocessor architecture, like 

pipeline structures, properties of the assembler 
instructions, the rules of the instruction issuing, and 
alignment, the operation multiple functioning units and 
cache and memory structures [19]. 

During the implementation process of the algorithms 
on Pentium and on Sparc platforms, some software 
optimization techniques are used to improve the 
performances of the algorithms. Even if the algorithms 
perform Montgomery multiplication differently, the 
main operations involved in the programs are 
multiplications, additions, addressing and indexing of 
the arrays. In each algorithm the number of these 
additions, multiplications and memory read-write 
operations change slightly. As an example of this 
operation-counting process, the number of each 
operation in the first j-loop of the SOS algorithm is 
calculated and result is given in Figure 2.  

 

 
Figure 2: Calculating the Operations of the inner j-loop in SOS 

Method 
As shown in Figure 2, this inner j loop has s2 

iterations and requires 7s2 total number of operations to 
be performed.  

Multiplication involves two basic operations, the 
generation of partial products, and their accumulation. 
Consequently, there are two ways to speed up 
multiplication; reduce the number of partial products or 
accelerate their accumulation. In order to perform these 
operations, all the registers on both kinds of processors 
are used and also some extra memory spaces, for the 
temporary intermediate values, are allocated on Pentium 
platforms. Particularly in the first approach, since 
Pentium machines have a fewer number of general-
purpose registers than Sparc machines, intermediate 
values like C (carry) and m values are hold in memory 
spaces to let more registers to be used in the 
accumulation. Therefore, in this first approach, general-
purpose registers are used for indexing, loop 
establishment, and for arithmetic operations on Pentium 
platforms. In addition to allocating memory locations 
for these temporary variables, instruction selection for 
integer operations is used whenever it can be applied. 
Complex instructions like 'loop, addcc’  are avoided in 
the implementation and more efficient instructions that 
require fewer clock cycles to decode, are used. This 
type of implementation approach enabled the 
implementation simplicity as well as the rearrangement 
of the integer instructions of the programs by placing 
memory operations between them. However it is 
observed that implementing algorithms with this 



 

approach did not result in the optimum 
implementations. In this first approach, algorithms show 
slow performance results and there are performance 
differences between them. Since the algorithms are not 
using the full advantages of the processors, particularly 
parallel integer pipelines [20], this is an expected result. 
Although the processor could execute two instructions 
simultaneously in this pipelining technology, the data 
dependencies between the consequent instructions 
prevented these instructions to be pipelined in the 
pipeline stages of the processors.  

In second approach, only the necessary memory 
allocations are assigned and all the main operations are 
performed with registers by using them 
interchangeably. Performing memory operations with 
this approach certainly decreased the number of 
memory read and write operations that normally need 
more clock cycles then register operations. However 
more importantly, performing operations this way 
enabled us to increase the parallelism between the 
integer instructions. The software optimization 
techniques that are applied to Intel architecture 
processor became more effective in this second 
approach [21] [22] [23]. As a result we obtained 
improved the performances of the algorithms. As the 
algorithm's performances increase, the performance 
differences between the algorithms decreased. Figure 3 
shows a simple example of this optimization. The code 
that is written for first approach, which requires 5 clock 
cycles to execute, because of the dependency between 
the instructions, are reordered in second approach that 
requires 3 clock cycles to execute. 

 

 
Figure 3: Example of Reordering Optimization Method. 

 

Even if the clock differences between two approaches 
seem unimportant, it becomes considerably large in the 
loops where more integer instructions executed 
repeatedly with larger loop iterations. The parallel 
execution of the instructions in the pipeline stages of the 
processor reduced the necessary operations which 
affects the speed performance of the programs. This 
result can be seen in the Figure 4 where the source code 
of the first inner j-loop of the SOS algorithm is given 
with the computation of the effective instruction 
number. As shown in Figure 4, the numbers of 

instructions that needed to be executed in order to 
perform Montgomery multiplication is decreased. Most 
of the instructions in Figure 4 require one clock cycle to 
execute. 

 
Figure 4: Calculating the Effective Number of Operations for the 

inner j-loop in SOS Method for Pentium Platforms. 
The same calculations can be done for the Sparc 

platforms. On Sparc processor, since there are enough 
number of registers for all arithmetic, addressing and 
indexing operations, there were no memory allocations 
for the intermediate values, which may let more 
registers to be used for arithmetic operations. 
Particularly, for Sparc processors, the software 
optimization is focused on instructions alignment to 
increase parallel execution of instructions in the 
pipelines of the processor. UltraSparc-II processor uses 
a double-instruction-issue pipeline with 9 stages. 
UltraSparc-II is capable of sustaining the execution of 
up to four instructions per cycle, even in the presence of 
conditional branches and cache misses. In addition to 
these properties, UltraSparc-II provides 64-bit RISC 
architecture with on-chip caches and dynamic branch 
prediction capability [24]. Therefore during the 
implementation process on Sparc processors, 
instructions are carefully arranged not to have any data 
dependencies. Also in order to reduce the loop and 
branch mismatch delays during the execution process, 
labels and branches are carefully addressed and placed 
in the programs. Therefore after performing software 
optimization techniques for both Sparc and for Intel 
processors, and by enabling the parallel execution of the 
program’s instructions resulted in performance increase.  

 
3 Implementation Results 
 

The Montgomery multiplication algorithms are 
implemented in the assembly languages of Intel 
Pentium, and Sun Sparc machines. The first Intel 
Pentium processor has the speed of 120 MHz and the 
Intel Pentium-II processor has the speed of 266 MHz. 
The Microsoft Visual C is used in the development of 
the programs and the Microsoft C complier is 
configured to obtain the speed-optimized code for the 
Intel Pentium platform where programs are written as 
in-lined assembly language. The GNU C compiler was 



 

used for the UltraSparc-II 250 MHz platform. The 
programs are embedded into a RSA implementation as 
MonPro( ) functions and performance results are taken 
by executing this RSA implementation over 1000 times 
for a message file with 3KB-file size. In these 
implementations, numbers whose array size s=64 words 
corresponding to 2048 bits are used. The algorithms are 
run on Windows 95, Windows 98, Windows NT 4.0, 
and Solaris 2.5.1 operating systems. The programs’ 
performance results are summarized in Table 5, 6 and 7. 

 
Table 5: Performance Results for Pentium-120 on Windows 95. 

 
 

Table 6: Performance Results for Pentium-II 266 

 
 

Table 7: Performance Results for UltraSparc-II 250 on Solaris 2.5.1 

 
 
In Table 5 and 6, in I-Approach some memory 

allocations and therefore some memory operations are 
used to see their effects on the performance. On the 
other hand, in II-Approach, registers are used as much 
as possible, in all operations, to increase the parallelism 
between integer instructions by removing the data 
dependencies seen in I-Approach. 

As seen from the results, in II-Approach, algorithms 
show better performance results. More importantly, the 
performance differences between each algorithm 

decreases. For the Ultra-Sparc-II, Table 7, algorithms 
show almost the same result.  

The performance increase, in percentage, of each 
algorithm in II-Approach is shown in Table 8 below.  

 
Table 8: Percentage Performance Improvements of Algorithms in 

Approach-II 

 
 
As seen in Table 8, each algorithm shows 

performance increase. This performance increase 
resulted from the applied optimization methods. These 
optimization methods are more effective on Pentium 
processors in II-Approach where the data dependencies 
between integer instructions are removed. The 
performance increase changes with each specific 
algorithm. For example SOS algorithm shows 10 % 
performance increase while CIOS algorithm shows 1% 
increase on the same platform for Pentium-120 after 
optimization process. Because of the code arrangements 
of the programs, this different performance increase 
occurs. In I-Approach for Pentuim-120, CIOS algorithm 
shows best performance. The CIOS and FIPS 
algorithms seem to be the most efficient algorithm on 
Pentium-II 266 platform, with each having 45 and 44 
ms performance values on Windows 98, and Windows 
NT 4.0 platforms. 

In II-Approach, the performance results of 
Montgomery multiplication algorithms show nearly the 
same performance results. With the applied 
optimization methods, program’s performance results 
improved, and they reached an optimum value, which is 
nearly the same for the five algorithms. The reason for 
the programs to have same performance results on 
Pentium-II 266 processor is that the effective number of 
executed instructions decreased with parallel execution 
and therefore all the algorithms have nearly same 
number of executed instructions during the execution 
process. These results show that with an efficient, 
optimized implementation of the algorithms, the 
performance differences presented between programs 
could be up to 5 ms between SOS and FIOS in pentium-
120 machines. This performance differences disappears 
on newer technology processors like Pentium-II 266, 
and it becomes only 1 ms with FIOS and with no 
differences with the others. This result can also be best 
seen from the performance results of programs on Sparc 



 

processor where all algorithms show same performance 
results, only differing in micro seconds. As known, 
Sparc processors have deeply pipelined architecture and 
can execute up to 4 instructions per unit cycle. This 
reduces the effective number of operations. Therefore 
with the same reason as with Pentium machines, the 
effective number of executed instructions becomes 
almost equal for all algorithms and therefore they show 
the same performance results on Sparc platforms. 

 
4 Conclusion 
 

The Montgomery multiplication algorithms to 
perform fast large integer modular multiplication and 
exponentiation operations with stable timing 
characteristics are important algorithms for the overall 
performance results of many public-key cryptosystems. 
After performing the software implementations of five 
well-known algorithms of the Montgomery 
multiplication method in assembly languages of Intel 
Pentium family and Sun Sparc family microprocessors, 
it is found that the performance results of the five 
algorithms are almost the same. Study indicates that the 
algorithm’s performance results improve on newer 
technology product processors and accordingly the 
performance differences between algorithms disappear. 
This is the result of the fact that since the main 
operations involved in the algorithms are integer 
arithmetic operations, the effective number of 
operations needed to perform these integer operations 
can be reduced by using the architectural benefits of 
processors such as parallel execution of integer 
instructions, deeper pipeline stages, additional 
functional instructions and bigger amount of on-cache 
availability. Therefore, by using the architectural 
benefits of these microprocessors combined with the 
usage of efficient and optimum software 
implementation methods, all the implemented 
Montgomery multiplication algorithms show almost the 
same performance results.  
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