

IMPLEMENTATIONS OF MONTGOMERY
MULTIPLICATION ALGORITHMS IN MACHINE

LANGUAGES
 Emre Çelebi, Mesut Gözütok Levent Ertaul
Dept. of Information Security Dept. of Mathematics & Computer Science

Havelsan Corporation California State University, EastBay
Ankara – TURKEY Hayward, CA, USA.
ecelebi, mgozutok@havelsan.com.tr levent.ertaul@csueastbay.edu

Abstract- Software implementations of public-key
algorithms such RSA and Diffie-Hellman are often
desired because of their flexibility and cost
effectiveness. In order to obtain the required level of
performance on a selected platform, developers turn to
implement efficient algorithms in machine (assembly)
languages for basic (kernel) operations. Among these
basic operations, modular multiplication and
exponentiation operations play an important role. This
study concerns with fast software implementations of
the Montgomery multiplication algorithms.
Montgomery multiplication algorithms, which are the
most popular algorithms used in public-key
cryptography, serve as efficient algorithms for modular
multiplication and exponentiation operations. In this
paper implementations of five well known algorithms of
Montgomery multiplication are given. Algorithms are
implemented in assembly languages of Intel Pentium
family and Sun Sparc family microprocessors. In order
to get comprehensive performance results, they run on
Windows 95, Windows 98, Windows NT 4.0, and Solaris
2.5.1 operating systems. The performance results are
summarized with a comparison of the algorithms based
on their software performances.

Index Terms — Montgomery Multiplication, RSA and

Diffie-Hellman Cryptosystems, Public-key cryptography.

1 Introduction

The design and evaluation of a cryptosystem is a
special topic which requires advanced knowledge of
combinatorial mathematics, number theory, abstract
algebra and theoretical computer science. In addition to
that, high-speed implementations of cryptosystems are
always an issue in the design and evaluation of a
cryptosystem. Particularly, many public-key
cryptosystems [1] [2], such as RSA [3] and Diffie-
Hellman [4] require fast, efficient implementations.
These cryptosystems employ basic modular operations
(addition, multiplication and exponentiation) with large
integer numbers. These integer numbers are generally in

the range of 1024 to 2048 bits, if not bigger, in many
today’s public-key cryptosystems. This indicates that
efficient implementations for these basic modular
operations are critical for the overall performance of
many public-key cryptosystem. The performance
criteria for the modular operations in these public-key
cryptosystems may be vital since modular operations
with such large numbers usually cause timing
variations. This unintentional timing characteristic can
be used by an attacker to mount timing attacks against
the public-key cryptosystem to discover the entire
private secret key [5]. These considerations turn
developers into implementations of high-speed and
space efficient algorithms [6] [7] [8].

By choosing proper mathematical algorithms for
implementation of basic modular operations, especially
for multiplication and exponential operations that are
clearly the most time consuming operations, overall
performances of much public-key cryptosystems can be
improved considerably and this way the non-fixed
execution time can be avoided.

There exist some mathematical algorithms to perform
fast and efficient modular multiplication and modular
exponentiation operations [9]. In this study, one of these
efficient algorithms called as Montgomery
multiplication algorithms, introduced by Peter L.
Montgomery [10], is investigated and software
implementations of these algorithms are performed on
different platforms. Montgomery multiplication
algorithms constitute the core of the modular
exponentiation operation used in many public-key
algorithms. Particularly, Diffie-Hellman and RSA
private key operations consist of computing C= Ma mod
n, where M is a massage, n is modulus which is public
and a is the secret private key. Modular reduction steps
in this operation usually cause most of the timing
variations. Montgomery multiplication eliminates the
mod n reduction steps and as a result, tends to reduce
the size of the timing characteristics. Also Montgomery
multiplication algorithms speed up the computation
operation for modular exponentiations and modular
multiplications [11].

In general, Montgomery multiplication algorithm
computes the Montgomery product as defined by

MonPro(a, b)= a .b .r-1 (mod n)

where the integers a and b are smaller than the modulus
n and r is relatively prime number to n (gcd (n, r)= 1).
Even if the algorithm works for any randomly chosen r,
it is more reasonable to choose r as a power of 2. This is
because that the operations, particularly divisions with
power of 2 are fast operations on general-purpose
microprocessors, resulting in faster implementations.
The modulus value n then can be taken as an odd
integer to satisfy the condition gcd (n, r) = 1.

The computation of MonPro (a-, b-) is achieved as
follow,

Function MonPro (a-, b-)

Step1. t:= a- .b-

Step2. u:= (t + [t. n' mod r]. n) / r
Step3. if u ≥n then return (u-n) else return u

As seen from the MonPro () function above, a-, b-
numbers which represent the n-residues [12] of the
numbers a and b should be precalculated and also the
number n' with property r.r-1-n.n'=1 should be
precalculated. The integers r-1 and n' can be both
calculated by using the Extended Euclidean algorithm
[13].

In modular multiplication with c = a.b (mod n) the
division by n operation is required [14] [15]. In
Montgomery multiplication the division by r in Step2 is
a fast operation since r is a power of 2. This shows that
Montgomery multiplication is a faster algorithm than
the ordinary multiplication algorithm. However MonPro
() function is useful when there is a need for repeated
modular multiplication operations. Otherwise
conversion from an ordinary residue to an n-residue and
conversion back from an n residue to an ordinary
residue and computation of n' operations are time
consuming for a single modular multiplication
operation.

In this paper, the five well-known algorithms of
Montgomery multiplication are studied and these
algorithms are implemented in the assembly languages
of Intel Pentium family and Sun Sparc family
microprocessors. The main objective of the study
focuses on finding the most efficient algorithm, between
these five algorithms, that gives best software
performance results. In order to obtain comprehensive
performance results, algorithms are run on Windows 95,
Windows 98, Windows NT 4.0 and Solaris 2.5.1
operating systems. These algorithms are namely [23],

- Separated Operand Scanning (SOS)
- Coarsely Integrated Hybrid Scanning (CIHS)

- Coarsely Integrated Operand Scanning (CIOS)
- Finely Integrated Operand Scanning (FIOS)
- Finely Integrated Product Scanning (FIPS)

These algorithms can be organized basically based on
two factors. The first factor is the one whether
algorithms perform multiplication and reduction
operations by integrating them or by separating them. In
the separated approach, algorithms firstly perform
multiplication and then perform reduction operations. In
the integrated approach, algorithms integrate
multiplication and reduction operations. This
integration can be either coarse-gained or fine-gained;
depending on how often algorithm integrates
multiplication and reduction operations.

The second factor is the general form of the
multiplication and reduction. One form is the operand
scanning and the other form is the product scanning. In
the operand scanning method, an outer loop moves
through the words of one of the operands, on the other
hand in the product scanning method, the loop moves
through the word of the product itself. This second
factor is independent from the first factor.

In the next section implementation methods of the
Montgomery multiplication algorithms are presented. In
section 3, Implementation results are discussed and
finally the conclusions are given in section 4.

2 Implementation of the

Montgomery Multiplication
Algorithms

Almost all the implementations of basic functions in

many cryptosystem are performed in assembly
languages in order to take the advantage of the specific
architectural properties of the processor [16] [17]. The
Montgomery multiplication algorithms listed above,
require operations with elements of a large finite group
and need to be optimized on the chosen platform in
order to obtain the desired high-speed performance.
Therefore, in the implementations of these algorithms,
assembly languages of Intel Pentium and Sun Sparc
family processors are used.

Each algorithm is implemented as ‘in-line’ assembly
functions with specific assembly language of related
microprocessors. Particularly, on Pentium platforms,
algorithms are written as C functions with in-lined
assembly and on Sparc platforms they are written as
complete assembly functions since in-line assembly is
not flexible due to inability to access the C variables
within the in-lined assembly code in UNIX (Solaris
2.5.1) machines.

Algorithms require nearly same or slightly different
amount of memory spaces during the execution. This

results from the general form of the algorithms and
from the way they perform Montgomery multiplication.

The algorithmic codes for the implemented
Montgomery multiplication algorithms are presented in
Table 1 and in Table 2.

Table 1. Algorithmic codes of SOS, CIHS and CIOS

Table 2. Algorithmic codes of FIOS and FIPS

After investigating the algorithmic codes of the

Montgomery multiplication methods, it can be seen that
some algorithms are similar to the other one in a way
they perform Montgomery multiplication such as CIOS
and FIOS methods. This similarity comes from their
embedded shifting and interleaving the products.

The five algorithms perform the Montgomery
multiplication with the combination of the factors
mentioned before. For example, Separated Operand
Scanning (SOS) method performs Montgomery
multiplication by separating the multiplication and
reduction operations. In this method, first the product
a.b is computed with the pseudo code giving below.

for i := 0 to s-1
C:=0
for j:= 0 to s-1
(C,S):=t[i+j]+a[j].b[i]+C
t[i+j]:=S
t[i+s]:=C

where the variables a, b and t are arrays of type word, s
is the number of words of these arrays, C and S are one
word variables and C represents carry operations. The
computed product a.b is hold in the memory space of t
array where t is initially assumed to be zero. Since both

a and b numbers are s-word numbers, their product will
result in a t array number with 2s-word length (2ws).
This operation is illustrated in Figure 1 for input arrays
whose s=3,

Figure 1. The Partial Products Generated in a 3x3 Array

Multiplication and Computation of the Product a .b
In order to multiply two unsigned integers, partial

products are accumulated in the 2sword array t as
shown above. The accumulation requires the addition of
the previous product ti, j, to the partial product xi, j. In
order to add the previous carry, computed product and
the accumulated result, the following operation is
performed,

(C i, j , ti , j) = a i . b j + C i, j-1 + t i, j

This operation can be accomplished using the code
segments shown in Table 3 for Intel assembly and for
Sun Sparc assembly languages respectively.

Table 3. Implementation of Multiplication Operation for Intel and
Sparc Processors.

After finding the t value, SOS algorithm performs the
second operation in MonPro () function and it
computes the u using the formula;

u := (t + m .n) / r

where m:= t.n'(mod r). In order to compute u value, the
product m.n is computed with multiplication as shown
above and this product is added to the t array. This
operation is shown with next pseudo code below;

for i:= 0 to s-1
C:=0
m:=t[i]. n' mod W
for j:=0 to s-1
(C,S):= t[i+j]+m.n[j]+C
t[i+j]:= S
ADD(t[i+s],C)

The ADD function above performs a carry
propagation adding C to t array. This addition starts
from its given argument and propagates it until no
further carry is generated. This ADD function is also
present in the FIOS and FIPS algorithms as seen in
Table 1. In Table 4, the codes for performing ADD
function are shown for both Intel and Sparc assembly
languages.

Table 4: Implementation of ADD Function for Intel and Sparc

Processors.

Finally the resultant t value is divided with r=2ws to
find the u array. The division of computed t with r=2ws
is accomplished by ignoring the lower s words of t
which is shown with the following pseudo code,

for j:=0 to s
u[j]:=t[i+s]

After this shift operation, the u array occupies s+1
word-length. Finally the third and last operation in
MonPro() function is carried. The multi-precision
subtraction in Step3 of MonPro() is performed to
reduce u if necessary.

B:=0
for i:=0 to s-1
(B,D):=u[i]-n[i]-B
t[i]:=D
(B,D):=u[s]-B
t[s]:=D
if B=0 then return t[0],t[1],....t[s-1]
else return u[0],u[1],...,u[s-1]

In above code, B indicates borrow operations. This last
operation, performs a subtraction of modulus from the
computed u value, is the same in all implemented
algorithms. This is also shown in the in Table 1 and 2.
[for a detailed computation of this final subtraction refer
to [18]].

 On Pentium platforms, the efficiency and the
performance of an algorithm depends on a number of
factors, such as parameter size, time-memory tradeoffs,
processing power availability, software optimization
and the properties of the algorithms. Also an efficient
assembler software development requires many
considerations about the algorithms with a full
understanding of the microprocessor architecture, like

pipeline structures, properties of the assembler
instructions, the rules of the instruction issuing, and
alignment, the operation multiple functioning units and
cache and memory structures [19].

During the implementation process of the algorithms
on Pentium and on Sparc platforms, some software
optimization techniques are used to improve the
performances of the algorithms. Even if the algorithms
perform Montgomery multiplication differently, the
main operations involved in the programs are
multiplications, additions, addressing and indexing of
the arrays. In each algorithm the number of these
additions, multiplications and memory read-write
operations change slightly. As an example of this
operation-counting process, the number of each
operation in the first j-loop of the SOS algorithm is
calculated and result is given in Figure 2.

Figure 2: Calculating the Operations of the inner j-loop in SOS

Method
As shown in Figure 2, this inner j loop has s2

iterations and requires 7s2 total number of operations to
be performed.

Multiplication involves two basic operations, the
generation of partial products, and their accumulation.
Consequently, there are two ways to speed up
multiplication; reduce the number of partial products or
accelerate their accumulation. In order to perform these
operations, all the registers on both kinds of processors
are used and also some extra memory spaces, for the
temporary intermediate values, are allocated on Pentium
platforms. Particularly in the first approach, since
Pentium machines have a fewer number of general-
purpose registers than Sparc machines, intermediate
values like C (carry) and m values are hold in memory
spaces to let more registers to be used in the
accumulation. Therefore, in this first approach, general-
purpose registers are used for indexing, loop
establishment, and for arithmetic operations on Pentium
platforms. In addition to allocating memory locations
for these temporary variables, instruction selection for
integer operations is used whenever it can be applied.
Complex instructions like 'loop, addcc’ are avoided in
the implementation and more efficient instructions that
require fewer clock cycles to decode, are used. This
type of implementation approach enabled the
implementation simplicity as well as the rearrangement
of the integer instructions of the programs by placing
memory operations between them. However it is
observed that implementing algorithms with this

approach did not result in the optimum
implementations. In this first approach, algorithms show
slow performance results and there are performance
differences between them. Since the algorithms are not
using the full advantages of the processors, particularly
parallel integer pipelines [20], this is an expected result.
Although the processor could execute two instructions
simultaneously in this pipelining technology, the data
dependencies between the consequent instructions
prevented these instructions to be pipelined in the
pipeline stages of the processors.

In second approach, only the necessary memory
allocations are assigned and all the main operations are
performed with registers by using them
interchangeably. Performing memory operations with
this approach certainly decreased the number of
memory read and write operations that normally need
more clock cycles then register operations. However
more importantly, performing operations this way
enabled us to increase the parallelism between the
integer instructions. The software optimization
techniques that are applied to Intel architecture
processor became more effective in this second
approach [21] [22] [23]. As a result we obtained
improved the performances of the algorithms. As the
algorithm's performances increase, the performance
differences between the algorithms decreased. Figure 3
shows a simple example of this optimization. The code
that is written for first approach, which requires 5 clock
cycles to execute, because of the dependency between
the instructions, are reordered in second approach that
requires 3 clock cycles to execute.

Figure 3: Example of Reordering Optimization Method.

Even if the clock differences between two approaches
seem unimportant, it becomes considerably large in the
loops where more integer instructions executed
repeatedly with larger loop iterations. The parallel
execution of the instructions in the pipeline stages of the
processor reduced the necessary operations which
affects the speed performance of the programs. This
result can be seen in the Figure 4 where the source code
of the first inner j-loop of the SOS algorithm is given
with the computation of the effective instruction
number. As shown in Figure 4, the numbers of

instructions that needed to be executed in order to
perform Montgomery multiplication is decreased. Most
of the instructions in Figure 4 require one clock cycle to
execute.

Figure 4: Calculating the Effective Number of Operations for the

inner j-loop in SOS Method for Pentium Platforms.
The same calculations can be done for the Sparc

platforms. On Sparc processor, since there are enough
number of registers for all arithmetic, addressing and
indexing operations, there were no memory allocations
for the intermediate values, which may let more
registers to be used for arithmetic operations.
Particularly, for Sparc processors, the software
optimization is focused on instructions alignment to
increase parallel execution of instructions in the
pipelines of the processor. UltraSparc-II processor uses
a double-instruction-issue pipeline with 9 stages.
UltraSparc-II is capable of sustaining the execution of
up to four instructions per cycle, even in the presence of
conditional branches and cache misses. In addition to
these properties, UltraSparc-II provides 64-bit RISC
architecture with on-chip caches and dynamic branch
prediction capability [24]. Therefore during the
implementation process on Sparc processors,
instructions are carefully arranged not to have any data
dependencies. Also in order to reduce the loop and
branch mismatch delays during the execution process,
labels and branches are carefully addressed and placed
in the programs. Therefore after performing software
optimization techniques for both Sparc and for Intel
processors, and by enabling the parallel execution of the
program’s instructions resulted in performance increase.

3 Implementation Results

The Montgomery multiplication algorithms are
implemented in the assembly languages of Intel
Pentium, and Sun Sparc machines. The first Intel
Pentium processor has the speed of 120 MHz and the
Intel Pentium-II processor has the speed of 266 MHz.
The Microsoft Visual C is used in the development of
the programs and the Microsoft C complier is
configured to obtain the speed-optimized code for the
Intel Pentium platform where programs are written as
in-lined assembly language. The GNU C compiler was

used for the UltraSparc-II 250 MHz platform. The
programs are embedded into a RSA implementation as
MonPro() functions and performance results are taken
by executing this RSA implementation over 1000 times
for a message file with 3KB-file size. In these
implementations, numbers whose array size s=64 words
corresponding to 2048 bits are used. The algorithms are
run on Windows 95, Windows 98, Windows NT 4.0,
and Solaris 2.5.1 operating systems. The programs’
performance results are summarized in Table 5, 6 and 7.

Table 5: Performance Results for Pentium-120 on Windows 95.

Table 6: Performance Results for Pentium-II 266

Table 7: Performance Results for UltraSparc-II 250 on Solaris 2.5.1

In Table 5 and 6, in I-Approach some memory

allocations and therefore some memory operations are
used to see their effects on the performance. On the
other hand, in II-Approach, registers are used as much
as possible, in all operations, to increase the parallelism
between integer instructions by removing the data
dependencies seen in I-Approach.

As seen from the results, in II-Approach, algorithms
show better performance results. More importantly, the
performance differences between each algorithm

decreases. For the Ultra-Sparc-II, Table 7, algorithms
show almost the same result.

The performance increase, in percentage, of each
algorithm in II-Approach is shown in Table 8 below.

Table 8: Percentage Performance Improvements of Algorithms in

Approach-II

As seen in Table 8, each algorithm shows

performance increase. This performance increase
resulted from the applied optimization methods. These
optimization methods are more effective on Pentium
processors in II-Approach where the data dependencies
between integer instructions are removed. The
performance increase changes with each specific
algorithm. For example SOS algorithm shows 10 %
performance increase while CIOS algorithm shows 1%
increase on the same platform for Pentium-120 after
optimization process. Because of the code arrangements
of the programs, this different performance increase
occurs. In I-Approach for Pentuim-120, CIOS algorithm
shows best performance. The CIOS and FIPS
algorithms seem to be the most efficient algorithm on
Pentium-II 266 platform, with each having 45 and 44
ms performance values on Windows 98, and Windows
NT 4.0 platforms.

In II-Approach, the performance results of
Montgomery multiplication algorithms show nearly the
same performance results. With the applied
optimization methods, program’s performance results
improved, and they reached an optimum value, which is
nearly the same for the five algorithms. The reason for
the programs to have same performance results on
Pentium-II 266 processor is that the effective number of
executed instructions decreased with parallel execution
and therefore all the algorithms have nearly same
number of executed instructions during the execution
process. These results show that with an efficient,
optimized implementation of the algorithms, the
performance differences presented between programs
could be up to 5 ms between SOS and FIOS in pentium-
120 machines. This performance differences disappears
on newer technology processors like Pentium-II 266,
and it becomes only 1 ms with FIOS and with no
differences with the others. This result can also be best
seen from the performance results of programs on Sparc

processor where all algorithms show same performance
results, only differing in micro seconds. As known,
Sparc processors have deeply pipelined architecture and
can execute up to 4 instructions per unit cycle. This
reduces the effective number of operations. Therefore
with the same reason as with Pentium machines, the
effective number of executed instructions becomes
almost equal for all algorithms and therefore they show
the same performance results on Sparc platforms.

4 Conclusion

The Montgomery multiplication algorithms to
perform fast large integer modular multiplication and
exponentiation operations with stable timing
characteristics are important algorithms for the overall
performance results of many public-key cryptosystems.
After performing the software implementations of five
well-known algorithms of the Montgomery
multiplication method in assembly languages of Intel
Pentium family and Sun Sparc family microprocessors,
it is found that the performance results of the five
algorithms are almost the same. Study indicates that the
algorithm’s performance results improve on newer
technology product processors and accordingly the
performance differences between algorithms disappear.
This is the result of the fact that since the main
operations involved in the algorithms are integer
arithmetic operations, the effective number of
operations needed to perform these integer operations
can be reduced by using the architectural benefits of
processors such as parallel execution of integer
instructions, deeper pipeline stages, additional
functional instructions and bigger amount of on-cache
availability. Therefore, by using the architectural
benefits of these microprocessors combined with the
usage of efficient and optimum software
implementation methods, all the implemented
Montgomery multiplication algorithms show almost the
same performance results.

5 REFERENCES

1. A.Menezes, P.van Oorschot & S.Vanstone, Public-Key

Cryptography,Handbook of Applied Cryptography, 1997,
pp. 25- 33.

2. Bruce Schneider , Public-Key Algorithms, Applied
Cryptography, 1996, pp. 461-482.

3. R.L. Rivest, A. Shamir & L.M. Adleman, " A method for
obtaining Digital Signatures and Public-Key
Cryptosystems ", Communications of the ACM, vol.21,
1978, pp.120-126.

4. W. Diffie and M.E. Hellman, " New Directions in
Cryptography ", IEEE Transactions on Information
Theory, IT-22, n.6, Nov 1976, pp. 644-654.

5. Paul C. Kocher, " Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems ",
Advances in Cryptology, Proc. Crypto96. Lecture Notes
in Computer Science, vol 1109, N. Koblizt editor,
Spring-Verlag, 1996,pp. 104-113.

6. A.Bosselaers, R.Govaerts, J.Vandewalle, Comparison of
three modular reduction functions, Crypto'93, pp.175-
186.

7. Y.Yacobi, Exponentiating faster with addition chains,
Eurocrypt'90, 1991, pp. 222-229.

8. A.Selby, C.Mitcheil, Algorithms for software
implementations of RSA. IEE Proceedings(E), vol.136,
NO.3, May, 1989, pp. 166-170.

9. P.D Barrett, " Implementing the Rivest Shamir and
Adleman public key encryption algorithm on a standard
signal processor," Advances in Cryptography, Proc.
Crypto '86, LNCS 263, A.M. Odlyzko, Ed., Springer -
Verlag, 1987, pp. 311-323.

10. P.L Montgomery, " Modular Multiplication without Trial
Division", Math. Computation, vol. 44, 1985, pp. 519-
521.

11. Thierry Moreau, Software Acceleration for Public Key
Cryptography Connotech Experts-conceals Inc, May
1977.

12. A.Menezes, P.van Oorschot & S.Vanstone, Number
Theory , Handbook of Applied Cryptography, 1997, pp.
242-248.

13. D.E. Knuth. The Art of Computer programming:
Seminumerical Algorithms,volume 2. Reading, MA:
Addison-Wesley, Second edition, 1981.

14. A.Menezes, P.van Oorschot and S.Vanstone, Multiple
precision modular arithmetic, Handbook of Applied
Cryptography, 1997, pp 599 – 606.

15. Bruce Schneider, Modular arithmetic, Applied
Cryptography,1996, pp.242-245.

16. S.R Dusse and B.S. Kaliska, Jr. A cryptographic library
for Motorola DSP56000. In I.B.Damgard, editor,
Advances in Cryptology – EUROCYPT90, Lecture
Notes in Computer Science, No. 473, New York, NY :
Springer-Verlag, 1990, pages 230-244.

17. P.G. Comba. Exponentiation cryptosystems on the IBM
PC. IBM SystemsJournal, 29(4) 1990, pages 526-538.

18. G. Hachez and J.-J. Quisquater, Montgomery
exponentiation with no finalsubtraction: Improved
results. Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2000.

19. Intel Architecture Optimization Manual.
20. Pentium Processor Family Developer's Manual, Volume

3: Architecture and Programming Manual, Part IV
Optimization.

21. “Developers' Performance Reference”
http://developer.intel.com/software/idap/asc/performance
.htm

22. Intel Architecture Optimization Manual.
23. C. K. Koc, T. Acar, and B. S. Kaliski Jr., Analyzing and

Comparing Montgomery Multiplication Algorithms
IEEE Micro, June 1996, 16(3):26-33.

24. UltraSparc-II Processor Architecture Manual, White
Papers, Sun Microsystems.

