
On the Generation of X.509v3 Certificates with Biometric
Information

Guillermo Martı́nez-Silva1, Francisco Rodrı́guez-Henrı́quez1, Nareli Cruz-Cortés 2 and Levent Ertaul3
1 Computer Science Department

Centro de Investigación y de Estudios Avanzados del IPN
Av. Instituto Politécnico Nacional No. 2508, México D.F.

g m silva@yahoo.com, francisco@cs.cinvestav.mx
2Center for Computing Research (CIC), National Polytechnic Institute (IPN),

Av. Juan de Dios Bátiz s/n, Esq. Mendizábal, Col. Zacatenco, 07738 Mexico City, Mexico.
nareli@cic.ipn.mx.

3 Department of Math & Computer Science
California State University, East Bay.

levent.ertaul@csueastbay.edu

Abstract

We present the kernel implementation of a Mobile Cer-
tification Authority (MCA). Our MCA kernel is able
to issue digital certificates fully-complying with the
X.509v3 standard; it supports either RSA or ECDSA as
a public key cryptosystem engine and; it can incorpo-
rate biometric-based user identification information (in
the form of fingerprint recognition) to the digital certifi-
cate. The MCA application was entirely written in C++
and it was tested in an iPAQ Pocket PC h5550. Our
experiments show that an ECDSA-based digital certifi-
cate using the NIST recommended 163K elliptic curve
constitutes an ideal selection for wireless environments.
Such certificate can be generated with a size of 1635
bytes, and 592 bytes when including (or not) biometric
information, respectively.

keyword: X.509v3 digital certificates, mobile PKI,
biometric authentication

1 Introduction

Public key cryptosystems and security protocols such
as the Digital Signature Standard (DSS), Elliptic curve
Digital Signature Algorithm (ECDSA), RSA and the
Diffie-Hellman protocol [7, 8] have been utilized for
providing information security services such as: data
authentication, data integrity and non-repudiation,
among others. Unfortunately, such schemes do not pro-
vide by themselves reasonable protection against po-
tentially devastating attacks such as man-in-the-middle

attack, identity-misbinding attack, identity usurpation
and so on [12].

Consequently, it has been necessary to create an in-
frastructure able to cover aforementioned security gaps.
That infrastructure is known as Public Key Infrastruc-
ture (PKI) [9]. The de facto X.509 PKI standard [3, 5]
comprises a collection of software, cryptographic tech-
nologies and services that allow the protection of the in-
formation transactions security in a distributed system.
This way, PKI X.509 integrates digital certificates, pub-
lic key cryptography and Certification Authorities (CA)
in a single security architecture. The main responsibil-
ity of a CA is to issue digital certificates to its users and
to publish and maintain a Certificate Revocation List
(CRL).

PKI X.509 defines a digital certificate as a document
that binds user’s information (such as name, address,
organization, etc.) to his/her corresponding public key.
It is signed by a CA in order to guarantee its validity
and integrity. It can be used as a token-based identifi-
cation method, which corresponds to one of the three
identification methods commonly used in practice as it
is explained below.

Accurate user-identification is essential to offer a re-
liable access control security service. Typically, in-
formation systems employ three types of identifica-
tion methods. Token-based authentication which re-
lies on something that the user has (such as a smart
card); knowledge-based authentication which identify
users who can prove knowledge of something (such as
a password) and finally; biometric-based authentication
which identify users by measuring human characteris-

1



tics, either physiologic ones, such as: fingerprint, iris
and retina recognition, face geometry, etc., or behav-
ioral ones, such as user’s typing or signature dynamic,
etc. Among them, probably the most popular and one
of the most reliable methods is fingerprint recognition,
which has legal validity worldwide.

In this contribution we present the kernel implemen-
tation of a Mobile Certification Authority (MCA). Our
MCA kernel is able to issue digital certificates comply-
ing with the X.509v3 standard; it supports either RSA
or ECDSA as a public key cryptosystem engine and;
it can incorporate biometric-based user identification
information (in the form of fingerprint recognition) to
the digital certificate. The MCA application was en-
tirely written in C++ using the iPAQ Pocket PC h5550
Personal Digital Assistant (PDA) as the target device
platform. The iPAQ h5550 PDA is powered by a 400
MHz Intel XScale processor, with 128 MB RAM mem-
ory and 48 MB ROM memory. Furthermore, this PDA
device is equipped with a biometric fingerprint scanner
able to recognize users’ fingerprints with high precision.

The rest of this paper is organized as follows. In Sec-
tion 2 a brief description of the mandatory data structure
of an X.509v3 certificate is given. Then, in Section 3
application’s main architecture and its most prominent
modules are explained. Section 4 gives an outline of
the process followed by the MCA application in or-
der to generate/verify X.509v3-compatible digital cer-
tificates. Finally, in Section 5 some conclusion remarks
are drawn.

2 X.509v3 Certificates
The RFC2380 (Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List Profile) stan-
dard [5] defines the precise structure and format that a
digital certificate complying with the X.903v3 standard
must have. Essentially, an X.509 certificate is com-
posed of three main structures: TBS certificate (TB-
SCertificate), algorithm identifier (signatureAlgorithm)
and digital signature (signatureValue). The TBS cer-
tificate and algorithm identifier consists of ten common
fields, six of them mandatory and four optional. The six
mandatory fields are: serial number, signature’s algo-
rithm identifier, Certification Authority’s name, period
of validity, entity’s public key, and entity’s name. The
four optional fields are: version number, Certification
Authority’s and user’s unique identifier plus the exten-
sion fields 1.

Additionally, an X.509v3 certificate must be format-
ted according to the (Abstract Syntax Notation One)

1The optional fields are only included in X.509 v2 and X.509 v3
certificates

ASN.1 language [6]. ASN.1 is a standard norm for data
representation used by a high number of applications
and devices in the IT sector. This standard is intended
for allowing the normalization and compression of data
among different platforms in a smooth and transparent
way.

We developed an ASN.1 language subset library as is
specified in [5]. Our library implements all coding and
decoding processes required for the generation/parsing
of digital certificates. It consists of two main modules:

2.0.1 ASN.1 Encoder

This module encodes the digital certificate fields (such
as final entity’s name, validity period, public key, algo-
rithm identifier, etc.) according to the ASN.1 format,
supporting both, RSA and ECDSA public key crypto-
graphic engines. It was developed based on an open
source compiler described in [1].

2.0.2 ASN.1 Decoder

This module allows the parsing of previously generated
certificates. Its implementation is based on the compiler
reported in [4]. It supports both, RSA and ECDSA pub-
lic key cryptographic engines.

In the next Section we explain MCA system archi-
tecture designed for generating/verifying X.509v3 digi-
tal certificates.

3 System Architecture Description
Figure 1 shows the block diagram of the MCA kernel.
The main modules of our architecture are explained be-
low.

As it has been mentioned, our MCA application can
support both RSA and ECDSA as public key crypto-
graphic schemes needed for the creation and verifica-
tion of digital signatures. The RSA cryptosystem in-
cluded in our library complies with the PCKS #1 [8]
standard, while the ECDSA module complies with the
IEEE P1363 standard [7].

For security reasons, we used a 128-bit AES cryp-
tosystem for protecting the security of the mobile certi-
fication authority’s private keys, using a 128-bit master
key. That master key is generated by means of the MD5
hash value corresponding to the pass-phrase given by
the mobile certification authority.

3.0.3 BioAPI Biometric Library

The iPAQ h5550 digitally reads user’s fingerprints by
using a thermal sensor and maps the measured ana-
logical temperature with a digital image. That thermal



Figure 1: Main Architecture of the mobile certification authority kernel.

sensor detects the temperature differences between the
digital fingerprints edges and valleys. 2 We used the
Biometric Authentication Technology library, which is
based on the BioAPI standard [2], as a software in-
terface for handling the fingerprint scanner. The main
BioAPI primitives utilized by our application are:

• Capture, commands a new digital fingerprint
biometric reading.

• Verification, it is applied when a user claims
that his/her fingerprints have been already regis-
tered in the application database. The library com-
pares the user’s biometric data against the stored
record in its database (one-to-one comparison).

• Identification, also called searching or
recognition, it is executed if the user’s identity is
unknown. The library compares user’s biometric
data against all the records in its database (one-to-
all comparison).

• Storage, it allows an efficient way to keep digi-
tal fingerprints information. Stored data is not kept
as an image. Instead, the image is compressed pro-
ducing a 1024 bytes data, which is sufficient for
representing the approximately 200-KByte origi-
nal image.

The error window fingerprint can be set during the
configuration of the authentication system. It is possible
to select one out of three levels: regular, high and extra-
high. For the three different security levels, the iPAQ

2Thermal sensors show an important advantage with respect to
other sensor types because they are almost impossible to deceive [2].

h5540 authentication system performance is shown in
Table 1.

4 Generation and verification of
an X.509v3 Digital Certificate.

In this Section we give the main steps followed by our
application in order to generate and verify digital cer-
tificates complying with the X.509v3 standard.

4.1 Digital Certificate Generation Process

The generation process of a X.509v3 certificate con-
sists of the following steps. First, a user must fill in a
form provided by the application Graphic User Interface
(GUI). That form asks for user’s personal information
such as name, e-mail, company, etc. Then, the applica-
tion assigns an arbitrary validity period for the digital
certificate (currently set to one year). In the event that
the user had required an X.509v3 certificate with bio-
metric information, then user’s fingerprints are captured
and stored using PDA’s integrated fingerprint scanner
and the BioAPI library. Thereafter, the user must se-
lect the digital signature algorithm to be utilized. The
two possible choices are: RSA or ECDSA. If ECDSA
is chosen, then, additionally, an elliptic curve must be
selected (currently, our application supports NIST rec-
ommended [11] 163K, 192P, 224P and 233K elliptic
curves). At that moment, the MCA kernel generates
user’s public/private key pair followed by his/her TBS
certificate as is shown in Fig. 2. Finally, by using our



Table 1: iPAQ Pocket PC - False positives and False negatives rates
Security level False Negatives (FRR) False Positives (FAR) Average of attempts
Regular 0.2331 % (1 of 429) 0.0010 % (41 of 4054737) 1.081967
High 0.4662 % (2 of 429) 0.0001 % (4 of 4054737) 1.107573
Extra-High 0.6993 % (3 of 429) 0.0000 % (0 of 4054737) 1.153226

Figure 2: TBS certificate generation.

ASN.1 encoder module, the three main structures of the
X.509v3 certificate are put together as shown in Fig. 3.

4.2 Digital Certificate Verification Process

In order to verify the correctness of a X.509v3 cer-
tificate our application proceeds as follows. First the
certificate is parsed using our ASN.1 decoder module
as is shown in Fig. 4. If everything is correct the
three certificate’s main components, namely, TBSCer-
tificate, signatureAlgorithm, signatureValue, should be
obtained. Once that the TBSCertificate component has
been identified, a SHA-1 hash function is applied to it in
order to execute the customary digital verification pro-
cess shown in Fig. 5.

Figure 3: X.509v3 Certificate Generation.

It is noticed that we validate the correctness of the
digital signature only. A more realistic application
should also verify the certificate’s validity period along
with the Certificate Revocation List (CRL) issued by the
CA [5].

Figure 4: Parsing of an X.509v3 certificate.

Figure 5: Verification of an X.509v3 Certificate.

5 Conclusion

Figure 6 shows the RSA and ECDSA certificates sizes
(in bytes), with and without fingerprint biometric infor-
mation. Notice that fingerprint biometric information



Figure 6: Certificates sizes comparison with and without biometric information.

increases the size of all certificates considered by about
1K byte. However, if required, this overhead value can
be further reduced by compressing the fingerprint image
information even more.

It results interesting to compare the certificate sizes
generated by our application when using 1024-bit RSA
against the ones that utilized ECDSA with NIST rec-
ommended curves 163K, 192P, 224P and 233K. It is
observed that the size difference between the RSA-
based and ECDSA-based digital certificates is surpris-
ingly small. The shortest certificate was obtained when
using NIST 163K curve, while the 1024-bit RSA cer-
tificate ranked second, with a slight difference in size of
only 21 bytes. All the other ECDSA certificates showed
a greater size than their 1024-bit RSA counterpart.

The reason why most ECDSA certificates have a
greater size than the 1024-bit RSA certificate is due to
the fact that the ECDSA standard mandates that all the
elliptic curve domain parameters should be embedded
into the digital certificate (i.e., elliptic curve a and b co-
efficients, order, cofactor, field type, polynomial gener-
ator, etc.).

According to already reported results, ECDSA is
more efficient and quicker than RSA when using equiv-
alent security levels [10]. This feature was once more
confirmed in our experiments. Therefore, we conclude
that ECDSA-based digital certificates should be pre-

ferred when operating in restricted environments.
Concretely, when working with constrained compu-

tational environments and/or wireless applications, the
NIST-163K-ECDSA is the ideal selection. On the other
hand, the NIST 163K curve offers less security level
than the 192P, 224P, and 233K curves.

References
[1] The opensource ASN.1 compiler, 2004. Available

at: http://lionet.info/asn1c.

[2] The BioAPI Consortium. BioAPI specifica-
tion version 1.00, March 2000. Available at:
http://www.bioapi.org.

[3] Internet Engineer Task Force. Public-
key infrastructure X.509 PKIX, 2001.
http://www.ietf.org/html.charters/pkix-
charter.html.

[4] P. Gutmann. ASN.1/cryptlib, October 1997.
Based on a program by David Kemp, available at:
http://www.cs.auckland.ac.nz/ pgut001/dumpasn1.c.

[5] R. Housley, W. Polk, W. Ford, and D. Solo.
RFC3280: Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List



(CRL) Profile. IETF, April 2002. Available at:
http://www.ietf.org/rfc/rfc3280.txt.

[6] ISO/IEC. Abstract syntax notation one ASN.1:
Specification of basic notation, 2002. ITU-T Rec.
X.680 (2002) ,ISO/IEC 8824-1:2002.

[7] D. Johnson, A. Menezes, and S. Vanstone. The
elliptic curve digital signature algorithm ECDSA,
2001. Available at: http://www.certicom.com.

[8] B. Kaliski and J. Staddon. RFC2437: PKCS #1:
RSA Encryption. RSA, October 1998. Available
at: http://www.ietf.org/rfc/rfc2437.txt.

[9] Richard Kuhn, Vincent Hu, Timothy Polk, and
Shu-Jen Chang. Introduction to public key tech-
nology and the federal PKI infrastructure. NIST,
February 2001.

[10] A. Levi and E. Savas. Performance evaluation
of public-key cryptosystem operations in WTLS
protocol. In (ISCC’03), pages 1245–1250. IEEE
Computer Society, 2003.

[11] National Institute of Standrads and Technology.
Recomended elliptic curves for federal govern-
ment use, 1997.

[12] K. Schmeh. Cryptography and Public Key Infras-
tructure on the Internet. John Wiley & Sons, 2003.


