

Levent Ertaul Vaidehi
Department of Mathematics & Computer Science Department of Mathematics & Computer Science

California State University, East Bay California State University, East Bay
Hayward, CA, USA. Hayward, CA, USA.

levent.ertaul@csueastbay.edu vaidehikedlaya@gmail.com

Finding Minimum Optimal Path Securely Using
Homomorphic Encryption Schemes in Computer

Networks

Abstract - In this paper we find a secure routing
protocol for computer networks, which finds minimum
optimum path using homomorphic encryption schemes. We
briefly look into the existing homomorphic encryption
algorithms. We make use of ElGamal encryption, Elliptic
Curve encryption and a privacy homomorphism, which
exhibits the property of homomorphism in our new routing
protocol. Elliptic curve exhibits the property of additive
homomorphism and is computationally faster than
ElGamal and RSA. However, the privacy homomorphism
using mod operation is computationally much faster than
both ElGamal and Elliptic Curve. Using the homomorphic
property of these encryption algorithms, we propose three
new protocols, which are ElGamal, Elliptic Curve and
Privacy Homomorphism to find the minimum optimal path
securely. These protocols provide confidentiality.

Keywords - ElGamal Encryption, Elliptic Curve
Encryption, Privacy Homomorphism, Determining
minimum optimal path.

1. Introduction

The routing algorithm decides which line the packet
should be transmitted to. In a wireless environment the
route keeps on changing, so we should dynamically select
the route to transmit the packet. Using homomorphic
encryption scheme we can securely find a minimum path in
these networks.

Homomorphic [1], [2], [3] encryption scheme can be
implemented in routing protocols to enhance security.
Using homomorphic encryption, operations can be
performed by the intermediate nodes on the ciphertext as if
performed on the plaintext without actually knowing the
plaintext [1] [2] [3]. This enhances security of the protocol
as the intermediate nodes if malicious cannot determine the
plaintext. Homomorphism allows operation to be
performed on the encrypted data (ciphertext) as if the
operation is performed on the plaintext. Homomorphism
has the property of additive, multiplicative and mixed
multiplicative [1]. In additive homomorphism, decrypting
the sum of two ciphertext is same as addition of two
plaintext, represented as E (x+y) = E(x) + E(y). In
multiplicative homomorphism, decrypting the product of

two ciphertext is same as multiplication of the two
plaintexts. Multiplicative homomorphism is mathematically
represented as E(x*y) = E(x) * E(y). In mixed multiplicative
homomorphism, decrypting the product of one ciphertext
and plaintext is same as multiplication of two plaintext,
represented as E(x*y) = E (x) * y.

In this paper we briefly describe the encryption schemes
having the property of homomorphism. We then aim to find
the minimum optimal path by using ElGamal, Elliptic
Curve and Privacy Homomorphism encryption schemes.

The paper is organized as follows. In section 2, we
briefly describe the overview of homomorphic encryption
schemes. In section 3, we briefly describe the protocol,
which determines maximum optimal path dynamically. In
section 4, we propose new routing protocols, which use the
homomorphic property of ElGamal encryption, Elliptic
Curve Encryption and Privacy Homomorphism. Finally
conclusions are given.

2. Encryption Schemes Exhibiting the

Property of Homomorphism

In this section, we give an overview of cyptosystem
using mod operation [1], Privacy Homomorphism [2],
ElGamal encryption [3],[4] and Elliptic Curve
[8],[9],[10],[11],[12] which exhibits the property of
homomorphism.

2.1 Encryption Functions using Mod

Operations

In this section, we focus on encryption schemes using
mod operations, which are cryptosystem using mod
operation and privacy homomorphism exhibiting the
property of homomorphism.

The cryptosystem using mod operation is introduced in
[1]. This cryptosystem uses large number n, where n= p* q.
Here p and q are large prime numbers, which are kept
secret. The set of original plaintext messages is in Zp ={ x|x
<= p }, Zn = { x|x <n } has the set of ciphertext messages
and Qp = { a|a ∉ Zp } has the set of encryption clues.

The encryption algorithm is performed by choosing a
plaintext 'x' belonging to Zp and a random number 'a' in Qp

such that x = a mod p. Here p is kept secret. The ciphertext
y is calculated as y = Ep (x) = a mod n.

In decryption algorithm the plaintext x is recovered as x=
Dp(y) = y mod p, where p is the secret key.

This cryptosystem has the property of additive,
multiplicative and mixed multiplicative homomorphism.
The proposed protocol, though exhibits the property of
homomorphism is not very secure against known plaintext
attacks, but secure against known ciphertext attacks [1].

We now look into a privacy homomorphism protocol,
which is relatively secure against known plaintext attacks
and completely secure against known ciphertext attacks.

The privacy homomorphism is introduced in [2] which is
a homomorphic encryption scheme not vulnerable to
known ciphertext attacks.

Let us look into the protocol in detail. In this protocol n
and m are the public parameters. Here m= p * q, where p
and q are large prime numbers. To increase security, m can
be kept secret. The number 'n' represents the split of the
plaintext. The secret keys are p, q, xp, xq. Here, xp ∈ Zp and
xq ∈ Zq

Encryption operation is performed by selecting the
plaintext a∈ Zm. We then split a into secret numbers a1, a2
... an, such that a = (a1 + a2 … +ai+...an) mod m and
ai∈Zm.

Ek(a) = (a1 xp mod p, a1 xq mod q), (a2 x2
p mod p, a2 x2

q
mod q)... (an xn

p mod p, an xn
q mod q)

Decryption operation is performed by computing scalar
product of the ith pair [mod p, mod q] by [x-i

p mod p, x-i
q

mod q] to get [ai mod p, ai mod q]. The pairs are then
added up to get [a mod p, a mod q]. Finally, Chinese
remainder theorem (CRT) [5] is performed to get a mod m.

Let us illustrate an example to explain the protocol in
more detail. Consider the example of 2 multiplication and 1
addition such that (x1 * x2) + (x3 * x4).

Let n = 2, which implies that the plaintext is split into 2.
Consider p = 11, q = 7, xp = 2, xq = 3 as secret keys.
Let (x1, x2, x3, x4) = (-1, 1, 2, 3)

Encryption operation is performed as shown below. First
the plaintext is split then encryption is done,

Ek (x1) = Ek (-1) = Ek (2, -3)
 = [2 x mod p, 2 xp

 [-3 x2p mod p, -3 x2q mod q]
q mod q],

 = [4, 6], [10,1]
Ek(x2) = Ek (1) = Ek (4, -3)

 = [4 x mod p, 4 xp
 [-3 x2p mod p, -3 x2q mod q]

q mod q],

 = [8, 5], [10,1]
 Ek(x3) = Ek (2) = Ek (3, -1)
 = [3 x mod p, 3 xp
 [-1 x2p mod p, -1 x2q mod q]

q mod q],

 = [6, 2], [7,5]
Ek (x4) = Ek (3) = Ek (4, -1)
 = [4 xp mod p, 4 xq mod q],
 [-1 x2p mod p, -1 x2q mod q]
 = [8, 5], [7,5]
Ek (x1) * Ek (x2) = ([4, 6] [10, 1]) * ([8, 5] [10, 1])

 = [0, 0] [4*8, 6*5] [4*10, 6*1]
 [10* 8, 1*5] [10*10, 1*1]
 = [0, 0] [32, 30] [40, 6] [80, 5]
 [100,1]
Ek (x3) * Ek (x4) = ([6, 2] [7, 5]) * ([8, 5] [7, 5])
 = [0, 0] [6*8, 2*5] [6*7, 2*5]
 [7* 8, 5*5] [7*7, 5*5]
 = [0,0] [48,10][42,10][56,25][49,25]

Performing (Ek (x1) * Ek (x2)) + (Ek (x3) * Ek (x4)) we

get, [0,0] [80, 40] [218, 46] [149, 26]

Decryption operation is performed as,

[0 * x-1p mod p, 0 * x-1q mod q], [80 * x-2p mod p,
40 * x-2q mod q], [218 * x-3p mod p, 46 * x-3q mod

q], [149 * x-4p mod p, 26 * x-4q mod q]

[0 x 6 mod 11, 0 x 5 mod 7], [80 * 62 mod 11, 40 * 52
mod 7], [218 * 63 mod 11, 46 * 53 mod 7], [149 * 64 mod
11, 26 * 54 mod 7]

[0, 0], [9, 6], [8, 3], [10, 3]

Add up all the terms over Zp x Zq to get,

[0 + 9 + 8 + 10 mod 11, 0 + 6 + 3 + 3 mod 7]
[5, 5]

By applying Chinese remainder theorem (CRT) on [5, 5]
we get 5 (decrypted ciphertext).

We know that (x1 * x2) + (x3 * x4) = 5 which is the
plaintext. This shows that the plaintext and the decrypted
ciphertext are the same. The protocol is said to be secure
against known plaintext attacks and ciphertext attacks [2],
but there is a possibility to break this protocol with great
difficulty by using known plaintext ciphertext pairs as
explained in [6]. When this protocol is used, one has to
consider this weakness.

2.2 ElGamal Encryption and Elliptic Curve

Encryption

In this section we briefly look into public key encryption
schemes like ElGamal and Elliptic Curve, which have the
property of homomorphism.

ElGamal encryption [3] [4] is a public key encryption,
which requires large prime numbers, p and q where p =
2q+1. The public keys are p, g and y, where g is the cyclic
group which is the subset of Zp, y = gx , x being the secret
key belonging to Zq. Here Zp is set of integers from 0 to p-1
and Zq is the set of integers from 0 to q-1.

During encryption the message M is encrypted using
public keys. E (M) = (A= gr, B=yrM) where r is the
random number.

Decryption is computed with the private key x, D(E(M))
= B/Ax.

ElGamal encryption has the property of multiplicative
homomorphism [3].

Elliptic curve encryption [8], [9], [10], [11], [12] is also a
public key encryption scheme, which requires a point G
and an elliptic group E(a,b) to perform encryption and
decryption. The node S, selects a private key nS and
generates public key PS= nS x G. The encryption operation
is performed by choosing a random number k and the
ciphertext is generated as, C = { kG, m+kPD } where PD is
the public key of node D.

Decryption is performed by node D using the private key
nD. Node D computes the multiplication of the 1st

 point of
the ciphertext with it’s private key and then subtracts the
result from the 2nd point of the ciphertext to recover the
plain text.

m+kPD – (nD kG) = m + k(nD G) - (nD kG) = m
Elliptic Curve has the property of additive

homomorphism [15], [16].

3. A Dynamic Programming based on

Homomorphic Encryption

The dynamic programming based on homomorphic
encryption is introduced in [3] which find a maximum
optimal path using ElGamal Homomorphic encryption.

The protocol chooses a weight w such that (1<= w <= n)
and chooses n such that it is large enough to represent the
longest path.

e(w) = (e1, e2,... en)
=

4434421
w

zEzE),(),...,(
43421

wn

EE
−

)1(),...,1(

Here e(w) is the encryption of weight w, E(1) is the
encryption of 1, E(z) is the encryption of z and z is a public
number not equal to 1. z is chosen such that zk mod p ≠1 for
0 < k <q.

Let us consider an example where w=2 and n=4
e(w) = E(z), E(z), E(1), E(1). Here z can be any number

not equal to 1.
A constant f is added to encrypted function e(w) by

shifting e(w) to the right f times.
e(w+f) = e

4434421
f

zEzE),(),...,(1, ... en-f

let e(w) = E(z), E(z), E(z), E(1),E(1),E(1) and f=2,

then, e(w+f) = E(z), E(z), E(z), E(z), E(z), E(1)
This operation can be performed without decrypting

e(w). If we compare e(w) and e(w+f) we cannot know the
amount of shift. The shifting and the encryption can be
masked by multiplying with E(1) and using different
random numbers for encryption. The value of z can be
different for different encryption.

The maximum of the two weights can be found without
decrypting the entire encrypted weights. This can be
achieved by multiplying the two encrypted weights and
decrypting the resulting product from en to e1, for i = 1 to n
until D (E (xi)) ≠ 1 and i determines highest of the two
weights.

Consider two weights e(w+f) and e(v)
e(w+f) = E(z), E(z), E(z), E(z),E(z), E(1)
e(v) = E(z), E(z), E(1), E(1),E(1), E(1)
e(w+f) * e(v) = E(z2), E(z2), E(z), E(z),E(z), E(1)
Decrypting the 6th element we get D(E(x) = 1,

decrypting the 5th element we get D(E(x)) = z ≠ 1,
therefore the maximum of the two weight is 5. Using this
scheme a maximum optimal path is determined dynamically
in [3].

In the next section we propose new protocols, which
determine the shortest path using ElGamal, Elliptic Curve
and Privacy Homomorphism.

4. Finding Minimum Optimal Path
Using Homomorphic Encryption

Schemes

In this section we propose three new routing protocols in
computer networks, which finds minimum optimal path
using ElGamal Encryption, Elliptic Curve Encryption and
Privacy Homomorphism. As these encryption schemes are
additive and multiplicative we reduce the computational
power and increase security by doing operations on
encrypted data. Furthermore the proposed protocols encrypt
the weight in a particular fashion, which make it difficult
for an intruder to determine the weight.

4.1 Use of ElGamal Homomorphic Encryption

and Its Application to Find the Shortest
Optimal Path

We first find the minimum optimal path using ElGamal

homomorphic encryption scheme. Encryption scheme in
ElGamal [3] [4] requires two exponentiation, which could
be computed ahead of time, as it is independent of the
message. Decryption requires one exponentiation and one
division, which is computationally much faster. To find the
minimum optimal path, we assume that all the nodes know
the weight to its neighboring nodes. We choose a number
n, which is large enough to represent the length of the
longest path. The weight w is encrypted with the public key
and w<=n

e(w) = (e1, e2,... en)
=

4434421
w

EE),1(),...,1(
4434421

wn

zEzE
−

)(),...,(

Here e(w) is the encryption of weight w, E(1) is the
encryption of 1, E(z) is the encryption of z and z is a public
number not equal to 1. z is chosen such that zk mod p ≠ 1
for 0 < k <q.

Consider an example where w=2, n=4 and z ≠ 1.
 e(w) = E(1), E(1), E(z), E(z)

In this protocol, the two paths are combined by shifting
the encrypted path e(w) to the right by the weight of the
other path.

 Let e(w) be the encrypted weight of one path and f be the
weight of other path, then
 e(w+f) = e1, ..., en-f ,)1(),...,1(

43421
f

EE

Consider f=2
let e(w) = E(1), E(1), E(1), E(z),E(z), E(z)

 e(w+f) = E(1), E(1), E(1), E(1),E(1), E(z)
This operation can be performed without decrypting

e(w). If we compare e(w) and e(w+f) we cannot know the
amount of shift. The shifting and the encryption can be
masked by multiplying with E(1). Further different random
numbers can be used for different encryption.

The minimum of the two weights can be found without
decrypting the entire encrypted weight. This can be
achieved by multiplying the two encrypted weights and
decrypting the resultant product from right to left until we
get a value z=1. The position at which we get a value z=1,
determines the minimum weight.

The optimal of the two paths are determined by
decrypting the encrypted paths at minimum weight+1
position. The path, which decrypts to a value z ≠ 1 at the
minimum weight+1 position, is the minimum optimal path.

Consider two weights e(w+f) and e(v)
e(w+f) = E(1), E(1), E(1), E(1),E(1), E(z)
e(v) = E(1), E(1), E(z), E(z),E(z), E(z)
e(w+f) * e(v) = E(1), E(1), E(z), E(z),E(z), E(z2)
Decrypting the 6th, 5th, 4th and 3rd element of the resultant

product, we get D(E(x)) ≠ 1, decrypting the 2nd element we
get D(E(x)) = 1, therefore the minimum of the two weight
is 2.

To find the optimal path between e(w+f) and e(v)
decrypt both these paths at the 2nd +1 position. The path
which decrypts to z ≠ 1 at the 2nd + 1 position is the optimal
path with the minimum weight.

Let us look into Figure 1, to illustrate the protocol in
detail. w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2,
w(2, 3) = 0 are the weights. Let n = 6 and z can be any
number not equal to 1.

e(0,1) (w(0,1)) = E0(1),E0(z),E0(z),E0(z),E0(z),E0(z):
encrypted with the public key of node 0.

e(0,2) (w(0,2)) = E0(1),E0(1),E0(z),E0(z),E0(z),E0(z):
encrypted with the public key of node 0.

e(1,2) (w(1,2)) = E1(1),E1(z),E1(z),E1(z),E1(z),E1(z):
encrypted with the public key of node 1.

e(1,3) (w(1,3)) = E1(1),E1(1),E1(z),E1(z),E1(z),E1(z):
encrypted with the public key of node 1.

e(2,3) (w(2,3)) = E2(z),E2(z),E2(z),E2(z),E2(z),E2(z):
encrypted with the public key of node 2.

By decrypting path 2-3 at node 2, we find the distance to
be 0. At node 2 we compute path 1-2-3 by shifting the
encrypted path of 1-2 to the right by the weight of path 2-3,
which is 0.

e(1,2,3) (w(1,2,3)) = E1(1),E1(z),E1(z),E1(z),E1(z),E1 (z)
To find the minimum of two paths 1-2-3 and 1-3 with

weights w(1,2,3) & w(1,3) respectively, at node 1 we
multiply the two weights.

e(1,2,3)(w(1,2,3)) * e(1,3) (w(1,3))
= E1(1),E1(z),E1(z2),E1(z2),E1(z2),E1(z2)
By decrypting the 6th, 5th, 4th, 3rd and 2nd element we get

D(E(x)) ≠ 1 and decrypting the 1st element we get D(E(x))
= 1. So the minimum weight is 1.

To find the optimal path between 1-2-3 and 1-3, decrypt

1-2-3 and 1-3 at the 1st+1 (2nd) position and the path, which
decrypts to the value not equal to 1 at the 2nd position, is the
shortest optimal path. Here path 1-2-3 is the optimal path,
as it decrypts to z ≠ 1 at the 2nd position.

To combine two paths 0-1 and 1-2-3 to get 0-1-2-3, we
shift the encrypted path of 0-1 to the right by 1 at node 1,
which is the weight of the path 1-2-3.

e(0,1,2,3)(w(0,1,2,3))=E0(1),E0(1),E0(z),E0(z),E0(z), E0(z)
At node 0 we also obtain an encrypted path 0-2-3 from

node 2, which is obtained by shifting the encrypted path 0,2
to the right by 0 (weight of path 2-3).

e(0,2,3)(w(0,2,3)) = E0(1),E0(1),E0(z),E0(z),E0(z), E0(z)
Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3),

and we determine the minimum path by multiplying the
two encrypted paths to get,

e(0,1,2,3)(w(0,1,2,3)) * e(0,2,3)(w(0,2,3))
= E0(1), E0(1), E0(z2), E0(z2), E0(z2), E0(z2)
By decrypting the resultant path at node 0 we find the 2nd

position decrypts to value 1 and so the minimum weight is
2. By decrypting encrypted paths e(0,2,3) and e(0,1,2,3) at
the 2nd +1 position we find that both the paths decrypts to a
value z ≠ 1. The optimal path from 0 to 3 has the minimum
weight 2 and the optimal path is either 0-1-2-3 or 0-2-3
determined at node 0 which is the source.

In the next section we find the minimum optimal path
using Elliptic Curve encryption.

4.2 Use of Elliptic Curve Homomorphic

Encryption and Its Application to Find the
Shortest Optimal Path

Elliptic Curve Public Key Cryptosystem [8], [9], [10],

[11], [12] is a relatively new public key cryptography
which uses relatively small key sizes compared to ElGamal
and RSA. Reduction in key sizes brings the advantage of
less storage area and less required bandwidth, which are
important requirements of wireless network architectures.
In addition, Elliptic Curve permits the implementation of
high-speed and efficient network security protocols

The circled numbers represent nodes
The rest of the numbers represent published weights.

Figure 1: Example of a directed graph

0 1 1
0 1 2 3

2 2

requiring less power and smaller code sizes as compared to
classical public key techniques such as ElGamal, RSA and
Diffie-Hellman [7], [12], [13], [14].

We now look at how Elliptic Curve encryption scheme
can be used to find the minimum optimal path. We use a
similar scheme as in ElGamal encryption, but the only
difference is that the value of z can be any number other
than 0 and the minimum path is obtained by adding the two
paths as Elliptic Curve Cryptosystem has only additive
homomorphism. That’s why z is chosen such that z ≠ 0.The
weight w is encrypted as follows

e(w) = (e1, e2,... en)
=

4434421
w

EE),0(),...,0(
4434421

wn

zEzE
−

)(),...,(

Here E(0) is the encryption of weight 0 and E(z) is the
encryption of weight z. Here z can be any number not equal
to 0, n is large enough to represent the length of the longest
path and weight w<=n. The encrypted weights are
randomized by adding with E(0).

As in ElGamal, shifting the encrypted weight of one path
to the right by the weight of the other path combines the
two paths. The paths are compared for optimality by adding
the two paths. The minimum weight of the two paths is the
position at which the resultant sum decrypts to a value z=0,
when the decryption is carried out from right to left. The
minimum optimal path is the one, which decrypts to a value
z ≠ 0 at the minimum weight +1 position.

Let us consider the Figure 1, to explain this in detail
w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2, w(2, 3)

= 0, are the weights. Let n = 6 and z can be any number not
equal to 0.

e(0,1) (w(0,1)) = E0(0),E0(z),E0(z),E0(z),E0(z),E0(z):
encrypted with the pu c key of node 0. bli

e(0,2) (w(0,2) E) =
ic

e(1,2) (w(1,2)) = E

0(0),E0(0),E0(z),E0(z),E0(z),E0(z):
encrypted with the publ key of node 0.

ic
e(1,3) (w(1,3)) = E

1(0),E1(z),E1(z),E1(z),E1(z),E1(z):
encrypted with the publ key of node 1.

1(0),E1(0),E1(z),E1(z),E1(z),E1(z):
encrypted with the public key of node 1.

e(2,3) (w(2,3)) = E2(z),E2(z),E2(z),E2(z),E2(z),E2(z):
encrypted with the public key of node 2.

By decrypting path 2-3 at node 2, we find the distance to
be 0. At node 2 we compute path 1-2-3 by shifting the
encrypted path of 1-2 to the right by the weight of path 2-3,
which is 0.

e(1,2,3) (w(1,2,3) = E1(1),E1(z),E1(z),E1(z),E1(z),E1(z)
To find the minimum of two paths 1-2-3 and 1-3 with

weights w(1,2,3) & w(1,3) respectively, at node 1 we add
the two weights to get,

 e(0,1,2)(w(0,1,2)) + e(0,2) (w(0,2))
= E0(0), E0(z), E0(2z), E0(2z), E0(2z), E0(2z)
By decrypting the 6th, 5th, 4th, 3rd and 2nd element, we get

D(E(x)) ≠ 0 and decrypting the 1st element we get D(E(x))
= 0. So the minimum weight is 1.

To find the optimal path between 1-2-3 and 1-3, we
decrypt 1-2-3 and 1-3 at the 1st + 1 (2nd) position and the
path, which decrypts to the value not equal to 0 at the 2nd

position, is the shortest optimal path. Here path 1-2-3 is the
optimal path, as it decrypts to z≠0 at the 2nd position.

To combine two paths 1-2-3 and 0-1 to get 0-1-2-3, at
node 1 we shift the encrypted path of 0-1 to the right by 1,
which is the weight of the path 1-2-3.

e(0,1,2,3)(w(0,1,2,3))=E0(0),E0(0),E0(z),E0(z),E0(z), E0(z)
At node 0 we also obtain an encrypted path 0-2-3 from

node 2, which is obtained by shifting the encrypted path 0,2
to the right by 0 (weight of path 2-3).

e(0,2,3)(w(0,2,3)) = E0(0),E0(0),E0(z),E0(z),E0(z), E0(z)
Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3),

and we determine the minimum path by adding the two
encrypted weights to get,

e(0,1,2,3)(w(0,1,2,3)) + e(0,2,3)(w(0,2,3))
= E0(0), E0(0), E0(2z),E0(2z), E0(2z), E0(2z)

By decrypting the resultant path we find the 2nd position
decrypts to value 0 and so the minimum weight is 2.The
optimal path from 0 to 3 has the minimum weight 2 and the
optimal path is either 0-1-2-3 or 0-2-3 as both these paths
decrypt to a value z ≠ 0 at the minimum weight +1 position.

In the next section we find the minimum optimal path
using a privacy homomorphism.

4.3 Use of Privacy Homomorphism and Its

Applications to Find the Shortest Optimal
Path

In this section we look into our routing protocol using

privacy homomorphism encryption scheme. In this
protocol, a weight w is chosen such that w <= n and n is
chosen such that it is large enough to represent the length of
the longest path as in ElGamal and Elliptic Curve
encryption. The encryption of the weight in this protocol is
performed as follows:

e(w) = (e1, e2,... en)
=

4434421
wS

EE
*

),0(),...,0(
4434421

)*(

)(),...,(
wnS

zEzE
−

Here e(w) is the encryption of weight w, E(0) is the
encryption of 0, E(z) is the encryption of z, n is large
enough to represent the longest path, S represents the
number of split of the plaintext and z is any number not
equal to 0. In this encryption randomness is achieved by
splitting each plaintext differently, and adding E(0) which
are split differently.

Here the paths are compared for optimality by adding the
two encrypted paths instead of multiplying the two paths as
multiplication increases the vectors in squares.

Consider an example where w=2, z=5, n=4, S=2
e(w) = E(0) E(0), E(0) E(0), E(z) E(z), E(z) E(z)
In this protocol, the two paths are combined by shifting

the encrypted path e(w) to the right by S*f, f being the
weight of the other path.
e(w+f) = e,)0(),...,0(

*
4434421

fS

EE 1 , ..., en-f

Consider f=2, S=2 and n=4

let e(w) = E(0) E(0), E(0) E(0), E(z) E(z), E(z) E(z)
 e(w+f) = E(0) E(0), E(0) E(0), E(0) E(0), E(0) E(0)
This operation can be performed without the decryption

of e(w). If we compare e(w) and e(w+f) we cannot know
the amount of shift. The shifting and the encryption can be
masked by adding E(0).

The minimum of the two weights can be found without
decrypting the entire encrypted weights. This can be
achieved by adding the two encrypted weights and
decrypting the resultant sum from right to left in pairs of S
until we get a value z=0. The position at which we get a
value z=0, determines the minimum weight.

The minimum optimal path can be determined by
decrypting the two paths at minimum weight + 1 position
and the path, which decrypts to a value z ≠ 0 is the
minimum optimal path. Decryption is performed in groups
of S as S is the split of the plaintext.

Consider two weights e(w) and e(v)
e(w) = E(0) E(0), E(0) E(0), E(z) E(z)
e(v) = E(0) E(0), E(z) E(z),E(z) E(z)
e(w) + e(v) = E(0) E(0), E(z) E(z), E(z) E(z)
Decrypting the 6th and 5th element together of the

resultant sum we get D(E(x)) = z, decrypting the 2nd and 1st
element together we get D(E(x)) = 0, therefore the
minimum of the two weight is 1.

To find the optimal path between e(w) and e(v) decrypt
both these paths at the 3rd and 4th position. The path,
which decrypts to z ≠ 0 at the 3rd and 4th position, is the
optimal path with the minimum weight.

Let us consider Figure 1 to illustrate this scheme in
detail. Let w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2,
w(2, 3) = 0 , be the weights. Let n = 6 and S=2, then

e(0,1) (w(0,1)) = E(0) E(0), E(z) E(z), E(z) E(z), E(z)
 E(z), E(z) E(z), E(z) E(z)
e(0,2) (w(0,2)) = E(0) E(0), E(0) E(0), E(z) E(z), E(z)
 E(z), E(z) E(z), E(z) E(z)
e(1,2) (w(1,2)) = E(0) E(0), E(z) E(z), E(z) E(z), E(z)
 E(z), E(z) E(z), E(z) E(z)
e(1,3) (w(1,3)) = E(0) E(0), E(0) E(0), E(z) E(z), E(z)
 E(z), E(z) E(z), E(z) E(z)
e(2,3) (w(2,3)) = E(z) E(z), E(z) E(z), E(z) E(z), E(z)
 E(z), E(z) E(z), E(z) E(z)
By decrypting path 2-3 at node 2, we find the weight of

path 2-3 to be 0. The path 1-2-3 is obtained by shifting the
encrypted path 1-2 to the right by the weight of 2-3 in pairs
of S at node 2.

e(1,2,3) = E(0) E(0), E(z) E(z), E(z) E(z), E(z,) E(z),
E(z), E(z), E(z) E(z)

To find the minimum of two paths 1-2-3 and 1-3, at node
1 we add the two encrypted paths to get the resultant path,

e(1-2-3) + e(1-3) = E(0) E(0), E(z) E(z), E(z) E(z), E(z)
E(z), E(z) E(z), E(z) E(z).

By decrypting the 12th and 11th element together,..., 4th
and 3rd element together, we get D(E(x)) ≠ 0 and by
decrypting the 2nd and 1st element together we get D(E(x))
= 0. So the minimum weight is 1.

To find the optimal path between 1-3 and 1-2-3, we
decrypt 1-3 and 1-2-3 at the 3rd and the 4th position together
and the path, which decrypts to a value z ≠ 0 is the optimal
path. We find that path 1-2-3 decrypts to a value z ≠ 0.
Hence, path 1-2-3 is the optimal path.

We know that the path 1-2-3 has the weight 1. To
combine two paths 0-1 and 1-2-3 to get 0-1-2-3, we shift
the encrypted path 0-1 to the right by 1 in pairs of S.

e(0-1-2-3) = E(0) E(0), E(0) E(0), E(z) E(z), E(z) E(z),
E(z) E(z), E(z) E(z).

At node 0 we also obtain an encrypted path 0-2-3 from
node 2.

e(0-2-3) = E(0) E(0), E(0) E(0), E(z) E(z),
E(z)E(z), E(z) E(z), E(z) E(z).

Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3),
and we determine the minimum path by adding the two
encrypted weights to get,

e(0,1,2,3)(w(0,1,2,3)) + e(0,2,3)(w(0,2,3))
= E(0) E(0), E(0) E(0), E(z) E(z), E(z) E(z), E(z) E(z),E(z)

E(z).
By decrypting we find that the minimum weight is 2. The

optimal path from 0 to 3 has the minimum weight 2 and the
optimal path is either 0-1-2-3 or 0-2-3, determined at node
0, as both these paths decrypt to a value z ≠ 0 at the
minimum weight +1 position.

In this section, we have proposed three new routing
protocols, which use ElGamal Encryption, Elliptic Curve
Encryption and Privacy Homomorphism. These schemes
ensure that the minimum optimal path is finally determined
by the source. None of the nodes are aware of what the
optimal path is going to be. We consider that Elliptic Curve
Encryption scheme is better over ElGamal as it requires less
key space and is computationally faster than ElGamal
Encryption [12]. However, we consider that the Privacy
Homomorphism is computationally much faster than both
ElGamal and Elliptic Curve Encryption. But the problem
with Privacy homomorphism is that the encrypted weight is
‘S’ times longer than that required for ElGamal and Elliptic
Curve Encryption. This results in more storage space.

5. Conclusions

In this paper we have shown that a minimum optimal
path can be found securely to route the packets in computer
networks by using homomorphic encryption schemes.
Using these homomorphic encryption schemes, minimum
weight of the two paths can be found without actually
decrypting the entire resultant path. The minimum of the
two paths can be found by decrypting the two paths at the
minimum weight +1 position, thus reducing the
computational power by not decrypting the entire path.
These proposed protocols provide confidentiality as the
minimum path is found securely. Using ElGamal and
Elliptic Curve encryption schemes, confidentiality is
achieved, as the intermediate nodes can neither determine
the encrypted weight of the other nodes nor the minimum
optimal path. The minimum optimal path is chosen by the

source. An intruder can neither determine the encrypted
weights nor the minimum optimal path without the
knowledge of ElGamal or Elliptic Curve secret keys of
every node. Using privacy homomorphism, confidentiality
is also achieved, as an intruder cannot determine the weight
or the optimal path without the knowledge of the secret
key.

In the future, implementation problems of these newly
proposed protocols will be addressed and performance
comparison of these schemes will be given.

6. References

[1] Hyungjick Lee, Jim Alves-Foss,Scott Harrison, “ The
use of Encrypted Functions for Mobile Agent
Security”,Proceedings of the 37th Hawaii International
Conference on System Sciences – 2004.

[2] Josep Domingo i Ferrer, “A new Privacy
Homomorphism and Applications”, Elsevier North-
Holland, Inc, 1996.

[3] Makoto Yokoo, Koutarou Suzuki, “Secure Multi-agent
Dynamic Programming based on Homomorphic
Encryption and its Application to Combinatorial
Auctions”, Proceedings of the First International joint
Conference on Autonomous Agents and Multiagent
systems(AAMAS), 2002.

[4] T. Elgamal,” A public key cryptosystem and a
signature scheme based on discrete logarithm. IEEE
Trans. On Information Theory, 1986.

[5] William Stallings “Cryptography and Network
Security”, Third Edition, Chinese Remainder Theorem
(CRT), pp. 245-47.

[6] Jung Hee Cheon, Hyun Soon Nam,”A Cryptanalysis of
the Original Domingo-Ferrer's Algebraic Privacy
Homorphism”, http://eprint.iacr.org/2003/221.pdf

[7] W. Diffie, M. Hellman, “New Directions in
Cryptography”, IEEE Trans., on IT, Nov., 1976, pp.
644-654.

[8] N. Koblitz, “ECC”, Math. of Computation, v. 48, 1987,
pp. 203-209.

[9] A.J. Menezes, D. B. Johnson, “EC-DSA: An Enhanced
DSA”, Invited Talks – 7

th
Usenix Sec., Symp., Jan.,

1998, pp. 33-43.
[10] Certicom Corp., “Certicom ECC Tutorials”.
[11] Certicom Corp., "Remarks on the Security of the ECC

systems", ECC White Papers, July 2000.
[12] K. Lauter, “The Advantages of Elliptic Curve

Cryptography for Wireless Security,” IEEE Wireless
Communications, vol. 11, no. 1, pp. 62-67, February
2004.

[13] M. Aydos, T. Tanık, Ç. K. Koç, “High-Speed
Implementation of an ECC-based Wireless
Authentication Protocol on an ARM Microprocessor”,
IEE Pro.: Comms, Oct., 2001, pp 273-279.

[14] R. L. Rivest, A. Shamir, L.M. Adleman, “A Method
for Obtaining Digital Signatures and Public-Key

Cryptosystems”, Comms of the ACM, v. 21-n.2,
February 1978, pp. 120-126.

[15] L. Ertaul, W. Lu, “ECC Based Threshold
Cryptography for Secure Data Forwarding and Secure
Key Exchange in MANET (I)”, Proc. of the
Networking 2005 International Conf., May 2005,
University of Waterloo, Ontario, CA

[16] L. Ertaul, ”Cryptography Lecture Notes”, California
State University, East Bay,
http://www.mcs.csueastbay.edu/~lertaul/

