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Finding Minimum Optimal Path Securely Using 
Homomorphic Encryption Schemes in Computer 

Networks 

Abstract - In this paper we find a secure routing 
protocol for computer networks, which finds minimum 
optimum path using homomorphic encryption schemes. We 
briefly look into the existing homomorphic encryption 
algorithms. We make use of ElGamal encryption, Elliptic 
Curve encryption and a privacy homomorphism, which 
exhibits the property of homomorphism in our new routing 
protocol. Elliptic curve exhibits the property of additive 
homomorphism and is computationally faster than 
ElGamal and RSA. However, the privacy homomorphism 
using mod operation is computationally much faster than 
both ElGamal and Elliptic Curve. Using the homomorphic 
property of these encryption algorithms, we propose three 
new protocols, which are ElGamal, Elliptic Curve and 
Privacy Homomorphism to find the minimum optimal path 
securely. These protocols provide confidentiality. 
 
Keywords - ElGamal Encryption, Elliptic Curve 
Encryption, Privacy Homomorphism, Determining 
minimum optimal path. 
 

1. Introduction 
 

The routing algorithm decides which line the packet 
should be transmitted to. In a wireless environment the 
route keeps on changing, so we should dynamically select 
the route to transmit the packet. Using homomorphic 
encryption scheme we can securely find a minimum path in 
these networks. 

Homomorphic [1], [2], [3] encryption scheme can be 
implemented in routing protocols to enhance security. 
Using homomorphic encryption, operations can be 
performed by the intermediate nodes on the ciphertext as if 
performed on the plaintext without actually knowing the 
plaintext [1] [2] [3]. This enhances security of the protocol 
as the intermediate nodes if malicious cannot determine the 
plaintext. Homomorphism allows operation to be 
performed on the encrypted data (ciphertext) as if the 
operation is performed on the plaintext. Homomorphism 
has the property of additive, multiplicative and mixed 
multiplicative [1]. In additive homomorphism, decrypting 
the sum of two ciphertext is same as addition of two 
plaintext, represented as E (x+y) = E(x) + E(y). In 
multiplicative homomorphism, decrypting the product of 

two ciphertext is same as multiplication of the two 
plaintexts. Multiplicative homomorphism is mathematically 
represented as E(x*y) = E(x) * E(y). In mixed multiplicative 
homomorphism, decrypting the product of one ciphertext 
and plaintext is same as multiplication of two plaintext, 
represented as E(x*y) = E (x) * y. 

In this paper we briefly describe the encryption schemes 
having the property of homomorphism. We then aim to find 
the minimum optimal path by using ElGamal, Elliptic 
Curve and Privacy Homomorphism encryption schemes.  

The paper is organized as follows. In section 2, we 
briefly describe the overview of homomorphic encryption 
schemes. In section 3, we briefly describe the protocol, 
which determines maximum optimal path dynamically. In 
section 4, we propose new routing protocols, which use the 
homomorphic property of ElGamal encryption, Elliptic 
Curve Encryption and Privacy Homomorphism. Finally 
conclusions are given. 
 
2. Encryption Schemes Exhibiting the 

Property of Homomorphism 
 

In this section, we give an overview of cyptosystem 
using mod operation [1], Privacy Homomorphism [2], 
ElGamal encryption [3],[4] and Elliptic Curve 
[8],[9],[10],[11],[12] which exhibits the property of 
homomorphism. 
 
2.1 Encryption Functions using Mod 

Operations 
 

In this section, we focus on encryption schemes using 
mod operations, which are cryptosystem using mod 
operation and privacy homomorphism exhibiting the 
property of homomorphism. 

The cryptosystem using mod operation is introduced in 
[1]. This cryptosystem uses large number n, where n= p* q. 
Here p and q are large prime numbers, which are kept 
secret. The set of original plaintext messages is in Zp ={ x|x 
<= p }, Zn = { x|x <n } has the set of ciphertext messages 
and Qp = { a|a ∉ Zp } has the set of encryption clues. 

The encryption algorithm is performed by choosing a 
plaintext 'x' belonging to Zp and a random number 'a' in Qp 



 

such that x = a mod p. Here p is kept secret. The ciphertext 
y is calculated as y = Ep (x) = a mod n.  

In decryption algorithm the plaintext x is recovered as x= 
Dp(y) = y mod p, where p is the secret key. 

This cryptosystem has the property of additive, 
multiplicative and mixed multiplicative homomorphism. 
The proposed protocol, though exhibits the property of 
homomorphism is not very secure against known plaintext 
attacks, but secure against known ciphertext attacks [1]. 

We now look into a privacy homomorphism protocol, 
which is relatively secure against known plaintext attacks 
and completely secure against known ciphertext attacks. 

The privacy homomorphism is introduced in [2] which is 
a homomorphic encryption scheme not vulnerable to 
known ciphertext attacks. 

Let us look into the protocol in detail. In this protocol n 
and m are the public parameters. Here m= p * q, where p 
and q are large prime numbers. To increase security, m can 
be kept secret. The number 'n' represents the split of the 
plaintext. The secret keys are p, q, xp, xq. Here, xp ∈ Zp and 
xq ∈ Zq 

Encryption operation is performed by selecting the 
plaintext a∈ Zm.  We then split a into secret numbers a1, a2 
... an, such that a = (a1 + a2 … +ai+...an ) mod m and 
ai∈Zm. 

Ek(a) = (a1 xp mod p, a1 xq mod q), (a2 x2
p mod p, a2 x2

q 
mod q)... (an xn

p mod p, an xn
q mod q) 

Decryption operation is performed by computing scalar 
product of the ith pair [mod p, mod q] by [x-i

p mod p, x-i
q 

mod q] to get [ai mod p, ai mod q]. The pairs are then 
added up to get [a mod p, a mod q]. Finally, Chinese 
remainder theorem (CRT) [5] is performed to get a mod m. 

Let us illustrate an example to explain the protocol in 
more detail. Consider the example of 2 multiplication and 1 
addition such that (x1 * x2) + (x3 * x4).  

Let n = 2, which implies that the plaintext is split into 2. 
Consider p = 11, q = 7, xp = 2, xq = 3 as secret keys. 
Let (x1, x2, x3, x4) = (-1, 1, 2, 3) 

Encryption operation is performed as shown below. First 
the plaintext is split then encryption is done, 

Ek (x1) = Ek (-1) = Ek (2, -3) 
       = [2 x  mod p, 2 xp

   [-3 x2p mod p, -3 x2q mod q] 
q mod q], 

                = [4, 6], [10,1] 
Ek(x2) = Ek (1) = Ek (4, -3) 

             = [4 x  mod p, 4 xp
                   [-3 x2p mod p, -3 x2q mod q] 

q mod q],  

                = [8, 5], [10,1] 
    Ek(x3) = Ek (2) = Ek (3, -1) 
               = [3 x  mod p, 3 xp
                 [-1 x2p mod p, -1 x2q mod q] 

q mod q],  

              = [6, 2], [7,5] 
Ek (x4) = Ek (3) = Ek (4, -1) 
             = [4 xp mod p, 4 xq mod q],  
                 [-1 x2p mod p, -1 x2q mod q] 
             = [8, 5], [7,5] 
Ek (x1) * Ek (x2) = ([4, 6] [10, 1]) * ( [8, 5] [10, 1] ) 

                             = [0, 0] [4*8, 6*5] [4*10, 6*1] 
                                [10* 8, 1*5] [10*10, 1*1] 
                             = [0, 0] [32, 30] [40, 6] [80, 5]  
                                [100,1]  
Ek (x3) * Ek (x4) = ([6, 2] [7, 5]) * ([8, 5] [7, 5]) 
                             = [0, 0] [6*8, 2*5] [6*7, 2*5]  
                                [7* 8, 5*5] [7*7, 5*5] 
                             = [0,0] [48,10][42,10][56,25][49,25]      
                        
Performing (Ek (x1) * Ek (x2)) + (Ek (x3) * Ek (x4)) we 

get, [0,0] [80, 40] [218, 46] [149, 26] 
 

Decryption operation is performed as, 
 

[0 * x-1p mod p, 0 * x-1q  mod q], [80 * x-2p mod p,  
40 * x-2q  mod q], [218 * x-3p mod p, 46 * x-3q  mod 

q], [149 * x-4p mod p, 26 * x-4q  mod q] 
 

[0 x 6 mod 11, 0 x 5 mod 7], [80 * 62 mod 11, 40 * 52 
mod 7], [218 * 63 mod 11, 46 * 53 mod 7],  [149 * 64 mod 
11, 26 * 54 mod 7] 

 
[0, 0], [9, 6], [8, 3], [10, 3] 

 
Add up all the terms over Zp x Zq to get, 

[0 + 9 + 8 + 10 mod 11, 0 + 6 + 3 + 3 mod 7] 
[5, 5] 

By applying Chinese remainder theorem (CRT) on [5, 5] 
we get 5 (decrypted ciphertext). 

We know that (x1 * x2) + (x3 * x4) = 5 which is the 
plaintext. This shows that the plaintext and the decrypted 
ciphertext are the same. The protocol is said to be secure 
against known plaintext attacks and ciphertext attacks [2], 
but there is a possibility to break this protocol with great 
difficulty by using known plaintext ciphertext pairs as 
explained in [6]. When this protocol is used, one has to 
consider this weakness.   
 
2.2 ElGamal Encryption and Elliptic Curve 

Encryption  
 

In this section we briefly look into public key encryption 
schemes like ElGamal and Elliptic Curve, which have the 
property of homomorphism. 

ElGamal encryption [3] [4] is a public key encryption, 
which requires large prime numbers, p and q where p = 
2q+1. The public keys are p, g and y, where g is the cyclic 
group which is the subset of Zp, y =  gx ,  x  being the secret 
key belonging to Zq.  Here Zp is set of integers from 0 to p-1 
and Zq is the set of integers from 0 to q-1. 

During encryption the message M is encrypted using 
public keys. E (M) = (A= gr, B=yrM) where r is the 
random number. 

Decryption is computed with the private key x, D(E(M)) 
= B/Ax. 

ElGamal encryption has the property of multiplicative 
homomorphism [3]. 



 

Elliptic curve encryption [8], [9], [10], [11], [12] is also a 
public key encryption scheme, which requires a point G 
and an elliptic group E(a,b) to perform encryption and 
decryption. The node S, selects a private key nS and 
generates public key PS= nS x G. The encryption operation 
is performed by choosing a random number k and the 
ciphertext is generated as, C = { kG, m+kPD } where PD is 
the public key of node D. 

Decryption is performed by node D using the private key 
nD. Node D computes the multiplication of the 1st

 point of 
the ciphertext with it’s private key and then subtracts the 
result from the 2nd point of the ciphertext to recover the 
plain text. 

m+kPD – (nD kG) = m + k(nD G) - (nD kG) = m 
Elliptic Curve has the property of additive 

homomorphism [15], [16]. 
 
3. A Dynamic Programming based on 

Homomorphic Encryption 
 

The dynamic programming based on homomorphic 
encryption is introduced in [3] which find a maximum 
optimal path using ElGamal Homomorphic encryption. 

The protocol chooses a weight w such that (1<= w <= n) 
and chooses n such that it is large enough to represent the 
longest path.   

e(w) =  (e1, e2,... en) 
=  
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Here e(w) is the encryption of weight w, E(1) is the 
encryption of 1, E(z) is the encryption of z and z is a public 
number not equal to 1. z is chosen such that zk mod p ≠1 for 
0 < k <q. 

Let us consider an example where w=2 and n=4 
e(w) = E(z), E(z), E(1), E(1). Here z can be any number 

not equal to 1. 
A constant f is added to encrypted function e(w) by 

shifting e(w) to the right f  times. 
e(w+f) =   e

4434421
f

zEzE ),(),...,( 1, ... en-f                                   

                                                          
let   e(w) = E(z), E(z), E(z), E(1),E(1),E(1) and f=2, 

then, e(w+f) = E(z), E(z), E(z), E(z), E(z), E(1) 
This operation can be performed without decrypting 

e(w). If we compare e(w) and e(w+f) we cannot know the 
amount of shift. The shifting and the encryption can be 
masked by multiplying with E(1) and using different 
random numbers for encryption. The value of z can be 
different for different encryption. 

The maximum of the two weights can be found without 
decrypting the entire encrypted weights. This can be 
achieved by multiplying the two encrypted weights and 
decrypting the resulting product from en to e1, for i = 1 to n 
until D (E (xi)) ≠ 1 and i determines highest of the two 
weights.  

Consider two weights e(w+f) and e(v) 
e(w+f) = E(z), E(z), E(z), E(z),E(z), E(1) 
e(v) = E(z), E(z), E(1), E(1),E(1), E(1) 
e(w+f) * e(v) = E(z2), E(z2), E(z), E(z),E(z), E(1) 
Decrypting the 6th element we get D(E(x) = 1, 

decrypting the 5th element we get D(E(x)) = z ≠ 1, 
therefore the maximum of the two weight is 5. Using this 
scheme a maximum optimal path is determined dynamically 
in [3]. 

In the next section we propose new protocols, which 
determine the shortest path using ElGamal, Elliptic Curve 
and Privacy Homomorphism. 
 

4. Finding Minimum Optimal Path 
Using Homomorphic Encryption 

Schemes 
 

In this section we propose three new routing protocols in 
computer networks, which finds minimum optimal path 
using ElGamal Encryption, Elliptic Curve Encryption and 
Privacy Homomorphism. As these encryption schemes are 
additive and multiplicative we reduce the computational 
power and increase security by doing operations on 
encrypted data. Furthermore the proposed protocols encrypt 
the weight in a particular fashion, which make it difficult 
for an intruder to determine the weight. 
 
4.1 Use of ElGamal Homomorphic Encryption 

and Its Application to Find the Shortest 
Optimal Path 

 
We first find the minimum optimal path using ElGamal 

homomorphic encryption scheme. Encryption scheme in 
ElGamal [3] [4] requires two exponentiation, which could 
be computed ahead of time, as it is independent of the 
message. Decryption requires one exponentiation and one 
division, which is computationally much faster. To find the 
minimum optimal path, we assume that all the nodes know 
the weight to its neighboring nodes. We choose a number 
n, which is large enough to represent the length of the 
longest path. The weight w is encrypted with the public key 
and w<=n 

e(w) = (e1, e2,... en) 
=  

4434421
w
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Here e(w) is the encryption of weight w, E(1) is the 
encryption of 1, E(z) is the encryption of z and z is a public 
number not equal to 1. z is chosen such that zk mod p ≠ 1 
for 0 < k <q. 

Consider an example where w=2, n=4 and z ≠ 1. 
 e(w) = E(1), E(1), E(z), E(z) 

In this protocol, the two paths are combined by shifting 
the encrypted path e(w) to the right by the weight of the 
other path. 



 

   Let e(w) be the encrypted weight of one path and f be the 
weight of other path, then   
               e(w+f) =   e1, ..., en-f ,)1(),...,1(

43421
f

EE

            
Consider f=2 
let e(w) = E(1), E(1), E(1), E(z),E(z), E(z) 

     e(w+f) = E(1), E(1), E(1), E(1),E(1), E(z) 
This operation can be performed without decrypting 

e(w). If we compare e(w) and e(w+f) we cannot know the 
amount of shift. The shifting and the encryption can be 
masked by multiplying with E(1). Further different random 
numbers can be used for different encryption. 

The minimum of the two weights can be found without 
decrypting the entire encrypted weight. This can be 
achieved by multiplying the two encrypted weights and 
decrypting the resultant product from right to left until we 
get a value z=1. The position at which we get a value z=1, 
determines the minimum weight. 

The optimal of the two paths are determined by 
decrypting the encrypted paths at minimum weight+1 
position. The path, which decrypts to a value z ≠ 1 at the 
minimum weight+1 position, is the minimum optimal path. 

Consider two weights e(w+f) and e(v) 
e(w+f) = E(1), E(1), E(1), E(1),E(1), E(z) 
e(v) = E(1), E(1), E(z), E(z),E(z), E(z) 
e(w+f) * e(v) = E(1), E(1), E(z), E(z),E(z), E(z2) 
Decrypting the 6th, 5th, 4th and 3rd element of the resultant 

product, we get D(E(x)) ≠ 1, decrypting the 2nd element we 
get D(E(x)) = 1, therefore the minimum of the two weight 
is 2. 

To find the optimal path between e(w+f) and  e(v) 
decrypt both these paths at the 2nd +1 position. The path 
which decrypts to z ≠ 1 at the 2nd + 1 position is the optimal 
path with the minimum weight. 

Let us look into Figure 1, to illustrate the protocol in 
detail. w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2, 
w(2, 3) = 0 are the weights. Let n = 6 and z can be any 
number not equal to 1. 

e(0,1) (w(0,1)) = E0(1),E0(z),E0(z),E0(z),E0(z),E0(z): 
encrypted with the public key of node 0. 

e(0,2) (w(0,2)) = E0(1),E0(1),E0(z),E0(z),E0(z),E0(z): 
encrypted with the public key of node 0. 

e(1,2) (w(1,2)) = E1(1),E1(z),E1(z),E1(z),E1(z),E1(z): 
encrypted with the public key of node 1. 

e(1,3) (w(1,3)) = E1(1),E1(1),E1(z),E1(z),E1(z),E1(z): 
encrypted with the public key of node 1. 

e(2,3) (w(2,3)) = E2(z),E2(z),E2(z),E2(z),E2(z),E2(z): 
encrypted with the public key of node 2. 

By decrypting path 2-3 at node 2, we find the distance to 
be 0. At node 2 we compute path 1-2-3 by shifting the 
encrypted path of 1-2 to the right by the weight of path 2-3, 
which is 0. 

e(1,2,3) (w(1,2,3)) = E1(1),E1(z),E1(z),E1(z),E1(z),E1 (z) 
To find the minimum of two paths 1-2-3 and 1-3 with 

weights w(1,2,3) & w(1,3) respectively, at node 1 we 
multiply the two weights. 

 
e(1,2,3)(w(1,2,3)) * e(1,3) (w(1,3)) 
= E1(1),E1(z),E1(z2),E1(z2),E1(z2),E1(z2) 
By decrypting the 6th, 5th, 4th, 3rd and 2nd element we get 

D(E(x)) ≠ 1 and decrypting the 1st element we get D(E(x)) 
= 1. So the minimum weight is 1. 

 

 
To find the optimal path between 1-2-3 and 1-3, decrypt 

1-2-3 and 1-3 at the 1st+1 (2nd) position and the path, which 
decrypts to the value not equal to 1 at the 2nd position, is the 
shortest optimal path. Here path 1-2-3 is the optimal path, 
as it decrypts to z ≠ 1 at the 2nd position.  

To combine two paths 0-1 and 1-2-3 to get 0-1-2-3, we 
shift the encrypted path of 0-1 to the right by 1 at node 1, 
which is the weight of the path 1-2-3. 

e(0,1,2,3)(w(0,1,2,3))=E0(1),E0(1),E0(z),E0(z),E0(z), E0(z) 
At node 0 we also obtain an encrypted path 0-2-3 from 

node 2, which is obtained by shifting the encrypted path 0,2 
to the right by 0 (weight of path 2-3).  

e(0,2,3)(w(0,2,3)) = E0(1),E0(1),E0(z),E0(z),E0(z), E0(z)   
Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3), 

and  we determine the minimum path by multiplying the 
two encrypted paths to get, 

e(0,1,2,3)(w(0,1,2,3))  * e(0,2,3)(w(0,2,3)) 
= E0(1), E0(1), E0(z2), E0(z2), E0(z2), E0(z2) 
By decrypting the resultant path at node 0 we find the 2nd 

position decrypts to value 1 and so the minimum weight is 
2. By decrypting encrypted paths e(0,2,3) and e(0,1,2,3) at 
the 2nd +1 position we find that both the paths decrypts to a 
value z ≠ 1. The optimal path from 0 to 3 has the minimum 
weight 2 and the optimal path is either 0-1-2-3 or 0-2-3 
determined at node 0 which is the source. 

In the next section we find the minimum optimal path 
using Elliptic Curve encryption. 
 
4.2 Use of Elliptic Curve Homomorphic    

Encryption and Its Application to Find the 
Shortest Optimal Path 

 
Elliptic Curve Public Key Cryptosystem [8], [9], [10], 

[11], [12] is a relatively new public key cryptography 
which uses relatively small key sizes compared to ElGamal 
and RSA. Reduction in key sizes brings the advantage of 
less storage area and less required bandwidth, which are 
important requirements of wireless network architectures. 
In addition, Elliptic Curve permits the implementation of 
high-speed and efficient network security protocols 

The circled numbers represent nodes 
The rest of the numbers represent published weights. 
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requiring less power and smaller code sizes as compared to 
classical public key techniques such as ElGamal, RSA and 
Diffie-Hellman [7], [12], [13], [14].  

We now look at how Elliptic Curve encryption scheme 
can be used to find the minimum optimal path. We use a 
similar scheme as in ElGamal encryption, but the only 
difference is that the value of z can be any number other 
than 0 and the minimum path is obtained by adding the two 
paths as Elliptic Curve Cryptosystem has only additive 
homomorphism. That’s why z is chosen such that z ≠ 0.The 
weight w is encrypted as follows   

e(w) =  (e1, e2,... en) 
=  

4434421
w

EE ),0(),...,0(
4434421

wn

zEzE
−

)(),...,(

Here E(0) is the encryption of weight 0 and E(z) is the 
encryption of weight z. Here z can be any number not equal 
to 0, n is large enough to represent the length of the longest 
path and weight w<=n. The encrypted weights are 
randomized by adding with E(0). 

As in ElGamal, shifting the encrypted weight of one path 
to the right by the weight of the other path combines the 
two paths. The paths are compared for optimality by adding 
the two paths. The minimum weight of the two paths is the 
position at which the resultant sum decrypts to a value z=0, 
when the decryption is carried out from right to left. The 
minimum optimal path is the one, which decrypts to a value 
z ≠ 0 at the minimum weight +1 position.  

Let us consider the Figure 1, to explain this in detail 
w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2, w(2, 3) 

= 0, are the weights. Let n = 6 and z can be any number not 
equal to 0. 

e(0,1) (w(0,1)) = E0(0),E0(z),E0(z),E0(z),E0(z),E0(z): 
encrypted with the pu c key of node 0. bli

e(0,2) (w(0,2)  E) =
ic

e(1,2) (w(1,2)) = E

0(0),E0(0),E0(z),E0(z),E0(z),E0(z): 
encrypted with the publ  key of node 0.   

ic
e(1,3) (w(1,3)) = E

1(0),E1(z),E1(z),E1(z),E1(z),E1(z): 
encrypted with the publ  key of node 1. 

1(0),E1(0),E1(z),E1(z),E1(z),E1(z): 
encrypted with the public key of node 1. 

e(2,3) (w(2,3)) = E2(z),E2(z),E2(z),E2(z),E2(z),E2(z): 
encrypted with the public key of node 2. 

By decrypting path 2-3 at node 2, we find the distance to 
be 0. At node 2 we compute path 1-2-3 by shifting the 
encrypted path of 1-2 to the right by the weight of path 2-3, 
which is 0. 

e(1,2,3) (w(1,2,3) = E1(1),E1(z),E1(z),E1(z),E1(z),E1(z) 
To find the minimum of two paths 1-2-3 and 1-3 with 

weights w(1,2,3) & w(1,3) respectively, at node 1 we add 
the two weights to get, 

 e(0,1,2)(w(0,1,2)) + e(0,2) (w(0,2)) 
= E0(0), E0(z), E0(2z), E0(2z), E0(2z), E0(2z) 
By decrypting the 6th, 5th, 4th, 3rd and 2nd element, we get 

D(E(x)) ≠ 0 and decrypting the 1st element we get D(E(x)) 
= 0. So the minimum weight is 1. 

To find the optimal path between 1-2-3 and 1-3, we 
decrypt 1-2-3 and 1-3 at the 1st + 1 (2nd) position and the 
path, which decrypts to the value not equal to 0 at the 2nd 

position, is the shortest optimal path. Here path 1-2-3 is the 
optimal path, as it decrypts to z≠0 at the 2nd position.  

To combine two paths 1-2-3 and 0-1 to get 0-1-2-3, at 
node 1 we shift the encrypted path of 0-1 to the right by 1, 
which is the weight of the path 1-2-3. 

e(0,1,2,3)(w(0,1,2,3))=E0(0),E0(0),E0(z),E0(z),E0(z), E0(z) 
At node 0 we also obtain an encrypted path 0-2-3 from 

node 2, which is obtained by shifting the encrypted path 0,2 
to the right by 0 (weight of path 2-3).  

e(0,2,3)(w(0,2,3)) = E0(0),E0(0),E0(z),E0(z),E0(z), E0(z) 
Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3), 

and  we determine the minimum path by adding the two 
encrypted weights to get, 

e(0,1,2,3)(w(0,1,2,3))  + e(0,2,3)(w(0,2,3)) 
= E0(0), E0(0), E0(2z),E0(2z), E0(2z), E0(2z) 

By decrypting the resultant path we find the 2nd position 
decrypts to value 0 and so the minimum weight is 2.The 
optimal path from 0 to 3 has the minimum weight 2 and the 
optimal path is either 0-1-2-3 or 0-2-3 as both these paths 
decrypt to a value z ≠ 0 at the minimum weight +1 position. 

In the next section we find the minimum optimal path 
using a privacy homomorphism. 
 
4.3 Use of Privacy Homomorphism and Its 

Applications to Find the Shortest Optimal 
Path 

 
In this section we look into our routing protocol using 

privacy homomorphism encryption scheme. In this 
protocol, a weight w is chosen such that w <= n and n is 
chosen such that it is large enough to represent the length of 
the longest path as in ElGamal and Elliptic Curve 
encryption. The encryption of the weight in this protocol is 
performed as follows: 

e(w) =  (e1, e2,... en) 
=  
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Here e(w) is the encryption of weight w, E(0) is the 
encryption of 0, E(z) is the encryption of z, n is large 
enough to represent the longest path, S represents the 
number of split of the plaintext and z is any number not 
equal to 0. In this encryption randomness is achieved by 
splitting each plaintext differently, and adding E(0) which 
are split differently. 

Here the paths are compared for optimality by adding the 
two encrypted paths instead of multiplying the two paths as 
multiplication increases the vectors in squares. 

Consider an example where w=2, z=5, n=4, S=2 
e(w) = E(0) E(0), E(0) E(0), E(z) E(z), E(z) E(z) 
In this protocol, the two paths are combined by shifting 

the encrypted path e(w) to the right by S*f, f being the 
weight of the other path. 
e(w+f) =   e,)0(),...,0(

*
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Consider f=2, S=2 and n=4 



 

let  e(w)  =  E(0) E(0), E(0) E(0), E(z) E(z), E(z) E(z) 
 e(w+f) = E(0) E(0), E(0) E(0), E(0) E(0), E(0) E(0) 
This operation can be performed without the decryption 

of e(w). If we compare e(w) and e(w+f) we cannot know 
the amount of shift. The shifting and the encryption can be 
masked by adding E(0). 

The minimum of the two weights can be found without 
decrypting the entire encrypted weights. This can be 
achieved by adding the two encrypted weights and 
decrypting the resultant sum from right to left in pairs of S 
until we get a value z=0. The position at which we get a 
value z=0, determines the minimum weight. 

The minimum optimal path can be determined by 
decrypting the two paths at minimum weight + 1 position 
and the path, which decrypts to a value z ≠ 0 is the 
minimum optimal path. Decryption is performed in groups 
of S as S is the split of the plaintext. 

Consider two weights e(w) and e(v) 
e(w) = E(0) E(0), E(0) E(0), E(z) E(z) 
e(v) = E(0) E(0), E(z) E(z),E(z) E(z) 
e(w) + e(v) = E(0) E(0), E(z) E(z), E(z) E(z) 
Decrypting the 6th and 5th element together of the 

resultant sum we get D(E(x)) = z, decrypting the 2nd and 1st  
element together we get D(E(x)) = 0, therefore the 
minimum of the two weight is 1. 

To find the optimal path between e(w) and  e(v) decrypt 
both these paths at the 3rd  and 4th  position. The path, 
which decrypts to z ≠ 0 at the 3rd and 4th position, is the 
optimal path with the minimum weight. 

Let us consider Figure 1 to illustrate this scheme in 
detail. Let w(0,1) = 1, w(0, 2) = 2, w(1, 2) = 1, w(1, 3) = 2, 
w(2, 3) = 0 , be the weights. Let n = 6 and S=2, then 

e(0,1) (w(0,1)) = E(0) E(0), E(z) E(z), E(z) E(z), E(z)  
                            E(z), E(z) E(z), E(z) E(z) 
e(0,2) (w(0,2)) = E(0) E(0), E(0) E(0), E(z) E(z), E(z)  
                            E(z), E(z) E(z), E(z) E(z) 
e(1,2) (w(1,2)) = E(0) E(0), E(z) E(z), E(z) E(z), E(z)  
                            E(z), E(z) E(z), E(z) E(z) 
e(1,3) (w(1,3)) = E(0) E(0), E(0) E(0), E(z) E(z), E(z)  
                            E(z), E(z) E(z), E(z) E(z) 
e(2,3) (w(2,3)) = E(z) E(z), E(z) E(z), E(z) E(z), E(z)  
                            E(z), E(z) E(z), E(z) E(z) 
By decrypting path 2-3 at node 2, we find the weight of 

path 2-3 to be 0. The path 1-2-3 is obtained by shifting the 
encrypted path 1-2 to the right by the weight of 2-3 in pairs 
of S at node 2. 

e(1,2,3) = E(0) E(0), E(z) E(z), E(z) E(z), E(z,) E(z),     
E(z), E(z), E(z) E(z) 

To find the minimum of two paths 1-2-3 and 1-3, at node 
1 we add the two encrypted paths to get the resultant path, 

e(1-2-3) + e(1-3) = E(0) E(0), E(z) E(z), E(z) E(z), E(z)  
E(z),  E(z) E(z), E(z) E(z). 

By decrypting the 12th and 11th element together,..., 4th 
and 3rd element together, we get D(E(x)) ≠ 0 and by 
decrypting the 2nd and 1st element together we get D(E(x)) 
= 0. So the minimum weight is 1. 

To find the optimal path between 1-3 and 1-2-3, we 
decrypt 1-3 and 1-2-3 at the 3rd and the 4th position together 
and the path, which decrypts to a value z ≠ 0 is the optimal 
path. We find that path 1-2-3 decrypts to a value z ≠ 0. 
Hence, path 1-2-3 is the optimal path. 

We know that the path 1-2-3 has the weight 1. To 
combine two paths 0-1 and 1-2-3 to get 0-1-2-3, we shift 
the encrypted path 0-1 to the right by 1 in pairs of S. 

e(0-1-2-3) =   E(0) E(0), E(0) E(0), E(z) E(z), E(z) E(z), 
E(z) E(z), E(z) E(z). 

At node 0 we also obtain an encrypted path 0-2-3 from 
node 2. 

e(0-2-3) =   E(0) E(0), E(0) E(0), E(z) E(z), 
E(z)E(z), E(z) E(z), E(z) E(z). 

Node 0 has two encrypted paths e(0,2,3) and e(0,1,2,3), 
and  we determine the minimum path by adding the two 
encrypted weights to get, 

e(0,1,2,3)(w(0,1,2,3))  + e(0,2,3)(w(0,2,3)) 
= E(0) E(0), E(0) E(0), E(z) E(z), E(z) E(z), E(z) E(z),E(z) 

E(z). 
By decrypting we find that the minimum weight is 2. The 

optimal path from 0 to 3 has the minimum weight 2 and the 
optimal path is either 0-1-2-3 or 0-2-3, determined at node 
0, as both these paths decrypt to a value z ≠ 0 at the 
minimum weight +1 position. 

In this section, we have proposed three new routing 
protocols, which use ElGamal Encryption, Elliptic Curve 
Encryption and Privacy Homomorphism. These schemes 
ensure that the minimum optimal path is finally determined 
by the source. None of the nodes are aware of what the 
optimal path is going to be. We consider that Elliptic Curve 
Encryption scheme is better over ElGamal as it requires less 
key space and is computationally faster than ElGamal 
Encryption [12]. However, we consider that the Privacy 
Homomorphism is computationally much faster than both 
ElGamal and Elliptic Curve Encryption. But the problem 
with Privacy homomorphism is that the encrypted weight is 
‘S’ times longer than that required for ElGamal and Elliptic 
Curve Encryption. This results in more storage space. 
 

5. Conclusions 
 

In this paper we have shown that a minimum optimal 
path can be found securely to route the packets in computer 
networks by using homomorphic encryption schemes. 
Using these homomorphic encryption schemes, minimum 
weight of the two paths can be found without actually 
decrypting the entire resultant path. The minimum of the 
two paths can be found by decrypting the two paths at the 
minimum weight +1 position, thus reducing the 
computational power by not decrypting the entire path. 
These proposed protocols provide confidentiality as the 
minimum path is found securely. Using ElGamal and 
Elliptic Curve encryption schemes, confidentiality is 
achieved, as the intermediate nodes can neither determine 
the encrypted weight of the other nodes nor the minimum 
optimal path. The minimum optimal path is chosen by the 



 

source. An intruder can neither determine the encrypted 
weights nor the minimum optimal path without the 
knowledge of ElGamal or Elliptic Curve secret keys of 
every node. Using privacy homomorphism, confidentiality 
is also achieved, as an intruder cannot determine the weight 
or the optimal path without the knowledge of the secret 
key. 

In the future, implementation problems of these newly 
proposed protocols will be addressed and performance 
comparison of these schemes will be given. 
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