

Mobile Agent Security
Levent Ertaul Jayalalitha Panda

Department of Mathematics and Computer Science Department of Mathematics and Computer Science,
California State University, East Bay, California State University, East Bay,

Hayward, CA, USA. Hayward, CA, USA

 levent.ertaul@csueastbay.edu jaya.panda@gmail.com

Abstract — Mobile agent technology is a new paradigm of

distributed computing that can replace the conventional
client-server model. However, it has not become popular due
to some problems such as security. Threats to mobile agent
security generally fall into three main classes: disclosure of
information, denial of service, and corruption of information.
Four threat categories are identified: threats stemming from
an agent attacking an agent platform, an agent platform
attacking an agent, an agent attacking another agent on the
agent platform, and other entities attacking the agent system.
In this paper, we discuss our implementation of two of the
security approaches called Mixed Multiplicative
Homomorphic Encryption scheme and Secure Dynamic
Programming. These security approaches protect the mobile
agents from malicious agent platforms. We also discuss our
agent integrity checking mechanism that is implemented using
SHA1 digest algorithm. These implementations are done in the
IBM’s JAVA Mobile agent system called Aglets and provide
Confidentiality and Integrity services to the mobile agents.

Keywords: Aglet, Homomorphic Functions, Mobile
Agents, Mobile Cryptography, Dynamic Programming.

1. Introduction
A mobile agent is a software object that is not bound to the

system where it begins its execution. It has the unique ability
to transport itself from one system in a network to another.
The ability to travel allows a mobile agent to move to a system
that contains an object with which the agent wants to interact
and then to take advantage of being in the same host or
network as the object [1].

Mobile agents reduce network traffic, overcome network
latency, encapsulate protocols, execute asynchronously and
autonomously, adapt dynamically, naturally heterogeneous
and are robust and fault-tolerant [1].

We have chosen the IBM’s JAVA Mobile Agent System –
AGLETS for our implementation. We chose a JAVA-based
mobile agent system because of the following benefits [1]:
Platform independence:, Secure Execution, Dynamic Class
Loading:, Multithread Programming, Object Serialization,
Reflection.

There are a few other interesting JAVA-based mobile agent
systems which are Odyssey, Concordia, and Voyager [1].

 All these agent systems need some security and that is why
we decided to implement two of the available security models
that can counteract some of the security attacks that have been
described in section II.

The rest of the paper is organized as follows: In Section II,
we discuss about security threats in mobile agents. In Section

III, a brief introduction to the IBM Aglets is given. In Section
IV, we discuss about some of the agent security models. In
Section V, we talk about the Mixed-Multiplicative
Homomorphic encryption (MMH) scheme. In Section VI,
MMH cryptosystem is detailed with an example. Section VII
explains our implementation of MMH cryptosystem in IBM
Aglets. Section VIII, details the secure dynamic programming
protocol and Section IX explains our implementation of that
protocol in IBM Aglets. In Section X we explain our
implementation of integrity checking mechanism in IBM
Aglets.

2. Security Threats in Mobile Agents

 Mobile agents moving around the network are not safe. The
Agent-to-Host, Agent-to-Agent, Host-to-Agent, Other-to-
Agent Host attacks are the kinds of security attacks that are
possible in a Mobile Agent System [2]:

We have implemented security systems that protect the
agents from the attacks by the malicious hosts.

A malicious host can be defined in a general way as a party
that is able to execute an agent that belongs to another party
and tries to attack the agent in some way [3].

It seems obvious that if the remote host is to execute a
process, the process can have no secrets from that host.

In the next section, we discuss about some specifics
pertaining to IBM’s JAVA Mobile Agent System – AGLETS
in which we have implemented our security and integrity
approaches.

3. Mobile JAVA Agent: The Aglet model
Aglet is a JAVA based mobile agent system developed by

IBM [1].
Agents --- which are called aglets in this system --- migrate

between agent servers (called aglet contexts) located on
different network hosts. A distinguishing feature of Aglets is
its callback-based programming model [1, 4].

Aglets are hosted by an Aglet server in a way similar to the
way applets are hosted by a web browser. The Aglet server
provides an environment for aglets to execute in, and the
JAVA virtual machine and the Aglet security manager make it
safe to receive and host aglets.

Now let us give an introduction to the aglet object model.
This model was designed to benefit from the agent
characteristics of JAVA while overcoming some of the
deficiencies in the language system. In the aglet object model,
a mobile agent is a mobile object that has its own thread of
control, is event-driven, and communicates by message
passing.

 Now let us take a closer look at the model underlying the

Aglet API. This model defines a set of abstractions and the
behavior needed to leverage mobile agent technology in
internet-like, open wide-area networks: The key abstractions
are aglet, proxy, context and identifier [1].

 The following list summarizes the fundamental operations
of an aglet: creation, cloning, dispatching, retraction,
deactivation, activation, and disposal [1].

In the next section we discuss about some of the Agent
security models.

4. Agent Security Models
 The following are some of the available security models for

mobile agents. Each one of them can be used to provide
security for different applications.

4.1 Computing with Encrypted Data
Encrypted programs can be used to protect agents from

malicious hosts. Encrypted programs are programs that consist
of operations that work on encrypted data. Agents are
produced by converting an agent specification into some
executable code plus initial, encrypted data. Since, the attacker
cannot break the encryption of the data it cannot read or
manipulate the original data.

The problem of computing with encrypted data has been
described in [6] in the following way:

Bob has an algorithm to compute function f and is willing to
compute f(x) for Alice. Alice wants to compute f on her
private input x but does not want to reveal x to Bob.
Furthermore Alice should not learn anything substantial
about the algorithm of Bob for computing f.
 The solution proposed in [7] yields a highly interactive

protocol to this problem of the model of “Boolean circuits”; it
allows Alice to encrypt the input data x in such a way that Bob
can compute f(x) for her without getting to know the clear text
x.

4.2 Computing with Encrypted Functions
 The mobile code can not be effectively protected against

the executing system because the host has full control over its
execution and it may potentially fully understand the code and
eventually can change it in any way it wants. But the argument
is that we can obtain a system where a host can execute an
encrypted function without having to decrypt it. Thus,
functions would be encrypted such that the resulting
transformation can be implemented as a (mobile) program that
will be executed on a remote host. The executing computer
will see the program's clear text instructions but will not be
able to understand the function that the program implements.
[5].

The problem of computing with encrypted functions has
been described in [6] in the following way:

 Alice has an algorithm to compute a function f. Bob has an
input x and is willing to compute f(x) for her, but Alice wants
Bob to learn nothing substantial about f. Moreover, Bob
should not need to interact with Alice during the computation
of f(x).

Privacy Homomorphisms (PHs) that were formally
introduced in [7] are basically encrypted functions. The
security gain of privacy homomorphism is in a multilevel

security environment: data can be encrypted at a classified
level, be processed by an unclassified computing facility and
the result be decrypted by the classified level [8].

4.3 Standard Cryptography
 In standard cryptographic techniques the keys need to be

kept secret and the processing needs to be done in a secure
execution environment.

 But, Mobile agents should be allowed to execute in
untrusted or unsecure hosts and still have guarantees for their
correct execution. Protection Mechanisms for Mobile Agents
should be provably secure.

 In the next section, we discuss about the Mixed-
Multiplicative Homomorphic Encryption scheme.

5. Mixed-Multiplicative
Homomorphic Encryption Scheme

(MMH)
 Here we discuss about the security approach presented in

[9] which we implemented. This approach focuses on
extending the mobile cryptography approach, proposed in [10,
5, 11], in terms of privacy and integrity, and explore its
usefulness and effectiveness in protecting mobile agents. To
extend mobile cryptography, in [5], composite functions and
additive-multiplicative homomorphism are considered to
encrypt mobile agents. Homomorphic Encryption Scheme
(HES) enables direct computation on encrypted data without
decryption.

 Properties of HES that are needed to secure mobile agents
are [10, 11]:

 - additively homomorphic: computing E(x+y) from
E(x) and E(y) without revealing x and y

 - multiplicatively homomorphic: computing E(xy)
from E(x) and E(y) without revealing x and y

 - mixed-multiplicatively homomorphic: computing
E(xy) from E(x) and y without revealing x.

The mobile agent encrypted with HES will be able to run on
any host without decryption. Also, the HES encrypted agent
will generate encrypted results, which will be decrypted by the
agent owner. This will improve the overall security of the
mobile agents. Computation on encrypted data protects the
data from the untrusted hosts.

 But, the challenge is to find encryption schemes for
arbitrary functions. We can find encrypting transformations
for specific function classes such as polynomials and rational
functions [10].

Also, an important observation made in [5] is that for
computing with encrypted polynomial it is not necessary to
have both the additive and multiplicative property of an
encrypted function: it is sufficient that the encryption supports
addition and "mixed multiplication" [11].

The next section explains the MMH cryptosystem. The
subsequent section details our implementation of this
cryptosystem in IBM Aglets.

6. MMH (Mixed Multiplicative
Homomorphic) Cryptosystem

MMH cryptosystem presented in [9] uses a large number, n,
such that n = p × q where p and q are large prime numbers.
Let Zp = { x | x ≤ p} be the set of original plaintext messages Zn

= { x | x < n } be the set of cipher text message and Qp = {a | a
is not an element of Zp } be a set of encryption clues. The types
of operations defined are addition and multiplication on Zp.

The encryption and decryption algorithms are as follows:
Encryption: Given x is an element of Zp, pick a random

number a in Qp such that x = a mod p. Compute the encrypted
value y = Ep(x) = a mod n. (This can be accomplished by
picking a random r and creating a = x + rp.)

Decryption: Given y = Ep(x) is an element of Zn , use the
key p to recover x = Dp(y) = y mod p.

This cryptosystem is additively, multiplicatively, and
mixed-multiplicatively homomorphic.

Example (Multiplication): Let p = 17, q = 13, n = 221 = p
× q and the values, x1 = 8 and E(8) = 59 and x2 = 2 where
E(2) = 36.

(59 × 36) mod 221 = 135
 Decrypting 135 yields,

16 = 135 mod 17
which is the same as the unencrypted multiplication result

x1 × x2 = 8 × 2 = 16.
A mixed-multiplicative homomorphism allows encryption

of a plaintext message without any knowledge of the
cryptosystem including the keys and encryption algorithm. An
advantage of this approach is that the encryption can be done
in real-time, because the encryption of the plaintext, y,
requires only a single invocation of the encryption function.

 One possible application of the mixed-multiplicative
homomorphic encryption scheme is multi-party computation,
where each party does not want to reveal its data to the other
participants. A mixed-multiplicative homomorphic encryption
scheme will allow each participant to encrypt inputs to a
program, and perform the direct computation on the encrypted
data.

 This scheme is protected against the ciphertext-only attack
due to the difficulty in factoring of a large prime number. But,
it needs to be protected against the following attacks [9]:

Known-Plaintext Attack: Cryptanalyst knows a plaintext-
ciphertext pair (x, y). Since y = E(x) = (x + rp) modn, rp
modn = E(x) – x modn. So, p must be gcd(rp, n).

 Integrity Attack: Since decryption is performed modulo p,
any unencrypted number x < p will be deciphered as itself. So,
an encrypted value can be replaced with a chosen value and
claim it to be encrypted

Automatic encryption of Remote input: By definition of the
MMH, the remote input x, can be automatically encrypted by a
malicious host by multiplying x by E(1) assuming if the agent
owner provides E(1). No need to know the encryption
algorithm.

7. Implementation of MMH
Cryptosystem in IBM aglets

 Our implementation does the encryption and decryption

functions of the MMH cryptosystem. There are two aglets in
our implementation: The creator aglet
MMHEncrDecrAgletApp whose class file is given in Table 1
and the proxy aglet, MMHEncryptDecrypt whose class file is
given in Table 2. The proxy consists of the function that does
the multiplication on encrypted data. The creator aglet
encrypts the two integers (x1 and x2) whose multiplication
operation is to be subcontracted to the host at the destination
URL. The creator aglet then creates the aglet proxy,
MMHEncryptDecrypt and passes the encrypted integers as
arguments. The proxy is then dispatched to the destination
whose URL is given. At the destination the multiplication is
done on the encrypted integers. The creator aglet then collects
the results by exchanging messages with the proxy. It then
decrypts the results and prints it to the console. Finally the
proxy is retrieved from the destination and disposed.

Table 1. Creator Aglet
public class MMHEncrDecrAgletApp extends Aglet {
 public void run() {
 BigInteger encResult;
 BigInteger p = new BigInteger("11");

BigInteger q = new BigInteger("7");
 BigInteger n = new BigInteger("77");
 BigInteger x1 = new BigInteger("5");
 BigInteger x2 = new BigInteger("5");
 BigInteger r = new BigInteger("3");
/* a1 and a2 are the encrypted values of the integers x1 and x2 respectively.
The encryption is done using the MMH cryptosystem */
 BigInteger a1 = x1.add((r.multiply(p)));
 BigInteger a2 = x2.add((r.multiply(p)));
 try {
 Object args = new Object[] {
 a1,a2,n };
 URL destination = new URL("atp://LIFEBOOK:3000");
/* The MMHEncryptDecrypt aglet proxy is created and dispatched to the
destination. */
 AgletProxy proxy = getAgletContext().createAglet(getCodeBase(),
"MMHEncryptDecrypt", args);
 proxy = proxy.dispatch(destination);
/* Message is sent to the aglet proxy at the destination and the result is
collected. */
 Message myResult = new Message("result");
 BigInteger Result = (BigInteger)proxy.sendMessage(myResult);
 System.out.println("The returned encrypted result is"+Result);
/*The collected result is decrypted and printed to the console */
 BigInteger decryptedResult = Result.mod(p);
 System.out.println("The final decrypted result
is"+decryptedResult);
/* The aglet proxy is retracted from the destination and disposed */
 proxy = getAgletContext().retractAglet(destination,proxy.getAgletID());
 proxy.dispose();
 }catch(MalformedURLException e) {
 }catch(Exception e) {
 }finally {
 }
 }

 }
In the next section, we discuss about our second

implementation, the secure dynamic programming protocol.
Table 2. Proxy aglet

/* This proxy aglet does the multiplication of the two encrypted integers */
public class MMHEncryptDecrypt extends Aglet {
 boolean retracted = false;
 BigInteger encryptedResult ;
/* handles the transfer of the result to the aglet that dispatched this aglet*/
 public boolean handleMessage(Message msg){
 if(msg.sameKind("result")){
 msg.sendReply(encryptedResult);
 return true;

 } else
 return false;
 }
/* onCreation is called when the aglet is created and the arguments(args) are
paased from the creator aglet. */
 public void onCreation(final Object args) {
 addMobilityListener(
 new MobilityAdapter() {
/* args values are assigned to Local variables */
 BigInteger encryptedX1 = (BigInteger)((Object[])args)[0];
 BigInteger encryptedX2 = (BigInteger)((Object[])args)[1];
 BigInteger n = (BigInteger)((Object[])args)[2];
 /* This function is called both the times when the aglet arrives at the
destination(retracted = false) as well as when it is retracted (retracted =
true)back by the creator. */
 public void onArrival(MobilityEvent e) {
 try {
 if(retracted) {
 System.out.println("encryptedResult is "+encryptedResult);
 }else {
 try{
 encryptedResult = (encryptedX1.multiply(encryptedX2)).mod(n);

}catch (Exception m){
 }
 }//end of if-else
 }catch (Exception me) {
 dispose();
 }
 }// end of onArrival
 public void onReverting(MobilityEvent e) {
 retracted = true;
 }
 }//end of Mobility adapter
); //end of addMobilityListener
 }//end of onCreation

}

8. Secure Dynamic Programming
Protocol that utilizes Homomorphic

Encryption
In multi-agent systems, multiple autonomous agents

sometimes need to solve a combinatorial optimization problem
by using their private information. For example, in a
combinatorial auction where multiple goods are auctioned
simultaneously, agents need to find a combination of bids for
disjoint set of goods, so that the sum of the bidding prices is
maximized. The problem is called the winner determination
problem and has recently become a very active research field
[12, 13, 14, 15].

 If there exists a fully trusted agent, e.g., the participants can
trust the auctioneer, it is possible to gather all private
information relevant to the combinatorial optimization
problem at this trusted agent; thus this agent can solve the
problem using any available centralized optimization
technique.

However, we cannot take it for granted that there exists
such a trusted agent. For example, in a standard first-price
sealed-bid auction [16], where the highest bidder wins and
pays his/her own price, the auctioneer might collude with a
particular participant and reveal information about incoming
bids to that participant during the auction.

We can utilize various cryptographic technologies so that
while accepting incoming bids, the auctioneer cannot learn
bidding prices. For example, the bidders can first submit

encrypted bids, and then give the auctioneer the decryption
keys after the bids are closed. However, the auctioneer can
utilize the information of bids for future auctions [17].

The proposed solution to this problem is the secure dynamic
programming protocol [17] that utilizes indistinguishable,
homomorphic and randomizable public key encryption
scheme.
 An example application of this protocol is the combinatorial
auction, where multiple servers can solve a winner
determination problem, i.e., they can find the combination of
bids so that the sum of the bidding prices is maximized.
Although the servers can compute the optimal solution
correctly, the information of the bids that are not part of the
optimal solution is kept secret even from the servers [17].

Dynamic programming is a powerful method that can be
applied to various combinatorial optimization problems.
Dynamic programming [16] was developed by R. Bellman
during the late 1950’s. The Secure dynamic programming [17]
protocol is described in the following paragraphs based on the
problem of finding the longest path in the one-dimensional
directed graph shown in Figure 1. This problem is similar to
the winner determination problem described in the previous
paragraphs.

Legend:

 Published weights of the links
 Nodes or Evaluators
 Figure 1. One dimensional directed graph

The graph consists of nodes 0, 1, 2, …, m with directed
links among them. A link is represented as (j, k) where j < k.
For each link (j, k), the weight of the link w(j, k) is defined.
The goal is to find the longest path from initial node 0 to
terminal node m., i.e., to find a path from 0 to m so that the
sum of the weights of links are maximized. For simplicity, we
assume for each node j (where 0 ≤ j < m), there exists at least
one link that starts from j, i.e., there is no dead-end node
except m.

We can obtain the length of the longest path from 0 to m by
solving the following recurrence formula from node m - 1 to 0:

 f(j) = max(j, k){w(j, k) + f(k)}
In this formula, f(j) represents the length of the longest path

from j to m which is called the evaluation value of node j. For
terminal node m, f(m) is defined as 0. For initial node 0, f(0)
represents the optimal solution, i.e., the length of the longest
path from 0 to m.

The basic idea of the protocol is as follows:
• We assume there is a weight publisher P(j, k) for each

link (j, k), and an evaluator Ti for each node i. In an
auction setting, a weight publisher corresponds to a
bidder, and an evaluator corresponds to a part of the
multiple auction servers.

 0 1 2 3
2 3 1

5

• These evaluators cooperatively execute dynamic
programming. Evaluator Ti knows only its evaluation
value f (i) and does not know any weight of any link.

The protocol is outlined as follows:
• The weight publisher P(j, k) encrypts its weight w(j, k)

using Tj ’s encryption function.
• Evaluator Tk (who cannot decrypt this information)

then calculates the encryption of w(j,k) + f(k).
• Evaluator Tj then calculates f(j) by decrypting a part

of this encryption without knowing w(j, k).
To implement this protocol in aglets the encryption scheme

we used is the ElGamal encryption scheme which is an
indistinguishable, homomorphic and randomizable public key
encryption scheme.
 Here's how El Gamal works [18]. Pick a modulo m (a very
large prime number), and two random numbers b (the base)
and s (the secret key) between 1 and m-1. Now compute the
public key y = b mod ms , and publish m, b, and y, keeping s
secret. Presumably, the difficulty of computing discrete
logarithms prevents someone from figuring out s from the
published information. Now, to send a message M (a number
between 1 and m-1), the sender picks a random number k
between 1 and m-1, and computes:

y = b mod m1
k and y = y M mod m2

k
and sends both y1 and y2; this is the encrypted message. To
decrypt the message requires knowledge of s, which allows
the following computation:

y y mod m = b b M mod m = M1
-s

2
-ks ks

From the indistinguishability of ElGamal encryption, one
can know no information about weight w from the encrypted
weight e(w).

9. Implementation of Secure Dynamic
Programming Protocol in IBM

Aglets
The implementation of the protocol is done for the example

problem of finding the longest path in the one-dimensional
directed graph in Figure 1. This problem and the protocol used
to solve the problem are described in detail the previous
section. The details of our implementation can be described as
follows.

In our implementation there are two evaluator aglets
Evaluator 1 aglet and Evaluator 2 aglet one each for the nodes
1 & 2 respectively. There is also one Application aglet. The
assumption here is that each one of the evaluators acts
honestly and it does not try to decrypt the information that it
does not need to know to execute the protocol. The flow of
our program is given in Figure 2 and it is described in the
following steps.

Step 1: The weight publisher (Application aglet) for the
weight of the link (2, 3) encrypts the weight using ElGamal
encryption, which is e(w(2,3)). The encrypted weight is then
added to f(3) (the evaluation value of node 3). Here, f(3) is 0
since node 3 is the last node. Then, e(w(2,3)) + f(3) is passed
as an argument to the evaluator aglet which here is Evaluator
2 aglet and is then dispatched to the destination.

Step 2: The Evaluator 2 aglet at the destination decrypts
e(w(2,3)) + f(3) and gets the value of f(3). It then adds this

value to e(w(1, 2)) which was also passed as an argument from
the Application aglet. The final value e(w(1,2)) + f(3) is then
passed back to the Application aglet at the source by message
passing.

Figure 2. The program flow of our implementation of Secure

Dynamic Programming
Steps 3 and 4 : The Application aglet then passes the

following values e(w(1,2))+f(3), e(w(1,3)) and e(w(0,1)) as
arguments to the Evaluator 1 aglet. Since the Evaluator 1
aglet represents the node 1 and there are two links branching
out of node 1, this aglet has to find out the maximum of the
two paths, i.e., the maximum of the following two values:
e(w(1,2))+f(3) and e(w(1,3)). It then adds the value e(w(0, 1)
to the maximum value. This is the final value which is the
length of the longest path, and is now passed back to the
Application aglet by message passing.

The Application aglet then decrypts the final result and
prints it to the console.

We represent weight w (1 ≤ w ≤ n) by encrypted weight
e(w) that is the following vector of cipher texts [17]:

 e(j,k)(w(j, k)) = (Ej(z), ...,Ej(z), Ej(1), ...,Ej(1)).
That is, the encrypted weight of the link (j, k) is represented

by writing the value of Ej(z), w(j, k) times followed by writing
the value of Ej(1), n-w(j, k) times.

It is assumed that n is chosen so that it is large enough to
represent the length of the longest path. Z is the common
public element. Z is chosen so that zk mod p ≠ 1 for 0 < k < q
where q, p = 2q + 1 are primes.

Using the above processes, we can find the maximum of
weights, and add a constant to a weight without decrypting it.
Since we do not reveal the weights to Evaluator 1 and
Evaluator 2, they have to perform all the operations on the
encrypted weights only, and that is made possible by the
vector representation of weights.

Adding a constant to an encrypted weight: We can add a
constant such as the evaluation value of a node, to an
encrypted weight e(w) = (e1, ….en) without decrypting e(w)
nor learning w. By shifting and randomizing e(w), we can
obtain

e’(w + f) = (E(z), ...,E(z), e’1, ...,e’n – f)

Evaluator 2 aglet
1. Decrypts
e(w(2,3))+f(3) and
gets the value of
f(3).
2. Adds e(w(1,2))
with f(3)

4. The length of the longest
path from node 0 to node 3 =
f(2)+e(w(0,1))

2. e(w(1,2)) + f(3)

3. e(w(1,2))+f(3), e(w(1,3))
and e(w(0,1))

Evaluator 1 aglet
1.Finds the max of
e(w(1,2))+f(3) and
e(w(1,3)). The
result is f(2).
2. Adds e(w(0,1))
to the above

1. e(w(2,3)) + f(3), e(w(1,2))
Application
Aglet or
Creator Aglet

1. Encrypts all
the 4 weights
2. Creates and
Dispatches the
aglet proxies
and collects the
results by
passing
messages

where e’j is a randomization of ciphertext ej. Due to
randomization one can obtain no information about constant f
from e(w) and e’(w + f).

Finding the maximum of two encrypted weights: For
example, to find the maximum of e’(w + f) and e(v) (
encrypted weight of the weight v), we first create the product
of e’(w + f) and e(v) and then start decrypting the elements in
the vector representation of this product. We decrypt the
elements from last to the first. Every time after decrypting an
element, we check to see if it was a 1 or z. If it was z then the
maximum weight is the place number or index number of the
element in the vector representation.

In Table 3 the code for the application aglet class file is
given. Due to the non-availability of space, the Evaluator
aglets’ code is omitted here.

Table 3. Application Aglet
public class DynaProEncryptionAgletApp extends Aglet {
 static BigInteger [][] encWeightArray = new BigInteger [6][2];
 static BigInteger [][] shiftedArray = new BigInteger [6][2];
 static BigInteger [][] randomizedArray = new BigInteger [6][2];
 static BigInteger [][] weightPlusConstantArray = new BigInteger [6][2];
 static BigInteger [][] secondEncWeightArray = new BigInteger [6][2];
 static BigInteger [][] thirdEncWeightArray = new BigInteger [6][2];
 static BigInteger [][] MaxWeightArray = new BigInteger [6][2];
 static BigInteger [][] Result = new BigInteger [6][2];
/** p (modulo) is a very large prime number **/
 static BigInteger p = new BigInteger("23");
/** z is the common public element. Not a variable **/
 static String z = "5";
/** n is the length of the array which is large enough to represent the length of
the longest path. Not a variable. */
 static int n = 6;
 public void run() {
/** Variables needed to fill up encWeightArray **/
/** Here w is the weight of the link (2,3). Variable.**/
 int w = 1;
 /** r is the random number chosen for encryption. Variable.**/
 String r = "1";
 /** The constant that is to be added to the encrypted weight **/
 int f = 0;
 /** The function jayElGamel fills up encWeightArray **/
 jayElGamel(w,n,z,r,f);
 /** Variables needed to fill up the secondEncWeight Array
 * Here w is the weight of the link (1,2) */
 w = 3;r = "7";f = 0;
 /**Fills up secondEncWeight array **/
 jayElGamel(w,n,z,r,f);
 /** Variables needed to fill up the thirdEncWeight Array
 * Here w is the weight of the link (0,1) */
 w = 2;r = "13";f = 0;
 /**Fills up thirdEncWeight array **/
 jayElGamel(w,n,z,r,f);
 /** Variables needed to fill up the randomized Array for Evaluator
Two **/
 w = 0; r = "9";f = 1;
 /**Fills up randomized array **/
 jayElGamel(w,n,z,r,f);
 try {
 /** Creating an object to pass the arguments to the proxy
(Evaluator 2) **/
 Object args2 = new Object[] {
 encWeightArray,
 secondEncWeightArray
 };
 URL destination2 = new URL("atp://LIFEBOOK:3000");
/ * The EvaluatorTwo aglet proxy2 is created and dispatched to the
destination. */
 AgletProxy proxy2 =
getAgletContext().createAglet(getCodeBase(), "EvaluatorTwo", args2);
 proxy2 = proxy2.dispatch(destination2);

/ * Message is sent to the EvalutorTwo aglet proxy2 at the destination2 and
the result is collected. */
 Message myResult = new Message("result");
 Result = (BigInteger[][])proxy2.sendMessage(myResult);
/ * The collected result is printed to the console */
 String tableString = "";
 for(int i = 0; i < n; i++){
 for(int j = 0; j < Result[i].length; j++){
 tableString += Result[i][j]+ " ";
 }
 tableString += "\n";
 }
 System.out.println("ResultArray");
 System.out.println(tableString);
 decryptWeight(n);
/** Creating an object to pass the arguments to the proxy (Evaluator 1) **/
 Object args1 = new Object[] {
 encWeightArray,
 Result,
 thirdEncWeightArray
 };
 URL destination1 = new URL("atp://LIFEBOOK:4000");
 /* The EvaluatorOne aglet proxy1 is created and dispatched to the
destination1.*/
 AgletProxy proxy1 =
getAgletContext().createAglet(getCodeBase(), "EvaluatorOne", args1);
 proxy1 = proxy1.dispatch(destination1);
 /*Message is sent to the EvalutorOne aglet proxy at the
destination1 and the result is collected. */
 Message Result =(BigInteger[][
])proxy1.sendMessage(myResult1);
 /* The collected result is printed to the console */
 tableString = "";
 for(int i = 0; i < n; i++){
 for(int j = 0; j < Result[i].length; j++){
 tableString += Result[i][j]+ " ";
 }
 tableString += "\n";
 }
 System.out.println("ResultArray");
 System.out.println(tableString);
 decryptWeight(n);
 /** The EvaluatorTwo aglet proxy2 is retracted from the
destination2 and disposed */
 proxy2=
getAgletContext().retractAglet(destination2,proxy2.getAgletID());
 proxy2.dispose();
/** The EvaluatorOne aglet proxy1 is retracted from the destination1 and
disposed */
 proxy1=
getAgletContext().retractAglet(destination1,proxy1.getAgletID());
 proxy1.dispose();

 }catch(MalformedURLException e) {
 }catch(Exception e) {
 }finally {
 }
 }

}

10. Checking Mobile Agent’s Integrity
in IBM Aglets

 An adversary can modify the mobile agent’s code during
their journey from the source to the destination. To avoid this
kind of attack, it is always better to check the integrity of the
aglet’s code once it arrives at the destination.

 To achieve this, we have modified the aglet server’s source
code. This modified server code checks the integrity of the
aglets at the destination before they are being executed.

Aglets

 Aglets Runtime

Aglets Transfer Protocol

 TCP/IP

Aglets

 Aglets Runtime

byte array

Aglets Transfer Protocol

 TCP/IP

byte array

agent system=aglets,
agent-id=0xabc, etc.,
byte-array

The digest of the agent class file is calculated using SHA-1
digest algorithm before it is dispatched to the destination and
sent along with the agent to the destination. Upon arrival at the
destination, the digest of the agent class file is calculated once
again and compared with the digest that has been dispatched
with the agent. If these two digest values are different then an
error message is displayed.

Figure 3. Aglet’s architecture

 In IBM Aglets, the aglet’s class file code is passed between
the Aglets Runtime and Aglets Transfer Protocol in a byte
array as shown in Figure 3. We used these byte arrays to
calculate our digest both at the sending end and at the
receiving end.

At the sending end the digest is calculated as shown in
Table 4:

Table 4. Digest calculation – Sending end.
byte[] agent = writer.getBytes();
byte[] agent_digest = new byte[25];
MessageDigest shaTwo =
MessageDigest.getInstance("SHA");
shaTwo.update(agent);
agent_digest = shaTwo.digest();
 System.out.println("LocalAgletRef: SHA Digest Length:"
 + agent_digest.length);
 for(int i=0; i<agent_digest.length;i++){
 System.out.print(agent_digest[i] + " ");
 }

At the receiving end the digest is recalculated and verified
as shown in Table 5:

Table 5. Digest calculation – Receiving end.
MessageDigest shaTwo = MessageDigest.getInstance("SHA");
shaTwo.update(agent);
byte[] hashTwo = shaTwo.digest();
System.out.println("AgletContextImpl: SHA Digest Length:" +
hashTwo.length);
for(int i=0; i<hashTwo.length;i++){
 System.out.print(hashTwo[i] + " ");
}
boolean digestsequal = Arrays.equals(hashTwo, received_agent_digest);
if(digestsequal){
 System.out.println("AgletContextImpl: No Integrity attack");
}else {
 System.out.println("AgletContextImpl: There is an Integrity attack");
}

11. Conclusions
In this paper we have shown the implementation of two

different security approaches to protect the mobile agents
against the malicious hosts, in IBM Aglets. We have also
presented our implementation that checks the integrity of the
aglets. The security approaches that are implemented are

Mixed-Multiplicative Homomorphic encryption scheme and
Secure Dynamic Programming. In these security approaches
the computation is done on the encrypted data itself without
decrypting, thus providing security. The encryption schemes
used in these approaches are Mixed-multiplicative
Homomorphic Encryption scheme and ElGamal Encryption
Algorithm. Our implementation to check the integrity of the
aglets uses SHA-1 digest algorithm. In this way, we have
achieved our goal of providing security and integrity to IBM’s
mobile Agents – Aglets.

 References
[1] Danny B. Lange / Mitsuru Oshima, Programming and Deploying

JAVA Mobile Agents with Aglets.
[2] Wayne Jansen, Tom Karygiannis. NIST Special Publication 800-19 -

Mobile Agent Security. National Institute of Standards and
Technology, Computer Security Division, Gaithersburg, MD 20889.
{jansen,k arygiannis}@nist.gov.

[3] Fritz Hohl, Time Limited Blackbox Security: Protecting Mobile
Agents from Malicious Hosts, in Vigna, Giovanni (Ed.): Mobile
Agents and Security, Springer-verlag, 1998.

[4] Gunter Karjoth, Danny B. Lange and Mitsuru Oshima. A Security
Model for Aglets. IEEE Internet Computing. Publication date: July
1997. pp. 68-77.

[5] Tomas Sander and Christian F. Tschudin, Towards Mobile
Cryptography. Technical Report 97-049, International Computer
Science Institute, Berkeley. 1997.
http://www.icsi.berkeley.edu/~sander/publications/tr-97-049.ps

[6] M. Abadi and J. Feignbaum. Secure circuit evaluation. Journal of
Cryptography, 2(1):1-12, 1990.

[7] R. Rivest, L. Adleman, and M. Dertouzos, On data banks and privacy
homomorphisms. In Foundations of Secure Computations, pages 169-
178. Academic Press, 1978.

[8] Joseph Domingo Ferrer. A New Privacy Homomorphism and
Applications. Universitat Rovira I Virgili. E-mail {jdomingo,
jherrera} @ etse.urv.es.

[9] Hyungjick Lee and Jim Alves-Foss and Scott Harrison, The use of
Encrypted functions for Mobile Agent Security from the Proceedings
of the 37th Hawaii International Conference on System Sciences
2004

[10] Tomas Sander and Christian F. Tschudin, Protecting Mobile Agents
Against Malicious Hosts, in Vigna, Giovanni (Ed.): Mobile Agents
and Security, Springer-verlag, 1998.

[11] T.Sander and C. Tschudin. On software protection via function
hiding. In Information hiding, pages 111-123, 1998.

[12] Y. Fujishima, K. Leyton-Brown, and Y. Shoham.Taming the
computation complexity of combinatorial auctions: Optimal and
approximate approaches. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI-
99), pages 548–553, 1999.

[13] M. H. Rothkopf, A. Pekeˇc, and R. M. Harstad. Computationally
manageable combinatorial auctions. Management Science,
44(8):1131–1147, 1998.

[14] Y. Sakurai, M. Yokoo, and K. Kamei. An efficient approximate
algorithm for winner determination in combinatorial auctions. In
Proceedings of the Second ACM Conference on Electronic
Commerce (EC-00), pages 30–37, 2000.

[15] T. Sandholm. An algorithm for optimal winner determination in
combinatorial auction. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI-99), pages 542–
547, 1999.

[16] E. Rasmusen. Games and Information. Blackwell, 1994.
[17] Makoto Yokoo, Koutarou Suzuki. Secure Multi-agent Dynamic

programming based on Homomorphic Encryption and its Application
to Combinatorial Auctions.

[18] www.freesoft.org – An Internet Encyclopedia
[19] Jason Weiss. Java Cryptography Extensions – Practical Guide for

Programmers. Morgan Kaufmann Publishers, 2004.
[20] Aglets Portal website: http://aglets.sourceforge.net/links.html -

development of Aglets being continued by open source community.

