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Abstract— A Mobile Ad hoc Network (MANET) consists of 

multiple wireless mobile devices that form a network on the fly 
to allow communication with each other without any 
infrastructure. Due to its nature, providing security in these 
networks is challenging. Threshold Cryptography (TC) 
provides a promise of securing these networks. In this paper, 
we discuss our RSA-based Threshold Cryptography (RSA-TC) 
and ECC El Gamal Threshold Cryptography (ECCEG-TC) 
implementation. Through our implementation, we have put 
explored possibility of using RSA-TC and ECCEG-TC in 
MANETs. Finally, we compare RSA-TC and ECCEG-TC 
results and suggest why RSA-TC is unsuitable while ECCEG-
TC is suitable for MANETs. 
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I. INTRODUCTION 
obile ad hoc network (MANETs) are vulnerable 
to various attacks including denial-of-service 

attacks because of wireless nature of these networks [1], 
[2], [3], [4]. Devices with constraint resources add to its 
vulnerability. To ensure availability of nodes, threshold 
cryptography can be implemented in these networks so 
that even if some of the information is lost still the 
actual message reaches the intended receiver without 
compromising security in terms of confidentiality, 
integrity, and authenticity. 

 Threshold cryptography (TC) involves the sharing 
of a key by multiple individuals engaged in encryption 
or decryption or splitting of message either before or 
after encryption. The TC avoids trusting and engaging 
just one individual node for doing the job. Hence, the 
primary objective is to share this authority in such a 
way that each individual node performs computation on 
the message without revealing any secret information 
about its partial key or the partial message. Another 
objective is to have distributed architecture in a hostile 
environment. A certain number of nodes called 

threshold t, are required to encrypt and/or decrypt a 
message. Thus the TC enhances security till 
compromised nodes are less than the threshold [5], [6], 
[7], [8], [9]. 

 
 

 Threshold cryptography achieves the security needs 
such as confidentiality and integrity against malicious 
nodes. It also provides data integrity and availability in 
a hostile environment and can also employ verification 
of the correct data sharing. All this is achieved without 
revealing the secret key. Thus, taking into consideration 
these characteristics, implementing TC to secure 
messages seems a perfect solution in MANETs. 

In this paper, we discuss our implementation on RSA 
based TC and Elliptic curve cryptography TC using 
ElGamal algorithms. We make a case why RSA-TC is 
unsuitable for these networks and using ECCEG-TC we 
put forth our idea on why ECC-based algorithms for TC 
will be more appropriate for these networks.  

II. RSA VS ELLIPTIC CURVE CRYPTOLOGY 
RSA has been successfully implemented in computer 

networks for threshold authentication where nodes have 
large computational and storage capacity. From Table I, 
it is clear that ECC provides equivalent security as RSA 
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ABLE II 
TIATION OVER GF(P) AND RSA 
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 1.7 32.1 6.1 205.5 

.7 10.8 188.7 39.1 1273.8 

RSA Public key operation, RSAd: RSA 



 

but at much smaller key sizes [10]. ECC has been 
considered for applications such as smart card 
encryption due to less storage requirements and its 
computational efficiency [10] as seen in Table II. 

III. RSA-TC 
    In this section, we briefly discuss our 

implementation of RSA-TC using partial encryption i.e. 
encryption key is split and its performance results. 
Further we suggest changes in RSA-TC implementation 
by splitting message after encryption to compare these 
results with ECCEG-TC.  

A. RSA-TC Implementation 
RSA-TC has been implemented using JAVA 1.4 in 

Unix environment on SUN Sparc Ultra 5_10 machines. 
Fig. 1 explains the RSA-TC scheme [11].  

The prime numbers p and q are generated using 
available functions in JAVA for key sizes 512, 1024, 
and 2048 bits. Then the private key ( d, N) and public ( 
e, N) are calculated.  

For RSA-TC, private key d is split using Shamir’s t-
out-of-n scheme based on Lagrange interpolation [7] to 
generate partial keys such that any t out of n partial 

messages will allow retrieval of the original message. 
These keys are used to carry out partial encryption.  

The n and t are fixed to (10,{6,8,10}), (15, {8, 11, 
15}), and (20, {11, 15, 20}).  

__________________________________________________ 
In RSA,  

i) C = M d mod N and M’ = M = C e mod N 
ii) C = M e mod N and M’ = M = C d mod N 

In RSA-TC authentication/signature scheme, 
    C’ = ∏ i=0 till i=t C xi* f’( i)  mod N,  
           where Ci = Cxi  mod N, 
           f (x)= (a0x0  + a1x1  +…+ a(t-1) x( t-1) )mod ф(N)  
          and a0 = d 
           f’(x i)= ∏ j=0,j≠i till j=t  (x j /(x i – x j)) * f(x i) mod ф(N) 
Thus, 

C’ =M {∑ 
i=0, j=0, j≠i till i=t, j=t

 (x j / ( x i – x j)) * f ( xi)} mod N 
M’ = M = C’ e  mod N = C e  mod N 
__________________________________________________ 
Fig. 1.  RSA and RSA-TC scheme using Shamir’s Lagrange Interpolation. 
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Processor: SUN Sparc Ultra 5_10 Timings for 500 runs 
Fig. 3.  Share Generation Timings for RSA-TC  

B. Performance Results 
  Fig. 2 shows that total RSA-TC encryption 

timings increased gradually for a given key size with 
increase in n and t. As the key-size increased, the 

encryption time increased exponentially. 
Fig. 3 displays that share generation time increased 

exponentially as the key-size was doubled. This 
timings included time to generate a polynomial with t 
coefficients and then to calculate f(x) for n different x 
values. Thus, as t value increased the share 
generation time increased gradually for a key size and 
n. 

Fig. 4 depicts behavior similar to encryption 
timings graph. Combination time is the time required 
to combine partially encrypted message to retrieve 
original ciphertext. For a given key-size, combination 
time and decryption time gradually increased with n 
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Processor: SUN Sparc Ultra 5_10 Timings for 500 runs 
Fig. 4.  Combination + Decryption Timings for RSA-TC  
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Processor: SUN Sparc Ultra 5_10 Timings for 500 runs 
Fig. 2.  Total Encryption Timings for RSA-TC  



 

and t. Further, increasing the key-size results into 
exponential increase in these timings for a given n and t. 

Fig. 5 shows that the success rate increases as t 

increases from n/2 to n. For t=n, success rate is 
100%[11]. Success rate varies as ф(N) is a even number 
and all the inverses do not exist in mod ф(N), when t ≠ 
n. 

The described RSA-TC requires knowledge of ф(N), 
to carry out share generation and partial message 
combination to retrieve ciphertext [11], [12]. 
Comparing the share generation timings with the actual 
encryption timings, it is observed that for smaller key 
sizes the share generation timings are greater or 
comparable with the encryption timings as n increases 
but for larger key-sizes, share generation takes longer 
time, but it is negligible in comparison with encryption 
time. Further, success rate cannot be guaranteed for any 
keys unless implemented. 

To achieve 100% success rate in RSA-TC 
implementation, another method to implement threshold 
cryptography is to split the message before or after 
encryption. We will get similar results as above but with 
100% success rate when we implement message split 
before encryption because partial encryption requires n 
encryptions and Lagrange once. Similarly, RSA-TC 
with message split before encryption would generate n 
partial messages using Lagrange interpolation once and 
then these partial messages are encrypted using n 
encryptions. 

In the next section, we would discuss our ECC 
implementation based on ElGamal algorithm. 

 

IV. ECC ELGAMAL TC (ECCEG-TC) 
IMPLEMENTATION 

In following sections, our goal is to implement ECC 
based ElGamal threshold cryptography (ECCEG-TC). 

In this algorithm, key is not shared because the public 
as well as private keys are in form of points and we 
cannot apply Lagrange on the points altogether to split 
message or to combine it. Hence, ECCEG-TC for 
message splitting before encryption is simulated for 
MANET environment and then it is compared with 
performance of RSA-TC. The ECC El Gamal Threshold 
cryptography (ECCEG-TC) algorithm is briefly 
explained. 
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Fig.5. %Success Rate for RSA-TC  

A. ECCEG-TC Message Split before Encryption 
Algorithm 
Suppose that the ECC has a point G on an elliptic 

curve Ep(a, b), and the order of G is q. p is a large 
prime. 

Bob’s private key and public key are nB, 0 < nB < q, 
and KB = nBG. 
• First we choose a prime number p > max(M, n), and 
define a0 = M, the message. Then we select k - 1 
random, independent coefficients a1, a2,…ak - 1, 0 ≤ aj ≤ 
p-1, defining the random polynomial f(x) over Zp, a 
Galois prime field GF(p). 
• We compute n shares, Mi = f(xi) mod p, 1≤ i ≤ n, 
where xi can be just the public index i for simplicity, 
and convert them to points Pi on elliptic curve Ep (a, b). 
• Alice picks a random number r, and sends rG and Pi + 
rKB to Bob with index t. 
• Bob recovers each elliptic curve point by calculating 
Pi + rKB – nBrG = Pi.  
• Bob converts Pi to Mi, and deduces M by using 
Lagrange interpolation formula M. 

B. ECCEG-TC Implementation 
ECCEG-TC has been implemented using JAVA 1.4 in 

Unix environment on SUN Sparc Ultra 5_10 machines. 
To select the ECC parameters, i.e. a, b, p, widely 
accepted NIST curves were selected for implementation 
for 192, 224, and 256 bits.  

For conversion of message to and from ECC point, 
method discussed by Kobiltz is used [13], [14] such that 
(kappa*M)mod p < x <(kappa*(M+1))mod p, where (x, 
y) is a point on elliptic curve. In our ECCEG-TC 
implementation, kappa is fixed to 28. To retrieve a 
message from a ECC point (x, y), M= x/kappa mod p is 
used.   

For calculating the shares and for combining partial 
messages, Shamir’s Lagrange interpolation scheme is 
implemented. For its polynomial, the coefficients are 
randomly generated over the modulus p. The co-
efficient zero depends on the x and y values of ECC 
point information that needs to be transmitted based on 
ECC algorithm used. As against RSA algorithm where 
we are sharing the keys, in ECC-TC implementation, 
the partial shares of the message are generated and then 



 

encrypted to get ECC point.  
 

C. Performance Results 
 

Fig. 6 illustrates that with increase in ECC key size, 
the total encryption timings increase gradually for given 
n and t. For constant key size and n, the encryption 
timings increase with t as the time to generated 
Lagrange polynomial and respective message shares 
increases accordingly. 

Fig. 7 shows that the share generation timings 
increase with increase in key size or with n or t. Share 
generation timings are very small compared to the 
encryption timings. 

Combination time is the time required to combine t 
partial messages using Shamir’s Lagrange interpolation 
method to retrieve original message. From Fig. 8, the 
total decryption and combination timings increase 
gradually with increase in t for constant key size and n. 
This increase is due to time required to decrypt and 
combine additional partial messages as t is increased. 
Increase in the key size results in proportional increase 

in the decryption timings irrespective of n and t. 

Number of point addition of ECCEG-TC increases 
with n resulting into proportionate increase in addition 
timing in encryption and decryption as seen in Fig. 6 
and Fig. 8. 

The time required converting message to point and 
vice-versa is significantly small compared to encryption 
and share generation time and hence not shown 
separately. 

In ECCEG-TC, the Lagrange is carried over prime 
field p, hence the success rate is 100% as all the partial 
messages are recovered without any issue of inverse 
calculation.  
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Fig. 8. Decryption and Combination Timings for ECCEG-TC  

Total Encryption Timings for ECCEG-TC: Split Before Encryption
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Fig. 6. Total Encryption Timings for ECCEG-TC  

D. Comparison between RSA-TC and ECCEG-TC 
By comparing data in Fig. 2 and Fig. 6 and Fig. 4 and 

Fig. 8, it is clear that RSA-TC is much expensive in 
terms of encryption and decryption timings irrespective 
of n and t values as compared to ECCEG-TC.  

With increase in key-size for ECCEG-TC the security 
provided increases significantly as in case of ECC but 
the total timings required by this algorithm still require 
O(n) computations and are in milliseconds. The increase 
in the timings is gradual as the key size and n are 
increased. As against this, the timings in RSA-TC 
increase exponentially with increase in key-size.  

As ECC is known to provide equivalent security as 
RSA at much smaller key sizes, here ECCEG-TC would 
also provide equivalent security as RSA-TC. It is also 
evident that ECCEG-TC is much efficient algorithm 
compared to RSA-TC. Due to smaller key size the 
storage requirements during the encryption are very less 
for ECCEG-TC compared to RSA-TC.  

Compared to RSA-TC, due to smaller key size in 
ECCEG-TC would result in less bandwidth 
consumption during transmission. 

Share Generation Timings for ECCEG-TC: Split Before Encryption
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Fig. 7. Share Generation Timings for ECCEG-TC  



 

V. CONCLUSIONS 
Through implementation of RSA-TC and ECCEG-

TC, we have suggested an approach to provide security 
for MANETs. In section 6, by comparing the 
implementation results for both techniques, we have 
proved through that ECC-TC implementation of EG 
algorithm would be better for MANETs compared to 
RSA-TC implementation. 

Applications of MANETs are on rise and hence it is 
necessary to provide security to this highly vulnerable 
wireless networks. And by further exploring and 
implementing ECC based threshold cryptography 
algorithms, its shown that secure MANETs are feasible. 
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