

RSA and Elliptic Curve- ElGamal Threshold
Cryptography (ECCEG-TC) Implementations for

Secure Data Forwarding in MANETs
Levent Ertaul Nitu J. Chavan,

California State University, East Bay California State University, East Bay
Math & Computer Science Department Math & Computer Science Department

Hayward, CA, USA Hayward, CA, USA

Abstract— A Mobile Ad hoc Network (MANET) consists of

multiple wireless mobile devices that form a network on the fly
to allow communication with each other without any
infrastructure. Due to its nature, providing security in these
networks is challenging. Threshold Cryptography (TC)
provides a promise of securing these networks. In this paper,
we discuss our RSA-based Threshold Cryptography (RSA-TC)
and ECC El Gamal Threshold Cryptography (ECCEG-TC)
implementation. Through our implementation, we have put
explored possibility of using RSA-TC and ECCEG-TC in
MANETs. Finally, we compare RSA-TC and ECCEG-TC
results and suggest why RSA-TC is unsuitable while ECCEG-
TC is suitable for MANETs.

Keywords—Threshold Cryptography, ECCEG-TC, RSA-TC

I. INTRODUCTION
obile ad hoc network (MANETs) are vulnerable
to various attacks including denial-of-service

attacks because of wireless nature of these networks [1],
[2], [3], [4]. Devices with constraint resources add to its
vulnerability. To ensure availability of nodes, threshold
cryptography can be implemented in these networks so
that even if some of the information is lost still the
actual message reaches the intended receiver without
compromising security in terms of confidentiality,
integrity, and authenticity.

 Threshold cryptography (TC) involves the sharing
of a key by multiple individuals engaged in encryption
or decryption or splitting of message either before or
after encryption. The TC avoids trusting and engaging
just one individual node for doing the job. Hence, the
primary objective is to share this authority in such a
way that each individual node performs computation on
the message without revealing any secret information
about its partial key or the partial message. Another
objective is to have distributed architecture in a hostile
environment. A certain number of nodes called

threshold t, are required to encrypt and/or decrypt a
message. Thus the TC enhances security till
compromised nodes are less than the threshold [5], [6],
[7], [8], [9].

 Threshold cryptography achieves the security needs
such as confidentiality and integrity against malicious
nodes. It also provides data integrity and availability in
a hostile environment and can also employ verification
of the correct data sharing. All this is achieved without
revealing the secret key. Thus, taking into consideration
these characteristics, implementing TC to secure
messages seems a perfect solution in MANETs.

In this paper, we discuss our implementation on RSA
based TC and Elliptic curve cryptography TC using
ElGamal algorithms. We make a case why RSA-TC is
unsuitable for these networks and using ECCEG-TC we
put forth our idea on why ECC-based algorithms for TC
will be more appropriate for these networks.

II. RSA VS ELLIPTIC CURVE CRYPTOLOGY
RSA has been successfully implemented in computer

networks for threshold authentication where nodes have
large computational and storage capacity. From Table I,
it is clear that ECC provides equivalent security as RSA

M

KEY SIZES IN BITS

Symmetric ECC

80 163
128 283
192 409
256 571

SAMPLE ECC EXPONE
ENCRYPT/DECRYP

 MHz
163
ECC E

Ultra
SparcII
400MHz

450 6.1 8

Strong
ARM
200MHz

200 22.9 3

ECC: rG operation, RSAe:
Private key operation.
TABLE I
FOR EQUIVALENT LEVELS

DH/DSA/RSA

1024
3072

7680
15,360
T
N
T
19
C
.7

7

ABLE II
TIATION OVER GF(P) AND RSA

 TIMINGS IN MILLISECONDS
2
C

1024
RSAe

1024
RSAd

2048
RSAe

2048
RSAd

 1.7 32.1 6.1 205.5

.7 10.8 188.7 39.1 1273.8

RSA Public key operation, RSAd: RSA

but at much smaller key sizes [10]. ECC has been
considered for applications such as smart card
encryption due to less storage requirements and its
computational efficiency [10] as seen in Table II.

III. RSA-TC
 In this section, we briefly discuss our

implementation of RSA-TC using partial encryption i.e.
encryption key is split and its performance results.
Further we suggest changes in RSA-TC implementation
by splitting message after encryption to compare these
results with ECCEG-TC.

A. RSA-TC Implementation
RSA-TC has been implemented using JAVA 1.4 in

Unix environment on SUN Sparc Ultra 5_10 machines.
Fig. 1 explains the RSA-TC scheme [11].

The prime numbers p and q are generated using
available functions in JAVA for key sizes 512, 1024,
and 2048 bits. Then the private key (d, N) and public (
e, N) are calculated.

For RSA-TC, private key d is split using Shamir’s t-
out-of-n scheme based on Lagrange interpolation [7] to
generate partial keys such that any t out of n partial

messages will allow retrieval of the original message.
These keys are used to carry out partial encryption.

The n and t are fixed to (10,{6,8,10}), (15, {8, 11,
15}), and (20, {11, 15, 20}).

__
In RSA,

i) C = M d mod N and M’ = M = C e mod N
ii) C = M e mod N and M’ = M = C d mod N

In RSA-TC authentication/signature scheme,
 C’ = ∏ i=0 till i=t C xi* f’(i) mod N,
 where Ci = Cxi mod N,
 f (x)= (a0x0 + a1x1 +…+ a(t-1) x(t-1))mod ф(N)
 and a0 = d
 f’(x i)= ∏ j=0,j≠i till j=t (x j /(x i – x j)) * f(x i) mod ф(N)
Thus,

C’ =M {∑
i=0, j=0, j≠i till i=t, j=t

 (x j / (x i – x j)) * f (xi)} mod N
M’ = M = C’ e mod N = C e mod N
__
Fig. 1. RSA and RSA-TC scheme using Shamir’s Lagrange Interpolation.

Share Generation Timings for RSA-TC Encryption

1.00

10.00

100.00

1000.00

10000.00

t-out-of-n

Ti
m

in
gs

 in
 m

Se
cs

512 bits 71.75 99.50 120.50 175.00 156.00 238.00 223.00 316.00 427.00

1024 bits 161.50 209.50 252.50 296.50 342.00 495.00 463.00 651.00 811.50

2048 bits 371.00 477.00 584.00 653.50 876.00 1225.00 1119.50 1491.00 1962.50

6-out-of-
10

8-out-of-
10

10-out-of-
10

8-out-of-
15

10-out-of-
15

15-out-of-
15

11-out-of-
20

15-out-of-
20

20-out-of-
20

Processor: SUN Sparc Ultra 5_10 Timings for 500 runs
Fig. 3. Share Generation Timings for RSA-TC

B. Performance Results
 Fig. 2 shows that total RSA-TC encryption

timings increased gradually for a given key size with
increase in n and t. As the key-size increased, the

encryption time increased exponentially.
Fig. 3 displays that share generation time increased

exponentially as the key-size was doubled. This
timings included time to generate a polynomial with t
coefficients and then to calculate f(x) for n different x
values. Thus, as t value increased the share
generation time increased gradually for a key size and
n.

Fig. 4 depicts behavior similar to encryption
timings graph. Combination time is the time required
to combine partially encrypted message to retrieve
original ciphertext. For a given key-size, combination
time and decryption time gradually increased with n

RSA-TC Combination + Decryption Timings

1.00

10.00

100.00

1000.00

10000.00

100000.00

t-out-of-n

Ti
m

in
gs

 in
 m

Se
cs

512 bits 104.21 121.15 125.90 107.59 170.48 178.29 232.80 327.19 273.13

1024 bits 1035.16 1221.82 1284.54 1706.20 2096.72 1908.46 2985.63 4083.99 2817.86

2048 bits 8272.28 10981.30 11316.42 14127.62 17637.29 15959.71 24872.61 31401.53 22927.07

6-out-of-
10

8-out-of-
10

10-out-of-
10

8-out-of-
15

10-out-of-
15

15-out-of-
15

11-out-of-
20

15-out-of-
20

20-out-of-
20

Processor: SUN Sparc Ultra 5_10 Timings for 500 runs
Fig. 4. Combination + Decryption Timings for RSA-TC

Total RSA-TC Encryption Timings

1

10

100

1000

10000

100000

t-out-of-n

En
cr

yp
tio

n
tim

in
gs

in

 m
Se

cs

512 bits 219 220.4 227.3 333.15 335.1 337.35 449.6 445.6 456

1024 bits 1741.7 1738.1 1687.5 2566.35 2520 2514.75 3424.8 3353.2 3329.4

2048 bits 19022.6 19500.2 18853.3 28545.9 28633.2 28467.75 37088.2 37696.6 38194.8

6-out-of-
10

8-out-of-
10

10-out-of-
10

8-out-of-
15

10-out-of-
15

15-out-of-
15

11-out-of-
20

15-out-of-
20

20-out-of-
20

Processor: SUN Sparc Ultra 5_10 Timings for 500 runs
Fig. 2. Total Encryption Timings for RSA-TC

and t. Further, increasing the key-size results into
exponential increase in these timings for a given n and t.

Fig. 5 shows that the success rate increases as t

increases from n/2 to n. For t=n, success rate is
100%[11]. Success rate varies as ф(N) is a even number
and all the inverses do not exist in mod ф(N), when t ≠
n.

The described RSA-TC requires knowledge of ф(N),
to carry out share generation and partial message
combination to retrieve ciphertext [11], [12].
Comparing the share generation timings with the actual
encryption timings, it is observed that for smaller key
sizes the share generation timings are greater or
comparable with the encryption timings as n increases
but for larger key-sizes, share generation takes longer
time, but it is negligible in comparison with encryption
time. Further, success rate cannot be guaranteed for any
keys unless implemented.

To achieve 100% success rate in RSA-TC
implementation, another method to implement threshold
cryptography is to split the message before or after
encryption. We will get similar results as above but with
100% success rate when we implement message split
before encryption because partial encryption requires n
encryptions and Lagrange once. Similarly, RSA-TC
with message split before encryption would generate n
partial messages using Lagrange interpolation once and
then these partial messages are encrypted using n
encryptions.

In the next section, we would discuss our ECC
implementation based on ElGamal algorithm.

IV. ECC ELGAMAL TC (ECCEG-TC)
IMPLEMENTATION

In following sections, our goal is to implement ECC
based ElGamal threshold cryptography (ECCEG-TC).

In this algorithm, key is not shared because the public
as well as private keys are in form of points and we
cannot apply Lagrange on the points altogether to split
message or to combine it. Hence, ECCEG-TC for
message splitting before encryption is simulated for
MANET environment and then it is compared with
performance of RSA-TC. The ECC El Gamal Threshold
cryptography (ECCEG-TC) algorithm is briefly
explained.

RSA-TC Success Rate

1.00

10.00

100.00

t-out-of-n

%
 S

uc
ce

ss

512 bits 33.40 35.40 100.00 2.40 9.20 100.00 9.80 11.20 100.00

1024 bits 23.20 24.80 100.00 13.80 20.60 100.00 29.80 13.00 100.00

2048 bits 38.40 41.80 100.00 36.80 45.20 100.00 7.67 34.40 100.00

6-out-of-
10

8-out-of-
10

10-out-of-
10

8-out-of-
15

10-out-of-
15

15-out-of-
15

11-out-of-
20

15-out-of-
20

20-out-of-
20

Processor: SUN Sparc Ultra 5_10 Timings for 500 runs
Fig.5. %Success Rate for RSA-TC

A. ECCEG-TC Message Split before Encryption
Algorithm
Suppose that the ECC has a point G on an elliptic

curve Ep(a, b), and the order of G is q. p is a large
prime.

Bob’s private key and public key are nB, 0 < nB < q,
and KB = nBG.
• First we choose a prime number p > max(M, n), and
define a0 = M, the message. Then we select k - 1
random, independent coefficients a1, a2,…ak - 1, 0 ≤ aj ≤
p-1, defining the random polynomial f(x) over Zp, a
Galois prime field GF(p).
• We compute n shares, Mi = f(xi) mod p, 1≤ i ≤ n,
where xi can be just the public index i for simplicity,
and convert them to points Pi on elliptic curve Ep (a, b).
• Alice picks a random number r, and sends rG and Pi +
rKB to Bob with index t.
• Bob recovers each elliptic curve point by calculating
Pi + rKB – nBrG = Pi.
• Bob converts Pi to Mi, and deduces M by using
Lagrange interpolation formula M.

B. ECCEG-TC Implementation
ECCEG-TC has been implemented using JAVA 1.4 in

Unix environment on SUN Sparc Ultra 5_10 machines.
To select the ECC parameters, i.e. a, b, p, widely
accepted NIST curves were selected for implementation
for 192, 224, and 256 bits.

For conversion of message to and from ECC point,
method discussed by Kobiltz is used [13], [14] such that
(kappa*M)mod p < x <(kappa*(M+1))mod p, where (x,
y) is a point on elliptic curve. In our ECCEG-TC
implementation, kappa is fixed to 28. To retrieve a
message from a ECC point (x, y), M= x/kappa mod p is
used.

For calculating the shares and for combining partial
messages, Shamir’s Lagrange interpolation scheme is
implemented. For its polynomial, the coefficients are
randomly generated over the modulus p. The co-
efficient zero depends on the x and y values of ECC
point information that needs to be transmitted based on
ECC algorithm used. As against RSA algorithm where
we are sharing the keys, in ECC-TC implementation,
the partial shares of the message are generated and then

encrypted to get ECC point.

C. Performance Results

Fig. 6 illustrates that with increase in ECC key size,
the total encryption timings increase gradually for given
n and t. For constant key size and n, the encryption
timings increase with t as the time to generated
Lagrange polynomial and respective message shares
increases accordingly.

Fig. 7 shows that the share generation timings
increase with increase in key size or with n or t. Share
generation timings are very small compared to the
encryption timings.

Combination time is the time required to combine t
partial messages using Shamir’s Lagrange interpolation
method to retrieve original message. From Fig. 8, the
total decryption and combination timings increase
gradually with increase in t for constant key size and n.
This increase is due to time required to decrypt and
combine additional partial messages as t is increased.
Increase in the key size results in proportional increase

in the decryption timings irrespective of n and t.

Number of point addition of ECCEG-TC increases
with n resulting into proportionate increase in addition
timing in encryption and decryption as seen in Fig. 6
and Fig. 8.

The time required converting message to point and
vice-versa is significantly small compared to encryption
and share generation time and hence not shown
separately.

In ECCEG-TC, the Lagrange is carried over prime
field p, hence the success rate is 100% as all the partial
messages are recovered without any issue of inverse
calculation.

Total Decryption + Combination Timings for ECCEG-TC: Split Before
Encryption

0

100

200

300

400

500

600

700

800

900

t-out-of-n

Ti
m

in
gs

 in
 m

Se
cs

192 bits 381.56 393.07 393.96 394.04 387.45 403.18 416.66 421.57 429.61

224 bits 466.95 467.57 454.9 471.79 481.53 504.48 491.66 502.48 536.17

256 bits 599.98 626.96 639.42 718.28 706.95 722.47 675.37 712.57 763.74

6-out-of-
10

8-out-of-
10

10-out-of-
10

8-out-of-
15

10-out-of-
15

15-out-of-
15

11-out-of-
20

15-out-of-
20

20-out-of-
20

Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
Fig. 8. Decryption and Combination Timings for ECCEG-TC

Total Encryption Timings for ECCEG-TC: Split Before Encryption

0

200

400

600

800

1000

1200

1400

t-out-of-n

Ti
m

in
gs

 in
 m

Se
cs

192 bits 677.75 681.56 702.23 733.98 761.72 788.18 818.19 838.33 883.22

224 bits 808.8 827.72 834.99 901.06 912.72 931.32 987.6 1032.92 1049.55

256 bits 1006.99 1038.92 1040.41 1118.84 1141.3 1155.84 1255.49 1273.52 1302.72

6-out-of-
10

8-out-of-
10

10-out-of-
10

8-out-of-
15

10-out-of-
15

15-out-of-
15

11-out-of-
20

15-out-of-
20

20-out-of-
20

Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
Fig. 6. Total Encryption Timings for ECCEG-TC

D. Comparison between RSA-TC and ECCEG-TC
By comparing data in Fig. 2 and Fig. 6 and Fig. 4 and

Fig. 8, it is clear that RSA-TC is much expensive in
terms of encryption and decryption timings irrespective
of n and t values as compared to ECCEG-TC.

With increase in key-size for ECCEG-TC the security
provided increases significantly as in case of ECC but
the total timings required by this algorithm still require
O(n) computations and are in milliseconds. The increase
in the timings is gradual as the key size and n are
increased. As against this, the timings in RSA-TC
increase exponentially with increase in key-size.

As ECC is known to provide equivalent security as
RSA at much smaller key sizes, here ECCEG-TC would
also provide equivalent security as RSA-TC. It is also
evident that ECCEG-TC is much efficient algorithm
compared to RSA-TC. Due to smaller key size the
storage requirements during the encryption are very less
for ECCEG-TC compared to RSA-TC.

Compared to RSA-TC, due to smaller key size in
ECCEG-TC would result in less bandwidth
consumption during transmission.

Share Generation Timings for ECCEG-TC: Split Before Encryption

0
20
40
60
80

100
120
140
160
180

t-out-of-n

Ti
m

in
gs

 in
 m

Se
cs

192 bits 25.3 31.75 39.17 46.14 59.17 79.98 77.31 101.94 137.17

224 bits 26.55 33.79 40.12 48.73 62.43 81.81 81.47 111.14 140.65

256 bits 32.42 42.3 49.69 59.42 76.84 100.79 102.35 133.66 169.72

6-out-of-
10

8-out-of-
10

10-out-of-
10

8-out-of-
15

10-out-of-
15

15-out-of-
15

11-out-of-
20

15-out-of-
20

20-out-of-
20

Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
Fig. 7. Share Generation Timings for ECCEG-TC

V. CONCLUSIONS
Through implementation of RSA-TC and ECCEG-

TC, we have suggested an approach to provide security
for MANETs. In section 6, by comparing the
implementation results for both techniques, we have
proved through that ECC-TC implementation of EG
algorithm would be better for MANETs compared to
RSA-TC implementation.

Applications of MANETs are on rise and hence it is
necessary to provide security to this highly vulnerable
wireless networks. And by further exploring and
implementing ECC based threshold cryptography
algorithms, its shown that secure MANETs are feasible.

REFERENCES
[1] A. Mishra and K. M. Nadkarni, “Security in wireless ad hoc

networks – A Survey”, in The Handbook of Ad Hoc Wireless
Networks, M. Ilyas, Ed. Boca Raton: CRC Press, 2002, pp. 30.1-
30.51.

[2] P. Papadimitratos and Z. Hass, “Securing Mobile Ad Hoc
Networks”, in The Handbook of Ad Hoc Wireless Networks, M.
Ilyas, Ed. Boca Raton: CRC Press, 2002, pp. 31.1-31.17.

[3] H. Yang, H. Luo, F. Ye, S. Lu, and U. Zhang, “Security in
Mobile Ad Hoc Networks: Challenges and Solutions”, IEEE
Wireless Communications, vol. 11, no. 1, Feb. 2004, pp. 38-47.

[4] W. A. Arbaugh, “Wireless Security is Different”, IEEE
Computer, vol. 36, no. 8, Aug. 2003, pp. 99-101.

[5] Y. G. Desmedt, “Threshold cryptography”, European Trans. on
Telecommunications, 5(4), pp. 449-457, July-August 1994.

[6] P. S. Gemmell, “An Introduction to Threshold Cryptography”,
Cryptobytes, 1997, pp. 7-12.

[7] Y. Desmedt and Y. Frankel, “Threshold cryptosystems”, in
Advances in Cryptology - Crypto '89, Proceedings, Lecture
Notes in Computer Science 435, G. Brassard, Ed., Santa
Barbara: Springer-Verlag,1990, pp. 307-315.

[8] Y. Desmedt, “Some Recent Research Aspects of Threshold
Cryptography”, Information Security, Proceedings (Lecture
Notes in Computer Science 1396), Springer-Verlag 1997,
Tatsunokuchi, Ishikawa, Japan, September 1997, pp. 158-173.

[9] J. Baek and Y. Zheng, Simple and Efficient Threshold
Cryptosystem from the Gap Diffie-Hellman Group. Available at
http://citeseer.nj.nec.com

[10] K. Lauter, “The advantages of Elliptic Curve Cryptography For
Wireless Security”, IEEE Wireless Communications, vol. 11, no.
1, Feb. 2004, pp. 62-67.

[11] L. Ertaul and N. Chavan, “Security of Ad Hoc Networks and
Threshold Cryptography”, in MOBIWAC 2005.

[12] M. Narasimha, G. Tsudik, and J. Yi, On the Utility of
Distributed Cryptography in P2P and MANETs: the Case of
Membership Control. [Online]. Available:
http://citeseer.ist.psu.edu/688081.html

[13] N. Koblitz, A Course in Number Theory and Cryptography
(Graduate Texts in Mathematics, No 114), Springer-Verlag,
1994.

[14] L. Ertaul and W. Lu, “ECC Based Threshold Cryptography for
Secure Data Forwarding and Secure Key Exchange in MANET
(I),” Networking 2005, LCNS 3462, University of Waterloo,
Canada, May 2005, pp. 102-113.

