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Abstract - Today we are in the era of Big Data. The design of 
privacy preserving protocols in data processing is really 
challenging as the amount of data grows largely and complex. 
How to preserve privacy while meeting the requirements of 
speed and throughput have become critical criteria in the 
design. In this paper, we implement a practical use of Private 
Set Intersection (PSI) Protocol based on the new approach of 
oblivious Bloom intersection. The high scalability is achieved 
with parallel operations. We implemented the basic protocol 
and utilized Google Contact API to directly access the private 
contact information from two different Google accounts. The 
intersection of contact information could be found without 
disclosing any other private information from each account. 
We reported the result of the performance with respected to 
the number of contacts for different security levels. We only 
computed the intersections of two sets up to 25,000 contacts.  

Keywords: Privacy, Private Set Intersections, Privacy 
Preserving Protocols. 

 

1 Introduction 
  Recent controversies about the leakage of documents 
revealing how big data can be fatal even though it creates 
tremendous opportunities for the world in field of medical 
research and national security [26]. Privacy issues and 
collection of consumer information have also been hot topics 
in the political circles around the world like the Prism 
program of the National Security Agency (NSA) under the 
guise of anti-terrorism [27]. Everyone has the right to privacy, 
but in the case of big data computation it’s necessary to 
maintain data protection and privacy so that it cannot be 
misused. Using someone’s information without their consent 
is unethical and we need high security. But if Big Data 
analytics leads to a terrorist suspect then in this case security 
of the society is counted much higher than an individual’s 
security and privacy. 
 According to a study by Wikibon [28], shows that the 
market for Big Data will reach $50 billion mark in the next 5 
years. According to results shown in Figure 1, in 2012 Big 
Data stood at just over a $5 billion in terms of services, 
hardware and software revenue. The awareness and the 
interest in Big Data have increased in the recent years. The 
power and the capability of Big Data to improve the 
efficiency of operations together with its influence in 

technological developments and services make Big Data’s 
CAGR increase 58% from now and 2016. 
 

 
 
Figure 1 Big Data market Share 
 
 Privacy is often addressed as how the information in the 
application is kept secured and it’s an essential issue with big 
data applications. Everyone has the right to be free from 
disturbances and intrusion in their respective personal life and 
also they are subject to right to privacy. Policy makers have 
therefore started addressing the most fundamental privacy 
laws, also “personally identifiable information” and role of 
consent were reviewed. 
  

 
Figure 2 Privacy is the top preference according to World. 

 Figure 2 shows that trust plays a huge role for the 
success of Big Data. The survey was carried by Boston 
Consulting Group (BCG). The result of this survey shows that 
privacy is the most important preference for Big Data. Top 
issue according to 76% of consumers feel that the privacy is 
top issue with Big Data, but in the US 83% of the consumers 
feel the same. Big data allows organizations to boost their 



chances for success by enhancing customer service, 
manufacturing and other technological aspects. Privacy will 
create a trust which will help these organizations to benefit 
themselves and the consumers with Big Data capabilities. 
 In this paper, we first discuss on the problem of Private 
Set Intersection (PSI). The scenario is this. There are two 
parties, a client and a server, who want to compute and find 
out the intersection of their private inputs. At the end, client 
learns the intersection and the server learns nothing. The 
value in this study is that there are many practical 
applications, such as homeland security, two different law 
enforcement entities who want to compare their respective 
databases of suspects [8], detection of online game cheating 
[21], and find tax evaders [14]. To solve this kind of problem, 
many proposed PSI protocols are proposed, such as [3, 8, 9, 
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. However, the 
performance becomes an issue and unacceptable as the 
required security parameter and the size of the input data are 
getting big. Based on the result in [3], we found out Changyu 
Dong’s protocol with oblivious Bloom intersection has the 
best performance comparing with other existing protocols, 
RSA-OPRF-based protocol by De Cristofaro et al [8] and the 
garbled circuit protocol by Huang et al [9]. The 
computational time of two million-element sets with 80 bit 
security for Dong’s protocol needs only 41 seconds while De 
Cristofaro’s protocol needs 10.6 minutes and Huang’s 
protocols needs 27 hours [3]. 
 Next, we implement the basic protocol, proposed by 
Dong, using the approach of oblivious Bloom intersection 
with actual private information from Google Contact. The 
reason we chose this protocol over other existing protocols is 
not only due to its efficiency and scalability, but also its 
simple operations. The computational, memory, and 
communication complexities are all linear in the size of the 
input sets [3]. Two Google Accounts are created, one as a 
server and the other one as a client. We first uploaded 25,000 
contacts to each account and   jointly compute the intersection 
of their private contact lists. At the end, client learns the 
intersection and the server learns nothing. The result shows 
that our implementation can compute the intersection of two 
25,000 element sets from both Google Account efficiently. 
 The rest of the paper is organized as follows: In section 
2, we present the definition of the key components of the 
basic protocol. In section 3, we will discuss the 
implementation of the basic protocol. In section 4, we 
evaluate the result. 
 
2 The Basic Protocol 

 In this section, we review the flow and algorithms used in 
the basic protocol of PSI. The concept is actually simple. 
First, the client encodes its set C by computing a Bloom Filter 
(BFc) and server encodes its set S by computing a Garbled 
Bloom Filter (GBFs). By running an oblivious transfer (OT) 
protocol, the client receives a Garbled Bloom Filter 
representing the intersection while server learns nothing. At 
the end, the client uses it to query and obtain the intersection. 
Figure 3 illustrates the basic PSI protocol.   

 

 
Figure 3: The basic PSI protocol 

 

A. Bloom Filter 
A Bloom Filter [1], designed by Burton H. Bloom in 1970, 

is probabilistic data structure that is used to test whether an 
element is present in a set in a rapid and memory-efficient 
way. A Bloom Filter has a base data structure of bit vector, an 
array of m bits that presents a set of S with n elements at most. 
A Bloom Filter uses a set of k independent hash functions H = 
{h0, …, hk-1}. For each hash function hi, the elements get 
mapped and uniformly distributed to the index numbers in the 
range of [0, m-1]. In this paper, we use BF(m, n, k, H) to 
denote a Bloom Filter with the parameters of (m, n, k, H), use 
BFs to denote the set S encoded by Bloom Filter, use BFs[i] to 
denote the bit at the index i in BFs.  

 
 

 
Figure 4: Add an element x to Bloom Filter 

 
To create a Bloom Filter, as shown in Figure 4, for a set of S, 
all m bits in the array are first initialized to 0. Each element x 
that belongs to the set S is inserted into the filter by hashing x 
with k hash functions to get k index numbers and then setting 
all the bits at these indexes to 1, i.e. set BFs[hi(x)] = 1, where 
0≤ i ≤ k-1. We can also verify whether an element y is in the 
set S by hashing y with k hash functions to get k indexes and 
checking these indexes in the filter. If any of the bits at these 
index locations is 0, y is not in the set S. Otherwise, there is a 
probability that y is present in set S. Bloom Filter never yields 
a false negative due to the nature of hash functions being 
deterministic. However, it is possible to have false positive, 



which means y is not actually in set S while all BFs[hi(x)] are 
set to be 1.  
According to [2], the probability of a bit is still 0 in the Bloom 
Filter is 

𝑝′ = (1 − 1 𝑚⁄ )𝑘𝑛 
The probability of a certain bit is set to 1 is  

𝑝 = 1 − 𝑝′ = 1 − (1 − 1 𝑚⁄ )𝑘𝑛 . 
And the upper bound of the false positive probability is: 

𝜖 = 𝑝𝑘 × (1 + 𝑂 �𝑘
𝑝
�ln(𝑚)−𝑘×𝑙𝑛(𝑝)

𝑚
�) (1) 

which is negligible in k. 
To be practical, it is necessary to build a Bloom Filter with a 
false positive probability that is capped. Based on [3], the 
efficiency of a Bloom Filter depends on the parameters of m 
and k. In our case, we assume that optimal m is used, which is 
knlog2e [3]. 

B. Oblivious Transfer 
Oblivious Transfer (OT) [4] is a protocol that allows a 

sender to send part of its input to a receiver that protects both 
parties. The sender does not know which part of its input the 
receiver receives while the receiver does not know any 
information about other part of sender’s input. A scenario that 
best explains the protocol is in the following: a server has a 
list of n strings x1…xn and a client wants to learn xi. The client 
does not want the server to know i and the server does not 
want the client knows xj where j is not equal to i. The process 
of the server should transfer xi to the client without knowing i 
is called oblivious transfer.  

The operation of Oblivious Transfer protocols are actually 
costly and can be the bottleneck of efficiency in the design. 
However, Beaver has shown a solution to keep the oblivious 
transfer calls minimal [5]. In addition, efficient OT extensions 
were proposed in [6]. In our implementation, we kept the 
number of Oblivious Transfer calls at minimal.  

C. Google Contact API 
The Google Contact API v3 [7] allows client applications 

to request service and access to a user’s contacts. These 
contacts are stored in user’s Google account. However, the 
user account is limited to a maximum of 25,000 personal 
contacts and 128KB per contact [25].The requests to these 
private user data must be authorized by an authenticated user 
before the access is granted. Google uses OAuth 2.0 for this 
authorization process. By specifying the scope information 
and user’s credential in the application, we can retrieve the 
contact list from the user’s Google Account. The details of 
how to use the APIs are available at Google developers’ 
website and Google’s OAuth 2.0 Documentation [7].  

D. Garbled Bloom Filter 
A Garbled Bloom Filter [3], introduced by Dong, is a 

garbled version of a standard Bloom Filter. Essentially, there 
is no difference between a Garbled Bloom Filter and a Bloom 
Filter from high level point of view. In the creation of these 
filters, k uniform and independent hash functions are used to 
map each element into k index numbers. The corresponding 
array locations are set or checked for adding or querying an 
element respectively. What makes a Garbled Bloom Filter 

different than a standard Bloom Filter is the underlying data 
structure. To be specific, a Garbled Bloom Filter uses an array 
of λ-bit strings, where λ is a security parameter, and a 
standard Bloom Filter uses an array of bits.  

 
 

 
Figure 5: Add elements to Garbled Bloom Filter 

 
Algorithms 1 and 2 [3] in the following are the pseudo 

codes for adding a set S into a Garbled Bloom Filter and for 
querying an element respectively.  

 
Algorithm 1: BuildGBF(S, n, m, k, H, λ)E. input: a set S, n, 
m, k, λ, H = {h0, ...hk−1} 
output: a GBFs(m, n, k, H, λ) 

1 GBFS = new m-element array of bit strings; 
2 for i= 0  to m− 1 do 
3  GBFS[i]=NULL; 

4 end 
5 for each x ∈ S do 
6  emptySlot = −1, finalShare= x; 
7  for i=0  to k-1 do 
8   j = hi(x);  

9   if GBFS[j]==NULL then 
10    if emptySlot ==−1 then 
11     emptySlot=j; 

12    else 
13     𝐺𝐵𝐹𝑠[𝑗]

𝑟
← {0,1}𝜆 ; 

14     finalShare=finalShare⊕GBFS[j]; 
15    end 
16   else 
17    finalShare=finalShare⊕GBFS[j];  
18   end 
19  end 
20  GBFS[emptySlot]=finalShare; 

21 end 
22 for i= 0  to m− 1 do 
23  if GBFS[i]==NULL then 
24   𝐺𝐵𝐹𝑠[𝑖]

𝑟
← {0,1}𝜆; 

25  end 
26 end 

 
In Algorithm 1, first an empty Garbled Bloom Filter is 

created and initialized to NULL (line1-4). To add an element 
x ∈ S into a Garbled Bloom Filter, the element gets spitted 
into k λ-bit shares using XOR-based Shamir’s secret sharing 
scheme [20] and the shares gets stored in GBFs[hi(x)] (line5-
21). In this process, it might be possible that j = hi(x) has been 
occupied by a previously added element. For this scenario, the 
existing share stored at GBFs[j] is reused (line16-18) as shown 



in the Figure 5. The 3 shares of x1, s1
1, s1

2, s1
3 are added to the 

GBFs first. Then the 3 shares of x2 get added next. However, 
GBFs[10] has been occupied by s1

3.  
To prevent x1 from becoming unrecoverable due to the 

replacement of s1
3 with another string, it is reasonable to reuse 

the string s1
3 as a share of x2, where x2 = s2

1⊕ s2
2 ⊕ s1

3.  After 
all the elements in S are added, the locations in filter that are 
still NULL will be filled with randomly generated λ-bit 
strings. According to [3], the reuse of shares will not cause 
security problems, and the probability of getting all shares of 
an element that is not in the intersection in this protocol is 
negligible. The detailed proofs and analysis are presented in 
[3]. 
 
Algorithm 2: QueryGBF(GBFs, x, k, H) 
input : a GBFS, an element x, k, H = {h0, ...hk−1} 
output: True if x ∈ S, False otherwise 
1 recovered = {0}λ; 
2 for i=0 to k-1 do 
3  j = hi(x); 
4  recovered = recovered ⊕ GBFS[j]; 
5 end 
6 if recovered == x then 
7  return True; 
8 else 
9  return False; 
10 end 

E. Produce an Intersection GBF 
The idea of how to produce an intersection of Garbled 

Bloom Filter is based on performing the logic AND operation 
on two Bloom Filters. The resulting bits copied to a new filter 
that are set to 1 will be the intersection.  The Algorithm 3 [3] 
in the following is the pseudo code used to build the 
intersection of Garbled Bloom Filter.   
 
Algorithm 3: GBFIntersection(GBFs, BFc, m) 
input: a GBFS(m, n, k, H, λ), a BFC(m, n, k, H), m 
output: a GBFC∩S(m, n, k, H, λ)  
1 GBFC∩S= new m-element array of bit strings; 
2 for i=0 to m-1 do 
3  if BFC[i] == 1 then 
4   GBFC∩S[i] = GBFS[i]; 
5  else 
6   𝐺𝐵𝐹C ∩ S[𝑖]

𝑟
← {0,1}𝜆; 

7  end 
8 end 
 

If an element x is in C∩S, we know that BFC[i] must be a 
1 bit and GBFs[i] must be a share of x for each location i it 
hashes to. By running this algorithm, all elements in C∩S are 
preserved in a new Garbled Bloom Filter. The resulted 
intersection C∩S is called Oblivious Bloom Intersection as 
shown in Figure 3. The detailed proofs and analysis are 
presented in [3]. 

 

3 Implementation 
Based on the result presented in [3], the approach of 

oblivious Bloom intersection is very promising and more 
scalable and efficient than other existing PSI protocols. Our 
initial plan is to implement the protocol on mobile phones for 
practical use. However, the computation requires large 
amount of memory resources. Due to the fact of limited 
resources mobile phones have, we decided to implement on 
laptops.  

We have implemented the basic PSI protocol of Oblivious 
Bloom Intersection in conjunction with Google Contact API 
in Java. Currently the hash function we used to build and 
query Bloom Filters and Garbled Bloom Filters is SHA1 [22, 
23, 24]. We registered two Google Accounts, one is used as 
client and the other one is as server. For the initial account 
setup, we uploaded 25,000 randomly generated contacts with 
phone numbers to each account and intentionally made 15 
contacts commonly exist in both accounts. The purpose is to 
be able to verify result later. To access the contact information 
from Google Account, we use Google Contact API v3 
libraries to call the Contact Service. 

The detailed specification of the implementation is shown 
in the following table. 

 
Table 1: Specification of Implementation 

 
 
4 Results and Evaluation 
 In this section, we show the performance result of our 
implementation with Google Contacts. Both client and server 
programs run on the same laptop with an Intel® i5 quad-core 
2.5Gz, 16GB RAM, Windows 7 platform and are developed 
in Eclipse IDE with JDK 1.7.0.45. In our implementation, we 
set k = λ to keep the false probability of a Bloom Filter to be 
as low as 2-λ and set m to be optimal value knlog2e. For 
example, at 80 bit security k = λ = 80, when n = 25,000, m = 
2,885,390. We measured the total running time of the 
protocol that starts from the client sending request and ends 
when client output the intersection. The time of fetching the 
contacts from the Google Accounts and the time of setting up 
sockets are excluded.  
 

Platform Intel® i5 Quad-Core 2.5Gz, 16GB RAM 
Operating System Windows 7 
Programming 
Language 

Java 

Runtime 
Environment 

JRE 7 

Network Model TCP/IP Client/Server Model 
IDE Eclipse 
Crypto Library Java.Security 
Hash Algorithm SHA-1 
Key Size and 
Security Parameter 

80, 128 bit 

Mode Single Threaded, Parallel Mode 
Input Set Google Contacts: two 25,000-element sets  
 



 
Figure 6: Performance of basic protocol respected to the 
number of contacts for different security key size 
 

A. Performance 
 

 First, we show the performance in single threaded 
mode. We vary the size of contacts (n) from 1,000 to 25,000 
and the security (k = λ) from 80 to 128 bit. The result is 
shown in  Figure 6. As we can see, the running time increases 
almost linearly as the number of contacts increases at each 
level of security. For 25,000 contacts, it takes 10 seconds 
with 80 bit security and 24 seconds for 128 bit security. 
 Next, we show the comparison of performance between 
single-threaded and multi-threaded modes. We keep the key 
size to be 80 bit and vary the size of contacts (n) from 10,000 
to 25,000.  The result is shown in the Figure 7. The total 
running time in multi-threaded mode is significantly less than 
in single-threaded mode as the number of contacts increases. 
For 80 bit security and 25,000 contacts, it takes 10 seconds in 
single-threaded mode while it only takes 6.3 seconds in 
multi-threaded mode.  
 

 
Figure 7: Performance of basic protocol respected to the 
number of contacts for different threading modes 
 

 In comparison to De Cristofarro’s RSA-OPRF protocol 
and Huang’s Sort-Compare-Shuffle with Waksman Network 
protocol that are previously the fastest PSI protocols, Dong 
[3] showed that the approach of oblivious Bloom intersection 
is in orders of magnitude faster than these protocols.  
 

B. Screenshot from Implementation 
 

 The Figures 8 and 9 demonstrate the user interface of 
our implementation in Oblivious Bloom Intersection. The 
interaction between client and server can be easily observed. 
Here is the process of computing the intersection: 
 

1. The server and client connect to its corresponding 
Google Account we set up initially and get 
initialized to run in the environment. 

2. The server will generate the symmetric key and send 
to the client. 

3. The client and server will each encode their data set 
to Bloom Filter and Garbled Bloom Filter 
respectively. 

4. The client and server then perform oblivious transfer 
and server will generate a new Garbled Bloom Filter 
for intersection for the client 

5. The client will use the new GBF to query and 
compute the intersection 

6. At the end, we allow client to send the set back to 
the server for verification purpose. 

 

 
Figure 8: Interactive Server Interface 
 



 
Figure 9: Interactive Client Interface 
 
 
5 Conclusions 
 In this paper, we presented the practical use of a highly 
efficient and scalable PSI protocol based on the approach of 
oblivious Bloom intersection by implementing it in 
conjunction with Google Contacts. We also showed how this 
protocol can be easily integrated with cloud services like 
Google accounts to get contact information to be used as the 
input for both the client and the server. As explained by 
Dong, this protocol mainly depends on efficient symmetric 
key operations and these operations can be easily run in 
parallel. What makes the approach of oblivious Bloom 
intersection different than other protocols is mainly from its 
underlying data structure while other protocols are based on 
improving previous work with better algorithm. Its high 
performance is pretty encouraging and promising. In 
addition, it is suitable for large scale privacy preserving data 
processing. We hope that more applications can be developed 
with this protocol to provide secure and fast data processing 
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