
Implementation of Oblivious Bloom Intersection in
Private Set Intersection Protocol (PSI)

L. Ertaul1, A. M. Mehta2, and T. K. Wu2

1Math & Computer Science, California State University, East Bay, Hayward, CA, USA
2Math & Computer Science, California State University, East Bay, Hayward, CA, USA

Abstract - Today we are in the era of Big Data. The design of
privacy preserving protocols in data processing is really
challenging as the amount of data grows largely and complex.
How to preserve privacy while meeting the requirements of
speed and throughput have become critical criteria in the
design. In this paper, we implement a practical use of Private
Set Intersection (PSI) Protocol based on the new approach of
oblivious Bloom intersection. The high scalability is achieved
with parallel operations. We implemented the basic protocol
and utilized Google Contact API to directly access the private
contact information from two different Google accounts. The
intersection of contact information could be found without
disclosing any other private information from each account.
We reported the result of the performance with respected to
the number of contacts for different security levels. We only
computed the intersections of two sets up to 25,000 contacts.

Keywords: Privacy, Private Set Intersections, Privacy
Preserving Protocols.

1 Introduction
 Recent controversies about the leakage of documents
revealing how big data can be fatal even though it creates
tremendous opportunities for the world in field of medical
research and national security [26]. Privacy issues and
collection of consumer information have also been hot topics
in the political circles around the world like the Prism
program of the National Security Agency (NSA) under the
guise of anti-terrorism [27]. Everyone has the right to privacy,
but in the case of big data computation it’s necessary to
maintain data protection and privacy so that it cannot be
misused. Using someone’s information without their consent
is unethical and we need high security. But if Big Data
analytics leads to a terrorist suspect then in this case security
of the society is counted much higher than an individual’s
security and privacy.
 According to a study by Wikibon [28], shows that the
market for Big Data will reach $50 billion mark in the next 5
years. According to results shown in Figure 1, in 2012 Big
Data stood at just over a $5 billion in terms of services,
hardware and software revenue. The awareness and the
interest in Big Data have increased in the recent years. The
power and the capability of Big Data to improve the
efficiency of operations together with its influence in

technological developments and services make Big Data’s
CAGR increase 58% from now and 2016.

Figure 1 Big Data market Share

 Privacy is often addressed as how the information in the
application is kept secured and it’s an essential issue with big
data applications. Everyone has the right to be free from
disturbances and intrusion in their respective personal life and
also they are subject to right to privacy. Policy makers have
therefore started addressing the most fundamental privacy
laws, also “personally identifiable information” and role of
consent were reviewed.

Figure 2 Privacy is the top preference according to World.

 Figure 2 shows that trust plays a huge role for the
success of Big Data. The survey was carried by Boston
Consulting Group (BCG). The result of this survey shows that
privacy is the most important preference for Big Data. Top
issue according to 76% of consumers feel that the privacy is
top issue with Big Data, but in the US 83% of the consumers
feel the same. Big data allows organizations to boost their

chances for success by enhancing customer service,
manufacturing and other technological aspects. Privacy will
create a trust which will help these organizations to benefit
themselves and the consumers with Big Data capabilities.
 In this paper, we first discuss on the problem of Private
Set Intersection (PSI). The scenario is this. There are two
parties, a client and a server, who want to compute and find
out the intersection of their private inputs. At the end, client
learns the intersection and the server learns nothing. The
value in this study is that there are many practical
applications, such as homeland security, two different law
enforcement entities who want to compare their respective
databases of suspects [8], detection of online game cheating
[21], and find tax evaders [14]. To solve this kind of problem,
many proposed PSI protocols are proposed, such as [3, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. However, the
performance becomes an issue and unacceptable as the
required security parameter and the size of the input data are
getting big. Based on the result in [3], we found out Changyu
Dong’s protocol with oblivious Bloom intersection has the
best performance comparing with other existing protocols,
RSA-OPRF-based protocol by De Cristofaro et al [8] and the
garbled circuit protocol by Huang et al [9]. The
computational time of two million-element sets with 80 bit
security for Dong’s protocol needs only 41 seconds while De
Cristofaro’s protocol needs 10.6 minutes and Huang’s
protocols needs 27 hours [3].
 Next, we implement the basic protocol, proposed by
Dong, using the approach of oblivious Bloom intersection
with actual private information from Google Contact. The
reason we chose this protocol over other existing protocols is
not only due to its efficiency and scalability, but also its
simple operations. The computational, memory, and
communication complexities are all linear in the size of the
input sets [3]. Two Google Accounts are created, one as a
server and the other one as a client. We first uploaded 25,000
contacts to each account and jointly compute the intersection
of their private contact lists. At the end, client learns the
intersection and the server learns nothing. The result shows
that our implementation can compute the intersection of two
25,000 element sets from both Google Account efficiently.
 The rest of the paper is organized as follows: In section
2, we present the definition of the key components of the
basic protocol. In section 3, we will discuss the
implementation of the basic protocol. In section 4, we
evaluate the result.

2 The Basic Protocol

 In this section, we review the flow and algorithms used in
the basic protocol of PSI. The concept is actually simple.
First, the client encodes its set C by computing a Bloom Filter
(BFc) and server encodes its set S by computing a Garbled
Bloom Filter (GBFs). By running an oblivious transfer (OT)
protocol, the client receives a Garbled Bloom Filter
representing the intersection while server learns nothing. At
the end, the client uses it to query and obtain the intersection.
Figure 3 illustrates the basic PSI protocol.

Figure 3: The basic PSI protocol

A. Bloom Filter
A Bloom Filter [1], designed by Burton H. Bloom in 1970,

is probabilistic data structure that is used to test whether an
element is present in a set in a rapid and memory-efficient
way. A Bloom Filter has a base data structure of bit vector, an
array of m bits that presents a set of S with n elements at most.
A Bloom Filter uses a set of k independent hash functions H =
{h0, …, hk-1}. For each hash function hi, the elements get
mapped and uniformly distributed to the index numbers in the
range of [0, m-1]. In this paper, we use BF(m, n, k, H) to
denote a Bloom Filter with the parameters of (m, n, k, H), use
BFs to denote the set S encoded by Bloom Filter, use BFs[i] to
denote the bit at the index i in BFs.

Figure 4: Add an element x to Bloom Filter

To create a Bloom Filter, as shown in Figure 4, for a set of S,
all m bits in the array are first initialized to 0. Each element x
that belongs to the set S is inserted into the filter by hashing x
with k hash functions to get k index numbers and then setting
all the bits at these indexes to 1, i.e. set BFs[hi(x)] = 1, where
0≤ i ≤ k-1. We can also verify whether an element y is in the
set S by hashing y with k hash functions to get k indexes and
checking these indexes in the filter. If any of the bits at these
index locations is 0, y is not in the set S. Otherwise, there is a
probability that y is present in set S. Bloom Filter never yields
a false negative due to the nature of hash functions being
deterministic. However, it is possible to have false positive,

which means y is not actually in set S while all BFs[hi(x)] are
set to be 1.
According to [2], the probability of a bit is still 0 in the Bloom
Filter is

𝑝′ = (1 − 1 𝑚⁄)𝑘𝑛
The probability of a certain bit is set to 1 is

𝑝 = 1 − 𝑝′ = 1 − (1 − 1 𝑚⁄)𝑘𝑛 .
And the upper bound of the false positive probability is:

𝜖 = 𝑝𝑘 × (1 + 𝑂 �𝑘
𝑝
�ln(𝑚)−𝑘×𝑙𝑛(𝑝)

𝑚
�) (1)

which is negligible in k.
To be practical, it is necessary to build a Bloom Filter with a
false positive probability that is capped. Based on [3], the
efficiency of a Bloom Filter depends on the parameters of m
and k. In our case, we assume that optimal m is used, which is
knlog2e [3].

B. Oblivious Transfer
Oblivious Transfer (OT) [4] is a protocol that allows a

sender to send part of its input to a receiver that protects both
parties. The sender does not know which part of its input the
receiver receives while the receiver does not know any
information about other part of sender’s input. A scenario that
best explains the protocol is in the following: a server has a
list of n strings x1…xn and a client wants to learn xi. The client
does not want the server to know i and the server does not
want the client knows xj where j is not equal to i. The process
of the server should transfer xi to the client without knowing i
is called oblivious transfer.

The operation of Oblivious Transfer protocols are actually
costly and can be the bottleneck of efficiency in the design.
However, Beaver has shown a solution to keep the oblivious
transfer calls minimal [5]. In addition, efficient OT extensions
were proposed in [6]. In our implementation, we kept the
number of Oblivious Transfer calls at minimal.

C. Google Contact API
The Google Contact API v3 [7] allows client applications

to request service and access to a user’s contacts. These
contacts are stored in user’s Google account. However, the
user account is limited to a maximum of 25,000 personal
contacts and 128KB per contact [25].The requests to these
private user data must be authorized by an authenticated user
before the access is granted. Google uses OAuth 2.0 for this
authorization process. By specifying the scope information
and user’s credential in the application, we can retrieve the
contact list from the user’s Google Account. The details of
how to use the APIs are available at Google developers’
website and Google’s OAuth 2.0 Documentation [7].

D. Garbled Bloom Filter
A Garbled Bloom Filter [3], introduced by Dong, is a

garbled version of a standard Bloom Filter. Essentially, there
is no difference between a Garbled Bloom Filter and a Bloom
Filter from high level point of view. In the creation of these
filters, k uniform and independent hash functions are used to
map each element into k index numbers. The corresponding
array locations are set or checked for adding or querying an
element respectively. What makes a Garbled Bloom Filter

different than a standard Bloom Filter is the underlying data
structure. To be specific, a Garbled Bloom Filter uses an array
of λ-bit strings, where λ is a security parameter, and a
standard Bloom Filter uses an array of bits.

Figure 5: Add elements to Garbled Bloom Filter

Algorithms 1 and 2 [3] in the following are the pseudo

codes for adding a set S into a Garbled Bloom Filter and for
querying an element respectively.

Algorithm 1: BuildGBF(S, n, m, k, H, λ)E. input: a set S, n,
m, k, λ, H = {h0, ...hk−1}
output: a GBFs(m, n, k, H, λ)

1 GBFS = new m-element array of bit strings;
2 for i= 0 to m− 1 do
3 GBFS[i]=NULL;

4 end
5 for each x ∈ S do
6 emptySlot = −1, finalShare= x;
7 for i=0 to k-1 do
8 j = hi(x);

9 if GBFS[j]==NULL then
10 if emptySlot ==−1 then
11 emptySlot=j;

12 else
13 𝐺𝐵𝐹𝑠[𝑗]

𝑟
← {0,1}𝜆 ;

14 finalShare=finalShare⊕GBFS[j];
15 end
16 else
17 finalShare=finalShare⊕GBFS[j];
18 end
19 end
20 GBFS[emptySlot]=finalShare;

21 end
22 for i= 0 to m− 1 do
23 if GBFS[i]==NULL then
24 𝐺𝐵𝐹𝑠[𝑖]

𝑟
← {0,1}𝜆;

25 end
26 end

In Algorithm 1, first an empty Garbled Bloom Filter is

created and initialized to NULL (line1-4). To add an element
x ∈ S into a Garbled Bloom Filter, the element gets spitted
into k λ-bit shares using XOR-based Shamir’s secret sharing
scheme [20] and the shares gets stored in GBFs[hi(x)] (line5-
21). In this process, it might be possible that j = hi(x) has been
occupied by a previously added element. For this scenario, the
existing share stored at GBFs[j] is reused (line16-18) as shown

in the Figure 5. The 3 shares of x1, s1
1, s1

2, s1
3 are added to the

GBFs first. Then the 3 shares of x2 get added next. However,
GBFs[10] has been occupied by s1

3.
To prevent x1 from becoming unrecoverable due to the

replacement of s1
3 with another string, it is reasonable to reuse

the string s1
3 as a share of x2, where x2 = s2

1⊕ s2
2 ⊕ s1

3. After
all the elements in S are added, the locations in filter that are
still NULL will be filled with randomly generated λ-bit
strings. According to [3], the reuse of shares will not cause
security problems, and the probability of getting all shares of
an element that is not in the intersection in this protocol is
negligible. The detailed proofs and analysis are presented in
[3].

Algorithm 2: QueryGBF(GBFs, x, k, H)
input : a GBFS, an element x, k, H = {h0, ...hk−1}
output: True if x ∈ S, False otherwise
1 recovered = {0}λ;
2 for i=0 to k-1 do
3 j = hi(x);
4 recovered = recovered ⊕ GBFS[j];
5 end
6 if recovered == x then
7 return True;
8 else
9 return False;
10 end

E. Produce an Intersection GBF
The idea of how to produce an intersection of Garbled

Bloom Filter is based on performing the logic AND operation
on two Bloom Filters. The resulting bits copied to a new filter
that are set to 1 will be the intersection. The Algorithm 3 [3]
in the following is the pseudo code used to build the
intersection of Garbled Bloom Filter.

Algorithm 3: GBFIntersection(GBFs, BFc, m)
input: a GBFS(m, n, k, H, λ), a BFC(m, n, k, H), m
output: a GBFC∩S(m, n, k, H, λ)
1 GBFC∩S= new m-element array of bit strings;
2 for i=0 to m-1 do
3 if BFC[i] == 1 then
4 GBFC∩S[i] = GBFS[i];
5 else
6 𝐺𝐵𝐹C ∩ S[𝑖]

𝑟
← {0,1}𝜆;

7 end
8 end

If an element x is in C∩S, we know that BFC[i] must be a
1 bit and GBFs[i] must be a share of x for each location i it
hashes to. By running this algorithm, all elements in C∩S are
preserved in a new Garbled Bloom Filter. The resulted
intersection C∩S is called Oblivious Bloom Intersection as
shown in Figure 3. The detailed proofs and analysis are
presented in [3].

3 Implementation
Based on the result presented in [3], the approach of

oblivious Bloom intersection is very promising and more
scalable and efficient than other existing PSI protocols. Our
initial plan is to implement the protocol on mobile phones for
practical use. However, the computation requires large
amount of memory resources. Due to the fact of limited
resources mobile phones have, we decided to implement on
laptops.

We have implemented the basic PSI protocol of Oblivious
Bloom Intersection in conjunction with Google Contact API
in Java. Currently the hash function we used to build and
query Bloom Filters and Garbled Bloom Filters is SHA1 [22,
23, 24]. We registered two Google Accounts, one is used as
client and the other one is as server. For the initial account
setup, we uploaded 25,000 randomly generated contacts with
phone numbers to each account and intentionally made 15
contacts commonly exist in both accounts. The purpose is to
be able to verify result later. To access the contact information
from Google Account, we use Google Contact API v3
libraries to call the Contact Service.

The detailed specification of the implementation is shown
in the following table.

Table 1: Specification of Implementation

4 Results and Evaluation
 In this section, we show the performance result of our
implementation with Google Contacts. Both client and server
programs run on the same laptop with an Intel® i5 quad-core
2.5Gz, 16GB RAM, Windows 7 platform and are developed
in Eclipse IDE with JDK 1.7.0.45. In our implementation, we
set k = λ to keep the false probability of a Bloom Filter to be
as low as 2-λ and set m to be optimal value knlog2e. For
example, at 80 bit security k = λ = 80, when n = 25,000, m =
2,885,390. We measured the total running time of the
protocol that starts from the client sending request and ends
when client output the intersection. The time of fetching the
contacts from the Google Accounts and the time of setting up
sockets are excluded.

Platform Intel® i5 Quad-Core 2.5Gz, 16GB RAM
Operating System Windows 7
Programming
Language

Java

Runtime
Environment

JRE 7

Network Model TCP/IP Client/Server Model
IDE Eclipse
Crypto Library Java.Security
Hash Algorithm SHA-1
Key Size and
Security Parameter

80, 128 bit

Mode Single Threaded, Parallel Mode
Input Set Google Contacts: two 25,000-element sets

Figure 6: Performance of basic protocol respected to the
number of contacts for different security key size

A. Performance

 First, we show the performance in single threaded
mode. We vary the size of contacts (n) from 1,000 to 25,000
and the security (k = λ) from 80 to 128 bit. The result is
shown in Figure 6. As we can see, the running time increases
almost linearly as the number of contacts increases at each
level of security. For 25,000 contacts, it takes 10 seconds
with 80 bit security and 24 seconds for 128 bit security.
 Next, we show the comparison of performance between
single-threaded and multi-threaded modes. We keep the key
size to be 80 bit and vary the size of contacts (n) from 10,000
to 25,000. The result is shown in the Figure 7. The total
running time in multi-threaded mode is significantly less than
in single-threaded mode as the number of contacts increases.
For 80 bit security and 25,000 contacts, it takes 10 seconds in
single-threaded mode while it only takes 6.3 seconds in
multi-threaded mode.

Figure 7: Performance of basic protocol respected to the
number of contacts for different threading modes

 In comparison to De Cristofarro’s RSA-OPRF protocol
and Huang’s Sort-Compare-Shuffle with Waksman Network
protocol that are previously the fastest PSI protocols, Dong
[3] showed that the approach of oblivious Bloom intersection
is in orders of magnitude faster than these protocols.

B. Screenshot from Implementation

 The Figures 8 and 9 demonstrate the user interface of
our implementation in Oblivious Bloom Intersection. The
interaction between client and server can be easily observed.
Here is the process of computing the intersection:

1. The server and client connect to its corresponding
Google Account we set up initially and get
initialized to run in the environment.

2. The server will generate the symmetric key and send
to the client.

3. The client and server will each encode their data set
to Bloom Filter and Garbled Bloom Filter
respectively.

4. The client and server then perform oblivious transfer
and server will generate a new Garbled Bloom Filter
for intersection for the client

5. The client will use the new GBF to query and
compute the intersection

6. At the end, we allow client to send the set back to
the server for verification purpose.

Figure 8: Interactive Server Interface

Figure 9: Interactive Client Interface

5 Conclusions
 In this paper, we presented the practical use of a highly
efficient and scalable PSI protocol based on the approach of
oblivious Bloom intersection by implementing it in
conjunction with Google Contacts. We also showed how this
protocol can be easily integrated with cloud services like
Google accounts to get contact information to be used as the
input for both the client and the server. As explained by
Dong, this protocol mainly depends on efficient symmetric
key operations and these operations can be easily run in
parallel. What makes the approach of oblivious Bloom
intersection different than other protocols is mainly from its
underlying data structure while other protocols are based on
improving previous work with better algorithm. Its high
performance is pretty encouraging and promising. In
addition, it is suitable for large scale privacy preserving data
processing. We hope that more applications can be developed
with this protocol to provide secure and fast data processing

6 References

[1] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–
426, 1970.

[2] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P.
Morin, J. Morrison, M. H. M. Smid, and Y. Tang. On
the false-positive rate of bloom filters. Inf. Process.
Lett., 108(4):210–213, 2008.

[3] Changyu Dong, Liqun Chen, Zikai Wen, When
Private Set Intersection Meets Big Data: An Efficient
and Scalable Protocol, Page 4-15, 17-22. 2013

[4] M.O. Rabin. How to exchange secrets by oblivious
transfer. Technical Report TR-81, Harvard Aiken
Computation Laboratory, 1981.

[5] D. Beaver. Correlated pseudorandomness and the
complexity of private computations. In STOC, pages
479–488, 1996.

[6] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.
Extending oblivious transfers efficiently. In
CRYPTO, pages 145–161, 2003.

[7] Google Contact API v3, Google.com. Retrieved Feb
18, 2014, from
https://developers.google.com/google-
apps/contacts/v3/

[8] E. D. Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear complexity. In
Financial Cryptography, pages 143–159, 2010.

[9] Y. Huang, D. Evans, and J. Katz. Private set
intersection: Are garbled circuits better than custom
protocols? In NDSS, 2012.

[10] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In
EUROCRYPT, pages 1–19, 2004.

[11] L. Kissner and D. X. Song. Privacy-preserving set
operations. In CRYPTO, pages 241–257, 2005.

[12] J. Camenisch and G. M. Zaverucha. Private
intersection of certified sets. In Financial Cryptogra-
phy, pages 108–127, 2009.

[13] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security
against malicious and covert adversaries. In TCC,
pages 155–175, 2008.

[14] E. D. Cristofaro, J. Kim, and G. Tsudik. Linear-
complexity private set intersection protocols secure
in malicious model. In ASIACRYPT, pages 213–
231, 2010.

[15] D. Dachman-Soled, T. Malkin, M. Raykova, and M.
Yung. Efficient robust private set intersection. In
ACNS, pages 125–142, 2009.

[16] C. Hazay and K. Nissim. Efficient set operations in
the presence of malicious adversaries. In Public Key
Cryptography, pages 312–331, 2010.

[17] S. Jarecki and X. Liu. Fast secure computation of set
intersection. In SCN, pages 418–435, 2010.

[18] S. Jarecki and X. Liu. Efficient oblivious
pseudorandom function with applications to adaptive
OT and secure computation of set intersection. In
TCC, pages 577–594, 2009.

[19] G. Ateniese, E. D. Cristofaro, and G. Tsudik. (if) size
matters: Size-hiding private set intersection. In
Public Key Cryptography, pages 156–173, 2011.

[20] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[21] E. Bursztein, M. Hamburg, J. Lagarenne, and D.
Boneh. Openconflict: Preventing real time map
hacks in online games. In IEEE Symposium on
Security and Privacy, pages 506–520, 2011.

[22] Florent Chabaud, Antoine Joux: Differential
Collisions in SHA-0. CRYPTO 1998. pp56–71

[23] Eli Biham, Rafi Chen, Near-Collisions of SHA-0,
Cryptology ePrint Archive, Report 2004/146, 2004
(appeared on CRYPTO 2004), IACR.org

[24] Xiaoyun Wang, Hongbo Yu and Yiqun Lisa Yin,
Efficient Collision Search Attacks on SHA-0,
CRYPTO 2005

[25] Google App Account Support, Google.com.
Retrieved Feb 18, 2014, from
https://support.google.com/a/answer/1146409?hl=en

https://developers.google.com/google-apps/contacts/v3/
https://developers.google.com/google-apps/contacts/v3/
https://support.google.com/a/answer/1146409?hl=en

[26] Rudarakanchana, Nat. "Big Data: Cat-And-Mouse
Escalates On Privacy Concerns, As NRF Retail
Conference Looms." International Business Times.
Http://www.ibtimes.com/, 09 Jan. 2014. Web. 23
Feb. 2014.

[27] Bloomberg, Jason. "Big Data Governance: 5
Lessons Learned From PRISM." Big Data
Governance: 5 Lessons Learned From PRISM.
Http://www.baselinemag.com, 08 July 2013. Web.
23 Feb. 2014.

[28] Kelly, Jeff. "Big Data Market Size And Vendor
Revenues - Wikibon." Big Data Market Size And
Vendor Revenues - Wikibon. Wikibon, n.d. Web. 23
Feb. 2014.

	Implementation of Oblivious Bloom Intersection in Private Set Intersection Protocol (PSI)
	1 Introduction
	2 The Basic Protocol
	A. Bloom Filter
	B. Oblivious Transfer
	C. Google Contact API
	D. Garbled Bloom Filter
	E. Produce an Intersection GBF

	3 Implementation
	4 Results and Evaluation
	5 Conclusions
	6 References

