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Abstract 
 

A Mobile Ad hoc Network (MANET) is a system of 

wireless mobile nodes that dynamically self-organize 

in arbitrary and temporary network topologies 

allowing people and devices to inter-network without 

any preexisting communication infrastructure. Taking 

into account its nature and challenges and security 

issues, we briefly discuss current security solutions, 

particularly Threshold Cryptography (TC). Already TC 

is being sought in computer networks to provide 

security in terms of availability, confidentiality, and 

secure key or data distribution. So we investigate to 

find out what makes it difficult to implement TC in ad 

hoc networks. To find answers to these questions, we 

discuss our RSA-based Threshold Cryptography (RSA-

TC) implementation. Through our implementation, we 

have put forth various drawbacks of key sharing in 

RSA-TC and have suggested an alternative method of 

splitting message. Our work further proves why RSA-

TC is unsuitable in MANET. Finally, we explore 

Elliptic Curve Cryptology (ECC) and suggest reasons 

why ECC based Threshold Cryptography (ECC-TC) 

could be a very effective alternative to RSA-TC 

schemes in MANET.  

 

1. Introduction 
 

Mobile Ad hoc Network (MANET) is emerging as 

an important area for new developments in the field of 

wireless communication. The premise of forming a 

MANET is to provide wireless communication 

between heterogeneous devices, anytime and anywhere, 

with least or no infrastructure [1], [2], [3], [4]. These 

devices, for instance cell phones, laptops, palmtops 

remote systems, etc. carry out communication with 

other nodes that come in their radio range of 

connectivity. Each participating node provide services 

such as message forwarding, providing routing 

information, authentication, etc. to form a network with 

other nodes spread over an area. 

Security of MANETs is questioned due to its unique 

characteristics such as wireless communication, 

infrastructure-less network, dynamic membership, and 

heterogeneous devices. External vulnerabilities like 

eavesdropping and dynamic network and internal 

constraints like limited computational and storage 

capabilities pose challenges in implementing a secure 

ad hoc network. Hence, basic security requirements of 

MANET are availability, authentication, integrity, 

confidentiality, authorization, and trust management 

[1], [2], [3], [4], [5].  

This paper covers in brief current security solutions 

in MANET. In addition, this paper sheds light on TC 

and its application in computer and ad hoc networks. 

Our RSA-TC implementation is discussed. Through 

this implementation, we put forth the practical issues 

faced while implementing this scheme in a MANET. 

Also, considering its limitations, we suggest under what 

circumstances, RSA-TC could be implemented in 

MANET. Further, we demonstrate why RSA-TC is 

unsuitable for MANET. Lastly, we discuss why ECC 

based TC could be considered as an alternative to 

realize benefits of TC in MANET. 

 

2. Current security solutions in MANET 
 

2.1. Secure routing 
 

Routing of packets form a basis of the MANET 

where intermediate nodes route the data from the 

source to the destination. Assumption is that encryption 

keys have already been established between the 

communicating nodes [2]. The efficient packet routing 

is one of the crucial functionalities required in an ad 

hoc network [2]. It includes monitoring network traffic, 

prioritizing the sending of the data packets, 

authenticating the packets from legitimate nodes, and 

keeping track of updated routes [3]. Thus, as the 

message is broadcasted, each node carries out above 

mentioned functions to thwart various attacks based on 

the routing protocol. 
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2.2. Secure data forwarding 
 

Secure routing is the pre-requisite for implementing 

secure data forwarding [2]. The motivation is to 

securely forward data in MANETs in the presence of 

malicious nodes after the route between the source and 

target is discovered.  There are various schemes 

proposed for secure data forwarding such as data 

forwarding based on neighbor’s rating, implementing 

currency system in network for packet exchange, and 

redundantly dividing and routing message over 

multiple network routes.  

For example, Secure Message Transmission (SMT) 

is a secure data forwarding scheme in which first the 

active paths are discovered between two nodes using 

secure routing protocol. Based on N active paths, the 

message is divided into N different parts such that any 

M parts can be used to recover this message. These N 

partial messages are then routed on the recognized 

paths. The destination can recover a message when M 

or more partial messages are received. Thus, this 

scheme ensures that the message reaches the 

destination even if a few packets are dropped in transit. 

Both the above security solutions are essential to 

ensure that the ad hoc networks survive even in the 

presence of malicious nodes. Thus, by implementing 

the above solutions the nodes can communicate 

securely without relying on all nodes on only one route. 

Extending further the concept of dividing the 

message using SMT protocol, the threshold 

cryptography can be implemented to redundantly 

fragment the message into N parts such that using any t 

parts the message can be recovered [6].  

 

3. Threshold cryptography 
 

Threshold cryptography (TC) involves sharing of a 

key by multiple individuals called shareholders 

engaged in encryption or decryption. The objective is 

to have distributed architecture in a hostile 

environment. Other than sharing keys or working in 

distributed manner, TC can be implemented to 

redundantly split the message into n pieces such that 

with t or more pieces the original message can be 

recovered. This ensures secure message transmission 

between two nodes over n multiple paths. 

Threshold schemes generally involve key 

generation, encryption, share generation, share 

verification, and share combining algorithms. Share 

generation, for data confidentiality and integrity, is the 

basic requirement of any TC scheme. Threshold 

models can be broadly divided into single secret 

sharing threshold e.g. Shamir’s t-out-of-n scheme based 

on Lagrange’s interpolation and threshold sharing 

functions e.g. geometric based threshold [6]. These 

schemes are being used to implement threshold variants 

of RSA, El Gamal, and Diffie-Hellman cryptographic 

algorithms that have characteristic, E (x + y) = E (x) * 

E (y), called homomorphism [7].  

TC finds its application in document 

authorization/signing or verification in organizations 

[7], a voting system for allowing access to system 

resources [8], e-commerce transactions, distributed 

online certification authority [9], and key distribution 

[1], [2] in computer networks. TC can be implemented 

in various applications in a MANET. Applications such 

as coordinating efforts of military attacks using 

wireless devices in the battlefield or in disaster-struck 

area, wireless connectivity of various home appliances, 

and establishing communication among laptops, PDAs 

and other wireless devices at conferences, are ideal 

grounds for adopting TC. When compared with 

computer networks, it is easy to deduce that to 

implement TC in MANETs is a challenging task due to 

its dynamic and distributed nature and constrained 

resources at each network node.  

In next section, we present our efforts to apply 

threshold scheme based on RSA in ad hoc networks 

and explore possible difficulties that would have to be 

addressed. 

 

4. RSA-TC Implementations in MANET 
 

 
Figure 1. RSA and RSA-TC scheme using 

Lagrange  interpolation  
 

As shown in Fig. 1, RSA-TC has been implemented 

using JAVA 1.4 in Unix environment on SUN Sparc 

Ultra 5_10 machines. The application is designed to 

simulate an ad hoc network node with a capability to 

send messages using both RSA threshold encryption 

and decryption. In any given scenario, there is a sender 

S, a receiver R, and multiple shareholders SH. 

 

In RSA,  

i) C = M d mod N and M’ = M = C e mod N 

ii) C = M e mod N and M’ = M = C d mod N 

In RSA-TC authentication/signature scheme, 

    C’ = ∏ i=0 till i=t C xi* f’(xi)  mod N,  

where Ci = Cxi  mod N, 

           f (x)= (a0x
0  + a1x

1  +…+ a(t-1) x
( t-1) )mod ф(N)  

          and a0 = d 

           f’(x i)= ∏ j=0,j≠i till j=t  (x j /(x i – x j)) * f(x i) mod ф(N) 

Thus, 

C’ =M {∑ 
i=0, j=0, j≠i till i=t, j=t

 (x j / ( x i – x j)) * f ( xi)} mod N 

M’ = M = C’ e  mod N = C e  mod N 
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4.1. RSA-TC assumptions 
 

All the nodes have unique ids. S and R are already 

identified in the network. Since there is no trusted 

dealer/third party to generate shared keys, this function 

is carried out by S and it retains ф(N). R does the job of 

combining messages. Hence, a separate combiner is not 

defined. Multiple disjoint routes through each of the 

SH are already traced. Here we are not dealing with 

routing issues, so we assume that the routes can be 

identified using any of the available routing protocols. 
 

4.2. Modules required in RSA-TC 
 

4.2.1. Generation of RSA keys. Prime numbers p, q 

are generated using available functions in Java. The 

key size is variable, but we are recording data for 512, 

1024, and 2048 bits. p and q are generated such that (p-

1) /2 and (q-1)/2 are also prime [10]. Thus, the ф(N) = 

(p-1)*(q-1) would be divisible only by 2 and 4. From p 

and q, the RSA keys are determined such that N = p*q, 

e is selected, and then d = e
-1
 mod ф(N), where ф(N) = 

(p-1)*(q-1).  Public key (N, e) is known to all 

shareholders and the receiver. The receiver uses it for 

checking integrity of the recovered message. 

4.2.2. Determination of threshold: The sender’s 

available neighbors will act as its shareholders. Based 

on ‘n’ available neighbors, the threshold t is randomly 

generated such that (t ≥(n+1)/2) and t < n, where n ≥ 2.  

In this implementation, (n, t) values are fixed to one 

of the following: (10, {6, 8, 10}), (15, {8, 11, 15}), or 

(20, {11, 15, 20}).  

4.2.3. Share generation: For calculating key shares 

and for combining partial messages, Shamir’s secret 

sharing scheme using Lagrange interpolation is 

implemented. For its polynomial, the coefficients are 

randomly generated over the modulus ф(N). The co-

efficient zero depends on the type of threshold scheme. 

For threshold encryption, it would be e, while for 

threshold decryption it would be set to d. The xi-values 

used for calculating the shares are 1 to n, rather than 

randomly picking these values. The generated shares 

and xi-values are distributed among the shareholders 

during the key sharing process. 

 

4.3. RSA-TC model 
 

As shown in Fig. 2, applying Fermat’s theorem [11] in 

our model, Lagrange interpolation and polynomial 

generation were carried out over mod ф(N) to generate 

the partial keys f(xi) as explained in Fig. 3. The 

shareholders only apply f(xi)s to the message and 

forward these partial signatures Cis along-with the xi- 

 
Figure 2. Fermat’s theorem and its application 

in RSA-TC 
 

 
Figure 3.  Protocol for RSA-TC 

authentication/signature scheme in MANET 
 

values to the receiver. After receiving t or more Cis, the 

receiver selects t Cis for recovery of C. The receiver 

encrypts xi-values using the sender’s public key e, and 

sends it to the sender via more than one route. The 

sender calculates respective xi’-values using Lagrange 

interpolation over mod ф(N) and sends them back to 

the receiver. The receiver then apply these xi’-values to 

the respective partial signatures and combines the 

results to recover the final C. It then computes C
e
 mod 

N to recover the final message M for verification. 

As shown in Fig. 2, applying Fermat’s theorem [11] 

in our model, Lagrange interpolation and polynomial 

                                                     

 

 
S 

SH-1 

SH-n 

 
R 

1, 2 

1, 2 3 

3 

4, 6 

5 

 

  One hop between 2 nodes 

  Multi-hop over more than 2 nodes on single disjoint route 

 Multi-hop over more than 2 nodes multiple disjoint routes 

 

1. Sender S distributes the shared keys along with xi-values 

amongst its ‘n’ neighbors which  will act as Shareholders SH. (f(xi) 

mod ф(N), xi, N, IdS) assigned to each shareholder. 

2. S sends message M securely to all SHs for partial signature 

generation. 

3. SHs apply f(xi) to M and send partial signatures as (Ci  = Mf(xi) 

mod N, xi, IdS, IdSH ) to Receiver R. R retains these values until t 

partial signatures are received. 

    Note: A few SHs may not be available or a few messages from 

SH may be lost during the transmission. 

4. S notifies R about threshold t and public key (N, e). 

5. R sends t selected xi-values to the S for xi’ values. 

6. S calculates xi’ values over mod ф(N) and sends them to R.  

R applies xi’ values to Cis and combines them to get the original C. 

Ce mod N then gives the message M. 

Given a prime p, let a be a positive integer number not 

divisible by p, then    

              a( p-1) ≡ 1 mod p  

Applying this theorem to RSA modulus N, we get 

         a( p-1)( q-1) ≡ 1 mod (p*q) i.e. a  
(N) ≡ 1 mod N 

 

To get partial messages say Ci, it should be computed as:  

         Ci = M [ f( xi) mod ф(N) * xi’ mod ф(N) ] mod N  

         f(xi), xi’ < ф(N) as per Fermat’s theorem.  

Thus, C = ∏ Ci mod N, where i = 0...t. 
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generation were carried out over mod ф(N) to generate 

the partial keys f(xi) as explained in Fig. 3. The 

shareholders only apply f(xi)s to the message and 

forward these partial signatures Cis along-with the xi-

values to the receiver. After receiving t or more Cis, the 

receiver selects t Cis for recovery of C. The receiver 

encrypts xi-values using the sender’s public key e, and 

sends it to the sender via more than one route. The 

sender calculates respective xi’-values using Lagrange 

interpolation over mod ф(N) and sends them back to 

the receiver. The receiver then apply these xi’-values to 

the respective partial signatures and combines the 

results to recover the final C. It then computes C
e
 mod 

N to recover the final message M for verification. 

ф(N) is not shared with shareholders and no partial 

messages are stored at the shareholders. The sender 

carries out computation of the xi’-values. Thus, the 

shareholders need not know t or other xi-values that are 

obtained by the receiver. Instead of sending the xi-

values to all the shareholders, the receiver sends them 

to the sender via multiple reverse routes, less than t, 

thus reducing the message-exchanges carried over the 

wireless network. In this case, it does not affect the 

message-exchange even if a few 

 

4.4. Performance data 
 

 
Figure 4. Average Partial Signature Generation 

Time (ETime) at each Shareholder in RSA-TC 

  
In Fig. 4, for a given key size, the average signature 

generation time (ETime) is approximately same at each 

shareholder irrespective of n and t because all the 

distributed shared keys have bit lengths equivalent to d. 

(Note that all the results, Fig. 4 and Fig. 5, have been 

collected for 500 runs.)    

Fig. 5 proves that, for fixed n, the combination and 

verification time (DTime) increases with increase in t 

which is equivalent to number of partial cipher texts Cis 

to be retrieved. But when t = n the DTime drops. In later 

case, calculation of xi’-values is easier due to all 

consecutive xi-values and multiplicative inverse always 

exists in mod ф(N) for all xi’ = ∏ j=0,j≠i till j=t  (x j /(x i – x 

j)) mod ф(N). 

 
Figure 5. Total Combination and Verification 

Time in mSecs at Receiver in RSA-TC 
 

Further, one would expect DTime >= (t * ETime), but 

the decryption key e is 65537, which is comparatively 

much smaller than d or any partial encryption keys f(xi). 

Also, not all the xi’-values have bit size equal to f(xi). 

Taking into consideration above facts, the timings DTime 

obtained here are justified i.e. DTime <= (t * ETime). 

Fig. 4 and Fig. 5 demonstrate that increasing key 

size by 2, ETime as well as DTime increases exponentially. 

This is an expected behavior as in regular RSA scheme 

these timings increase exponentially by doubling key 

size. 

 
Figure 6. Success Rate in RSA-TC 

implementation for different t-out-of-n cases 

 
% Success rate is measured as (Success/Total 

messages)*100. Note that failure = (Total messages – 

success). Fig. 6 compares %success rate for all t-out-

of-n scenarios for given key sizes. Success rate varies 

for different key sizes when t ≠ n. For all key sizes, for 

fixed n,  success rate increases as t increases from n/2 

to n, but, interestingly, optimal success rate is 100% 

when t = n. Next, though for fixed n and t, it seems that 
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increasing key size increases success rate, but note that 

selection of RSA keys and hence, ф(N) play a major 

role in this variation. Thus, for same key sizes and t ≠ 

n, success rate will vary based solely on ф(N).  

The observed advantage of RSA-TC is that success 

rate is 100% for t = n. Thus, if ф(N) is available with 

the sender, then using steps 5 and 6 in Fig. 3, n-out-of-

n scheme can be implemented in MANET.  

However, from above results, RSA-TC exhibits a 

few drawbacks that make it difficult to implement it in 

MANET. First, as ф(N)=(p-1)(q-1) is even, inverse of 

all numbers do not exist in mod ф(N) [6], [12]. Since 

Lagrange interpolation is carried out over mod ф(N), 

the question of determining n values of x, where all 

subsets of t x-values can re-compute xi’-values, was 

raised. For maximum success rate at any n, t can be 

varied, and t that gives maximum success rate could be 

selected. It is observed in Fig. 6, that as t was gradually 

increased from n/2 to n, combinations of xi-values i.e. 

n!/((n-t)! * t!), decreased but the success rate of 

retrieving xi’-values increased. Further, when t = n, 

success rate was 100%. Hence, for different t-values 

and given ф(N) at sender, pre-determination of set of 

xi–values is required for a reasonable success rate. 

Second, considering multiple computations and 

delays due to message exchanges with multiple nodes, 

receiver has to store partial messages until M is 

recovered. This may render the receiver incapable of 

storing more messages. In addition to this, given a key-

size of z bits, each node in the network stores at least 3z 

bits, i.e. (f(xi) mod ф(N), xi, N), and a unique identity 

(Id) for each sender for which it acts as a shareholder. 

Note that the bit length of associated Id will be much 

less than z. For processing message signature 

generation and verification, additional memory is 

required to temporarily store intermediate results. 

Further, exponential calculations for Ci = M 
f(xi) mod ф(N)

 

mod N are very costly as bit length of f(xi) is equivalent 

to that of ф(N). Thus, RSA-TC imposes a significant 

load of storing and processing keys and messages at 

each node. 

We would like to suggest alternative RSA-TC 

scheme. If ф(N) is secret but still RSA-TC is to be 

implemented then, instead of keys, message could be 

split before or after encryption. Lagrange’s 

interpolation, in mod N field, could be used to divide 

message at the sender. In this scheme, shareholders are 

not required on disjoint routes. Since (e, N) is known so 

the receiver can calculate xi’-values, thus eliminating 

the steps 5 and 6 in Fig. 3. In this case, the success rate 

would be 100% for any t-out-of-n case since N is 

multiple of two prime numbers. Also, xi’-values would 

always be available in mod N field. But note that if 

message is split into n pieces before encryption this 

would increase RSA computations by n times. Hence, 

splitting message after encryption and then forwarding 

partial pieces on disjoint path would work and require 

encryption timings equivalent to a RSA scheme. 

 

Table 1. Key sizes in bits for equivalent levels 

Symmetric ECC DH/DSA/ RSA 

80 163 1024 

128 283 3072 

192 409 7680 

256 571 15,360 

 

Table 2. Sample ECC exponentiation over 

GF(p)and RSA encrypt/Decrypt timings in 

mSecs 

Processor MHz 

163-    

ECC 

192-

ECC  

1024-

RSAe 

1024-

RSAd 

2048 

RSAe 

2048 

RSAd 

Ultra 

SPARCII 

400MHz 450 6.1 8.7 1.7 32.1 6.1 205.5 

StrongARM 

200MHz 200 22.9 37.7 10.8 188.7 39.1 1273.8 

ECC: rG operation, RSAe: RSA Public key operation, RSAd: RSA 

Private key operation 

Table 3: ECC secret sharing timings in 

milliseconds over prime fields 

ECC share split before encryption share split after encryption 

  

163-

bit 

Sun 

192-

bit 

Sun 

163- 

bit 

ARM 

192- 

bit 

ARM 

163-

bit 

Sun 

192-

bit 

Sun 

163- 

bit 

ARM 

192- 

bit 

ARM 

EG 18.3n 26.1n 68.7n 113.1n 18.3 26.1 68.7 113.1 

MO 24.4n 34.8n 91.6n 150.8n 24.4 34.8 91.6 150.8 

DH 6.1 8.7 22.9 37.7 6.1 8.7 22.9 37.7 

MV 12.2 17.4 45.8 75.4 12.2 17.4 45.8 75.4 

KMOV 12.2n 17.4n 45.8n 75.4n 12.2 17.4 45.8 75.4 

Ertaul 18.3 26.1 68.7 113.1 18.3 26.1 68.7 113.1 

Demytko 18.3n 26.1n 68.7n 113.1n 12.2 17.4 45.8 75.4 

Sun: Ultra Sparc II 450 MHz         ARM: Strong ARM 200 MHz 

 

Due to exponential computations, RSA scheme 

require lots of computational capacity, bandwidth, 

power, and storage. ECC-TC could be a better option 

in MANET. From Table 1 and 2 [4], ECC provides 

equivalent security as RSA, but with reduced key sizes 

and at faster speed. With smaller keys, ECC requires 

less memory and bandwidth and gives better efficiency 

than RSA [13]. Research has been done to prove that 

ECC scheme is suitable for applications on mobile 

devices [14]. Apart from above reasons, ECC works in 

prime field p, so we assume that compared to RSA-TC, 

ECC-TC would be easy to implement using Shamir’s t-

out-of-n scheme. Further, success rate could be 100%.  

Many variants of ECC based algorithms exist such 

as ECC El Gamal [15], EC Diffie-Hellman [16] (EC-
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DH), Massey-Omura (MO), Menezes-Vanstone (MV), 

Koyama-Maurer-Okamoto-Vanstone (KMOV), Ertaul, 

and Demytko [17]. These variants can be modified to 

implement ECC-TC in MANET.  From table 3 [17], 

DH, MV and Ertaul have been identified as best 

possible ECC-TC algorithms suitable for MANETs.  

These algorithms are efficient in both share split before 

and after encryption.  

Moving forward, our goal is to implement ECC 

based DH, MV, Ertaul, and El Gamal for share as well 

as message splitting before and after encryption in 

simulated MANET environment and to compare its 

performance with RSA-TC.  

 

5. Conclusions 
 

In the RSA-TC implementation, we have proved 

that knowledge of ф(N) is must for sharing keys. It is 

clearly demonstrated here, that irrespective of key size 

and for known ф(N) at the sender, the success rate 

increases as t is increased from n/2 to n. Further, 100% 

success rate can be achieved with n-out-of-n RSA-TC 

scheme. As in regular RSA, RSA-TC implementation 

confirmed that the signature generation and signature 

verification time increases exponentially when key 

sizes are doubled. In this paper, it is established that the 

combining and verifying time is less than t times partial 

signature generation time. Rather than sharing keys, we 

have suggested an alternative of splitting the message 

at the sender to achieve 100% success rate without 

knowledge of ф(N). Thus, our work proves that RSA-

TC using key sharing is unsuitable in resource-

constrained MANETs due to high storage, 

computation, and bandwidth requirements. Finally, 

considering the growth of ad hoc networks in coming 

years, it is crucial to seriously consider the security of 

these networks. At this point, though RSA-TC is 

unsuitable for MANETs but ECC-TC appears (DH, 

MV, Ertaul, and El Gamal) to be an option to apply 

threshold cryptography in these networks. Further 

exploration of ECC-TC algorithms is required to prove 

that TC could be implemented to take a step closer in 

achieving enhanced ad hoc network security. 
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