
Security of Ad Hoc Networks and Threshold Cryptography

Levent Ertaul, Nitu Chavan

California State University, Hayward

lertaul@csuhayward.edu, nchavan@horizon.csuhayward.edu

Abstract

A Mobile Ad hoc Network (MANET) is a system of

wireless mobile nodes that dynamically self-organize

in arbitrary and temporary network topologies

allowing people and devices to inter-network without

any preexisting communication infrastructure. Taking

into account its nature and challenges and security

issues, we briefly discuss current security solutions,

particularly Threshold Cryptography (TC). Already TC

is being sought in computer networks to provide

security in terms of availability, confidentiality, and

secure key or data distribution. So we investigate to

find out what makes it difficult to implement TC in ad

hoc networks. To find answers to these questions, we

discuss our RSA-based Threshold Cryptography (RSA-

TC) implementation. Through our implementation, we

have put forth various drawbacks of key sharing in

RSA-TC and have suggested an alternative method of

splitting message. Our work further proves why RSA-

TC is unsuitable in MANET. Finally, we explore

Elliptic Curve Cryptology (ECC) and suggest reasons

why ECC based Threshold Cryptography (ECC-TC)

could be a very effective alternative to RSA-TC

schemes in MANET.

1. Introduction

Mobile Ad hoc Network (MANET) is emerging as

an important area for new developments in the field of

wireless communication. The premise of forming a

MANET is to provide wireless communication

between heterogeneous devices, anytime and anywhere,

with least or no infrastructure [1], [2], [3], [4]. These

devices, for instance cell phones, laptops, palmtops

remote systems, etc. carry out communication with

other nodes that come in their radio range of

connectivity. Each participating node provide services

such as message forwarding, providing routing

information, authentication, etc. to form a network with

other nodes spread over an area.

Security of MANETs is questioned due to its unique

characteristics such as wireless communication,

infrastructure-less network, dynamic membership, and

heterogeneous devices. External vulnerabilities like

eavesdropping and dynamic network and internal

constraints like limited computational and storage

capabilities pose challenges in implementing a secure

ad hoc network. Hence, basic security requirements of

MANET are availability, authentication, integrity,

confidentiality, authorization, and trust management

[1], [2], [3], [4], [5].

This paper covers in brief current security solutions

in MANET. In addition, this paper sheds light on TC

and its application in computer and ad hoc networks.

Our RSA-TC implementation is discussed. Through

this implementation, we put forth the practical issues

faced while implementing this scheme in a MANET.

Also, considering its limitations, we suggest under what

circumstances, RSA-TC could be implemented in

MANET. Further, we demonstrate why RSA-TC is

unsuitable for MANET. Lastly, we discuss why ECC

based TC could be considered as an alternative to

realize benefits of TC in MANET.

2. Current security solutions in MANET

2.1. Secure routing

Routing of packets form a basis of the MANET

where intermediate nodes route the data from the

source to the destination. Assumption is that encryption

keys have already been established between the

communicating nodes [2]. The efficient packet routing

is one of the crucial functionalities required in an ad

hoc network [2]. It includes monitoring network traffic,

prioritizing the sending of the data packets,

authenticating the packets from legitimate nodes, and

keeping track of updated routes [3]. Thus, as the

message is broadcasted, each node carries out above

mentioned functions to thwart various attacks based on

the routing protocol.

0-7803-9305-8/05/$20.00 © 2005 IEEE.

2.2. Secure data forwarding

Secure routing is the pre-requisite for implementing

secure data forwarding [2]. The motivation is to

securely forward data in MANETs in the presence of

malicious nodes after the route between the source and

target is discovered. There are various schemes

proposed for secure data forwarding such as data

forwarding based on neighbor’s rating, implementing

currency system in network for packet exchange, and

redundantly dividing and routing message over

multiple network routes.

For example, Secure Message Transmission (SMT)

is a secure data forwarding scheme in which first the

active paths are discovered between two nodes using

secure routing protocol. Based on N active paths, the

message is divided into N different parts such that any

M parts can be used to recover this message. These N

partial messages are then routed on the recognized

paths. The destination can recover a message when M

or more partial messages are received. Thus, this

scheme ensures that the message reaches the

destination even if a few packets are dropped in transit.

Both the above security solutions are essential to

ensure that the ad hoc networks survive even in the

presence of malicious nodes. Thus, by implementing

the above solutions the nodes can communicate

securely without relying on all nodes on only one route.

Extending further the concept of dividing the

message using SMT protocol, the threshold

cryptography can be implemented to redundantly

fragment the message into N parts such that using any t

parts the message can be recovered [6].

3. Threshold cryptography

Threshold cryptography (TC) involves sharing of a

key by multiple individuals called shareholders

engaged in encryption or decryption. The objective is

to have distributed architecture in a hostile

environment. Other than sharing keys or working in

distributed manner, TC can be implemented to

redundantly split the message into n pieces such that

with t or more pieces the original message can be

recovered. This ensures secure message transmission

between two nodes over n multiple paths.

Threshold schemes generally involve key

generation, encryption, share generation, share

verification, and share combining algorithms. Share

generation, for data confidentiality and integrity, is the

basic requirement of any TC scheme. Threshold

models can be broadly divided into single secret

sharing threshold e.g. Shamir’s t-out-of-n scheme based

on Lagrange’s interpolation and threshold sharing

functions e.g. geometric based threshold [6]. These

schemes are being used to implement threshold variants

of RSA, El Gamal, and Diffie-Hellman cryptographic

algorithms that have characteristic, E (x + y) = E (x) *

E (y), called homomorphism [7].

TC finds its application in document

authorization/signing or verification in organizations

[7], a voting system for allowing access to system

resources [8], e-commerce transactions, distributed

online certification authority [9], and key distribution

[1], [2] in computer networks. TC can be implemented

in various applications in a MANET. Applications such

as coordinating efforts of military attacks using

wireless devices in the battlefield or in disaster-struck

area, wireless connectivity of various home appliances,

and establishing communication among laptops, PDAs

and other wireless devices at conferences, are ideal

grounds for adopting TC. When compared with

computer networks, it is easy to deduce that to

implement TC in MANETs is a challenging task due to

its dynamic and distributed nature and constrained

resources at each network node.

In next section, we present our efforts to apply

threshold scheme based on RSA in ad hoc networks

and explore possible difficulties that would have to be

addressed.

4. RSA-TC Implementations in MANET

Figure 1. RSA and RSA-TC scheme using

Lagrange interpolation

As shown in Fig. 1, RSA-TC has been implemented

using JAVA 1.4 in Unix environment on SUN Sparc

Ultra 5_10 machines. The application is designed to

simulate an ad hoc network node with a capability to

send messages using both RSA threshold encryption

and decryption. In any given scenario, there is a sender

S, a receiver R, and multiple shareholders SH.

In RSA,

i) C = M d mod N and M’ = M = C e mod N

ii) C = M e mod N and M’ = M = C d mod N

In RSA-TC authentication/signature scheme,

 C’ = ∏ i=0 till i=t C xi* f’(xi) mod N,

where Ci = Cxi mod N,

 f (x)= (a0x
0 + a1x

1 +…+ a(t-1) x
(t-1))mod ф(N)

 and a0 = d

 f’(x i)= ∏ j=0,j≠i till j=t (x j /(x i – x j)) * f(x i) mod ф(N)

Thus,

C’ =M {∑
i=0, j=0, j≠i till i=t, j=t

 (x j / (x i – x j)) * f (xi)} mod N

M’ = M = C’ e mod N = C e mod N

0-7803-9305-8/05/$20.00 © 2005 IEEE.

4.1. RSA-TC assumptions

All the nodes have unique ids. S and R are already

identified in the network. Since there is no trusted

dealer/third party to generate shared keys, this function

is carried out by S and it retains ф(N). R does the job of

combining messages. Hence, a separate combiner is not

defined. Multiple disjoint routes through each of the

SH are already traced. Here we are not dealing with

routing issues, so we assume that the routes can be

identified using any of the available routing protocols.

4.2. Modules required in RSA-TC

4.2.1. Generation of RSA keys. Prime numbers p, q

are generated using available functions in Java. The

key size is variable, but we are recording data for 512,

1024, and 2048 bits. p and q are generated such that (p-

1) /2 and (q-1)/2 are also prime [10]. Thus, the ф(N) =

(p-1)*(q-1) would be divisible only by 2 and 4. From p

and q, the RSA keys are determined such that N = p*q,

e is selected, and then d = e
-1
 mod ф(N), where ф(N) =

(p-1)*(q-1). Public key (N, e) is known to all

shareholders and the receiver. The receiver uses it for

checking integrity of the recovered message.

4.2.2. Determination of threshold: The sender’s

available neighbors will act as its shareholders. Based

on ‘n’ available neighbors, the threshold t is randomly

generated such that (t ≥(n+1)/2) and t < n, where n ≥ 2.

In this implementation, (n, t) values are fixed to one

of the following: (10, {6, 8, 10}), (15, {8, 11, 15}), or

(20, {11, 15, 20}).

4.2.3. Share generation: For calculating key shares

and for combining partial messages, Shamir’s secret

sharing scheme using Lagrange interpolation is

implemented. For its polynomial, the coefficients are

randomly generated over the modulus ф(N). The co-

efficient zero depends on the type of threshold scheme.

For threshold encryption, it would be e, while for

threshold decryption it would be set to d. The xi-values

used for calculating the shares are 1 to n, rather than

randomly picking these values. The generated shares

and xi-values are distributed among the shareholders

during the key sharing process.

4.3. RSA-TC model

As shown in Fig. 2, applying Fermat’s theorem [11] in

our model, Lagrange interpolation and polynomial

generation were carried out over mod ф(N) to generate

the partial keys f(xi) as explained in Fig. 3. The

shareholders only apply f(xi)s to the message and

forward these partial signatures Cis along-with the xi-

Figure 2. Fermat’s theorem and its application

in RSA-TC

Figure 3. Protocol for RSA-TC

authentication/signature scheme in MANET

values to the receiver. After receiving t or more Cis, the

receiver selects t Cis for recovery of C. The receiver

encrypts xi-values using the sender’s public key e, and

sends it to the sender via more than one route. The

sender calculates respective xi’-values using Lagrange

interpolation over mod ф(N) and sends them back to

the receiver. The receiver then apply these xi’-values to

the respective partial signatures and combines the

results to recover the final C. It then computes C
e
 mod

N to recover the final message M for verification.

As shown in Fig. 2, applying Fermat’s theorem [11]

in our model, Lagrange interpolation and polynomial

S

SH-1

SH-n

R

1, 2

1, 2 3

3

4, 6

5

 One hop between 2 nodes

 Multi-hop over more than 2 nodes on single disjoint route

 Multi-hop over more than 2 nodes multiple disjoint routes

1. Sender S distributes the shared keys along with xi-values

amongst its ‘n’ neighbors which will act as Shareholders SH. (f(xi)

mod ф(N), xi, N, IdS) assigned to each shareholder.

2. S sends message M securely to all SHs for partial signature

generation.

3. SHs apply f(xi) to M and send partial signatures as (Ci = Mf(xi)

mod N, xi, IdS, IdSH) to Receiver R. R retains these values until t

partial signatures are received.

 Note: A few SHs may not be available or a few messages from

SH may be lost during the transmission.

4. S notifies R about threshold t and public key (N, e).

5. R sends t selected xi-values to the S for xi’ values.

6. S calculates xi’ values over mod ф(N) and sends them to R.

R applies xi’ values to Cis and combines them to get the original C.

Ce mod N then gives the message M.

Given a prime p, let a be a positive integer number not

divisible by p, then

 a(p-1) ≡ 1 mod p

Applying this theorem to RSA modulus N, we get

 a(p-1)(q-1) ≡ 1 mod (p*q) i.e. a
(N) ≡ 1 mod N

To get partial messages say Ci, it should be computed as:

 Ci = M [f(xi) mod ф(N) * xi’ mod ф(N)] mod N

 f(xi), xi’ < ф(N) as per Fermat’s theorem.

Thus, C = ∏ Ci mod N, where i = 0...t.

0-7803-9305-8/05/$20.00 © 2005 IEEE.

generation were carried out over mod ф(N) to generate

the partial keys f(xi) as explained in Fig. 3. The

shareholders only apply f(xi)s to the message and

forward these partial signatures Cis along-with the xi-

values to the receiver. After receiving t or more Cis, the

receiver selects t Cis for recovery of C. The receiver

encrypts xi-values using the sender’s public key e, and

sends it to the sender via more than one route. The

sender calculates respective xi’-values using Lagrange

interpolation over mod ф(N) and sends them back to

the receiver. The receiver then apply these xi’-values to

the respective partial signatures and combines the

results to recover the final C. It then computes C
e
 mod

N to recover the final message M for verification.

ф(N) is not shared with shareholders and no partial

messages are stored at the shareholders. The sender

carries out computation of the xi’-values. Thus, the

shareholders need not know t or other xi-values that are

obtained by the receiver. Instead of sending the xi-

values to all the shareholders, the receiver sends them

to the sender via multiple reverse routes, less than t,

thus reducing the message-exchanges carried over the

wireless network. In this case, it does not affect the

message-exchange even if a few

4.4. Performance data

Figure 4. Average Partial Signature Generation

Time (ETime) at each Shareholder in RSA-TC

In Fig. 4, for a given key size, the average signature

generation time (ETime) is approximately same at each

shareholder irrespective of n and t because all the

distributed shared keys have bit lengths equivalent to d.

(Note that all the results, Fig. 4 and Fig. 5, have been

collected for 500 runs.)

Fig. 5 proves that, for fixed n, the combination and

verification time (DTime) increases with increase in t

which is equivalent to number of partial cipher texts Cis

to be retrieved. But when t = n the DTime drops. In later

case, calculation of xi’-values is easier due to all

consecutive xi-values and multiplicative inverse always

exists in mod ф(N) for all xi’ = ∏ j=0,j≠i till j=t (x j /(x i – x

j)) mod ф(N).

Figure 5. Total Combination and Verification

Time in mSecs at Receiver in RSA-TC

Further, one would expect DTime >= (t * ETime), but

the decryption key e is 65537, which is comparatively

much smaller than d or any partial encryption keys f(xi).

Also, not all the xi’-values have bit size equal to f(xi).

Taking into consideration above facts, the timings DTime

obtained here are justified i.e. DTime <= (t * ETime).

Fig. 4 and Fig. 5 demonstrate that increasing key

size by 2, ETime as well as DTime increases exponentially.

This is an expected behavior as in regular RSA scheme

these timings increase exponentially by doubling key

size.

Figure 6. Success Rate in RSA-TC

implementation for different t-out-of-n cases

% Success rate is measured as (Success/Total

messages)*100. Note that failure = (Total messages –

success). Fig. 6 compares %success rate for all t-out-

of-n scenarios for given key sizes. Success rate varies

for different key sizes when t ≠ n. For all key sizes, for

fixed n, success rate increases as t increases from n/2

to n, but, interestingly, optimal success rate is 100%

when t = n. Next, though for fixed n and t, it seems that

1.00

10.00

100.00

1000.00

10000.00

100000.00

t-out-of-n

T
o
ta
l
C
o
m
b
in
a
ti
o
n
 +
 V
er
if
ic
a
ti
o
n
 T
im
e
in

m
se
cs

512 bits 104.21 120.97 125.84 99.42 167.61 177.13 227.47 318.71 273.11

1024 bits 1035.16 1221.82 1284.67 1817.26 2068.18 1926.45 2983.22 4086.77 2822.19

2048 bits 8269.00 10981.30 11316.26 14127.62 17637.29 15959.35 24872.61 31401.53 22926.91

6-out-of-10 8-out-of-10
10-out-of-

10
8-out-of-15

11-out-of-

15

15-out-of-

15

11-out-of-

20

15-out-of-

20

20-out-of-

20

Processor: SUN Sparc Ultra 5_10, Timings for 500 runs

1.00

10.00

100.00

1000.00

10000.00

t-out-of-n

A
v
g
.
P
a
rt
ia
l
S
ig
n
a
tu
re
 G
en
er
a
ti
o
n
 T
im
e
in

m
se
cs

512 bits 21.90 22.04 22.74 22.21 22.15 22.73 22.62 22.32 22.78

1024 bits 174.21 173.69 168.78 171.81 168.47 166.82 171.27 167.88 167.25

2048 bits 1902.23 1950.20 1885.54 1902.76 1908.88 1897.75 1854.41 1884.56 1910.07

6-out-of-

10

8-out-of-

10

10-out-of-

10

8-out-of-

15

11-out-of-

15

15-out-of-

15

11-out-of-

20

15-out-of-

20

20-out-of-

20

Processor: SUN Sparc Ultra 5_10, Timings for 500 runs

0

20

40

60

80

100

120

t-out-of-n

%
 S
u
cc
es
s
ra
te

512 bits 33.4 35.4 100 2.4 9.2 100 9.8 11.2 100

1024 bits 23.2 24.8 100 13.8 20.6 100 29.8 13 100

2048 bits 38.4 41.8 100 36.8 45.2 100 7.67 34.4 100

6-out-of-10 8-out-of-10
10-out-of-

10
8-out-of-15

11-out-of-

15

15-out-of-

15

11-out-of-

20

15-out-of-

20

20-out-of-

20

Processor: SUN Sparc Ultra 5_10, Success rate for 500 runs

0-7803-9305-8/05/$20.00 © 2005 IEEE.

increasing key size increases success rate, but note that

selection of RSA keys and hence, ф(N) play a major

role in this variation. Thus, for same key sizes and t ≠

n, success rate will vary based solely on ф(N).

The observed advantage of RSA-TC is that success

rate is 100% for t = n. Thus, if ф(N) is available with

the sender, then using steps 5 and 6 in Fig. 3, n-out-of-

n scheme can be implemented in MANET.

However, from above results, RSA-TC exhibits a

few drawbacks that make it difficult to implement it in

MANET. First, as ф(N)=(p-1)(q-1) is even, inverse of

all numbers do not exist in mod ф(N) [6], [12]. Since

Lagrange interpolation is carried out over mod ф(N),

the question of determining n values of x, where all

subsets of t x-values can re-compute xi’-values, was

raised. For maximum success rate at any n, t can be

varied, and t that gives maximum success rate could be

selected. It is observed in Fig. 6, that as t was gradually

increased from n/2 to n, combinations of xi-values i.e.

n!/((n-t)! * t!), decreased but the success rate of

retrieving xi’-values increased. Further, when t = n,

success rate was 100%. Hence, for different t-values

and given ф(N) at sender, pre-determination of set of

xi–values is required for a reasonable success rate.

Second, considering multiple computations and

delays due to message exchanges with multiple nodes,

receiver has to store partial messages until M is

recovered. This may render the receiver incapable of

storing more messages. In addition to this, given a key-

size of z bits, each node in the network stores at least 3z

bits, i.e. (f(xi) mod ф(N), xi, N), and a unique identity

(Id) for each sender for which it acts as a shareholder.

Note that the bit length of associated Id will be much

less than z. For processing message signature

generation and verification, additional memory is

required to temporarily store intermediate results.

Further, exponential calculations for Ci = M
f(xi) mod ф(N)

mod N are very costly as bit length of f(xi) is equivalent

to that of ф(N). Thus, RSA-TC imposes a significant

load of storing and processing keys and messages at

each node.

We would like to suggest alternative RSA-TC

scheme. If ф(N) is secret but still RSA-TC is to be

implemented then, instead of keys, message could be

split before or after encryption. Lagrange’s

interpolation, in mod N field, could be used to divide

message at the sender. In this scheme, shareholders are

not required on disjoint routes. Since (e, N) is known so

the receiver can calculate xi’-values, thus eliminating

the steps 5 and 6 in Fig. 3. In this case, the success rate

would be 100% for any t-out-of-n case since N is

multiple of two prime numbers. Also, xi’-values would

always be available in mod N field. But note that if

message is split into n pieces before encryption this

would increase RSA computations by n times. Hence,

splitting message after encryption and then forwarding

partial pieces on disjoint path would work and require

encryption timings equivalent to a RSA scheme.

Table 1. Key sizes in bits for equivalent levels

Symmetric ECC DH/DSA/ RSA

80 163 1024

128 283 3072

192 409 7680

256 571 15,360

Table 2. Sample ECC exponentiation over

GF(p)and RSA encrypt/Decrypt timings in

mSecs

Processor MHz

163-

ECC

192-

ECC

1024-

RSAe

1024-

RSAd

2048

RSAe

2048

RSAd

Ultra

SPARCII

400MHz 450 6.1 8.7 1.7 32.1 6.1 205.5

StrongARM

200MHz 200 22.9 37.7 10.8 188.7 39.1 1273.8

ECC: rG operation, RSAe: RSA Public key operation, RSAd: RSA

Private key operation

Table 3: ECC secret sharing timings in

milliseconds over prime fields

ECC share split before encryption share split after encryption

163-

bit

Sun

192-

bit

Sun

163-

bit

ARM

192-

bit

ARM

163-

bit

Sun

192-

bit

Sun

163-

bit

ARM

192-

bit

ARM

EG 18.3n 26.1n 68.7n 113.1n 18.3 26.1 68.7 113.1

MO 24.4n 34.8n 91.6n 150.8n 24.4 34.8 91.6 150.8

DH 6.1 8.7 22.9 37.7 6.1 8.7 22.9 37.7

MV 12.2 17.4 45.8 75.4 12.2 17.4 45.8 75.4

KMOV 12.2n 17.4n 45.8n 75.4n 12.2 17.4 45.8 75.4

Ertaul 18.3 26.1 68.7 113.1 18.3 26.1 68.7 113.1

Demytko 18.3n 26.1n 68.7n 113.1n 12.2 17.4 45.8 75.4

Sun: Ultra Sparc II 450 MHz ARM: Strong ARM 200 MHz

Due to exponential computations, RSA scheme

require lots of computational capacity, bandwidth,

power, and storage. ECC-TC could be a better option

in MANET. From Table 1 and 2 [4], ECC provides

equivalent security as RSA, but with reduced key sizes

and at faster speed. With smaller keys, ECC requires

less memory and bandwidth and gives better efficiency

than RSA [13]. Research has been done to prove that

ECC scheme is suitable for applications on mobile

devices [14]. Apart from above reasons, ECC works in

prime field p, so we assume that compared to RSA-TC,

ECC-TC would be easy to implement using Shamir’s t-

out-of-n scheme. Further, success rate could be 100%.

Many variants of ECC based algorithms exist such

as ECC El Gamal [15], EC Diffie-Hellman [16] (EC-

0-7803-9305-8/05/$20.00 © 2005 IEEE.

DH), Massey-Omura (MO), Menezes-Vanstone (MV),

Koyama-Maurer-Okamoto-Vanstone (KMOV), Ertaul,

and Demytko [17]. These variants can be modified to

implement ECC-TC in MANET. From table 3 [17],

DH, MV and Ertaul have been identified as best

possible ECC-TC algorithms suitable for MANETs.

These algorithms are efficient in both share split before

and after encryption.

Moving forward, our goal is to implement ECC

based DH, MV, Ertaul, and El Gamal for share as well

as message splitting before and after encryption in

simulated MANET environment and to compare its

performance with RSA-TC.

5. Conclusions

In the RSA-TC implementation, we have proved

that knowledge of ф(N) is must for sharing keys. It is

clearly demonstrated here, that irrespective of key size

and for known ф(N) at the sender, the success rate

increases as t is increased from n/2 to n. Further, 100%

success rate can be achieved with n-out-of-n RSA-TC

scheme. As in regular RSA, RSA-TC implementation

confirmed that the signature generation and signature

verification time increases exponentially when key

sizes are doubled. In this paper, it is established that the

combining and verifying time is less than t times partial

signature generation time. Rather than sharing keys, we

have suggested an alternative of splitting the message

at the sender to achieve 100% success rate without

knowledge of ф(N). Thus, our work proves that RSA-

TC using key sharing is unsuitable in resource-

constrained MANETs due to high storage,

computation, and bandwidth requirements. Finally,

considering the growth of ad hoc networks in coming

years, it is crucial to seriously consider the security of

these networks. At this point, though RSA-TC is

unsuitable for MANETs but ECC-TC appears (DH,

MV, Ertaul, and El Gamal) to be an option to apply

threshold cryptography in these networks. Further

exploration of ECC-TC algorithms is required to prove

that TC could be implemented to take a step closer in

achieving enhanced ad hoc network security.

6. References

[1] A. Mishra and K. M. Nadkarni, “Security in wireless ad

hoc networks – A Survey”, in The Handbook of Ad Hoc

Wireless Networks, M. Ilyas, Ed. Boca Raton: CRC Press,

2002, pp. 30.1-30.51.

[2] P. Papadimitratos and Z. Hass, “Securing Mobile Ad Hoc

Networks”, in The Handbook of Ad Hoc Wireless Networks,

M. Ilyas, Ed. Boca Raton: CRC Press, 2002, pp. 31.1-31.17.

[3] H. Yang, H. Luo, F. Ye, S. Lu, and U. Zhang, “Security

in Mobile Ad Hoc Networks: Challenges and Solutions”,

IEEE Wireless Communications, vol. 11, no. 1, Feb. 2004,

pp. 38-47.

[4] K. Lauter, “The advantages of Elliptic Curve

Cryptography For Wireless Security”, IEEE Wireless

Communications, vol. 11, no. 1, Feb. 2004, pp. 62-67.

[5] W. A. Arbaugh, “Wireless Security is Different”, IEEE

Computer, vol. 36, no. 8, Aug. 2003, pp. 99-101.

[6] Y. Desmedt and Y. Frankel, “Threshold cryptosystems”,

in Advances in Cryptology - Crypto '89, Proceedings,

Lecture Notes in Computer Science 435, G. Brassard, Ed.,

Santa Barbara: Springer-Verlag,1990, pp. 307-315.

[7] Y. Desmedt, “Some Recent Research Aspects of

Threshold Cryptography”, in Information Security,

Proceedings (Lecture Notes in Computer Science 1396), E.

Okamoto, G. Davida, and M. Mambo, Eds., Tatsunokuchi:

Springer-Verlag, 1997, pp. 158-173.

[8] Y. Desmedt and S. Jajodia, (1997, July). “Redistributing

secret shares to new access structures and its applications”.

Available:

www.isse.gmu.edu/techrep/1997/97_01_jajodia.pdf

[9] L. Zhou, “Towards Fault-tolerant and Secure On-line

Services”. Ph.D. dissertation, Dept. of Computer Science,

Cornell Univ., Ithaca, NY, 2001. Available:

http://citeseer.ist.psu.edu/zhou01towards.html

[10] A. Lysyanskaya, (1999), “Efficient Threshold and

Proactive Cryptography Secure against the Adaptive

Adversary”. Available:

http://citeseer.ist.psu.edu/lysyanskaya99efficient.html

[11] W. Stallings, Cryptography and Network Security:

Principles and Practice. Delhi: Pearson Education

(Singapore), 2002, ch.7.

[12] M. Narasimha, G. Tsudik, and J. Yi, “On the Utility of

Distributed Cryptography in P2P and MANETs: the Case of

Membership Control.” [Online]. Available:

http://citeseer.ist.psu.edu/688081.html

[13] G. V. S. Raju, “Wireless Network Security.” Available:

http://cias.utsa.edu/Presentations/TIPS04-Raju.ppt

[14] W. Chou, “Elliptic Curve Cryptography and Its

Applications to Mobile Devices.” Available:

http://www.cs.umd.edu/Honors/reports/ECCpaper.pdf

[15] T. Elgamal, “A Public Key Cryptosystem and a

Signature Scheme Based on Discrete Logarithms,” IEEE

Transactions on Information Theory, vol. 31(4), July 1985,

pp. 469-472.

[16] N. Koblitz, “Elliptic Curve Cryptosystems,”

Mathematics of Computation, vol. 48(177), pp. 203-209,

1987.

[17] L. Ertaul and W. Lu, “ECC Based Threshold

Cryptography for Secure Data Forwarding and Secure Key

Exchange in MANET (I),” Networking 2005, LCNS 3462,

University of Waterloo, Canada, May 2005, pp. 102-113.

0-7803-9305-8/05/$20.00 © 2005 IEEE.

	Go To
	Main Menu
	Previous View

