
Implementation of Boneh Protocol 3 in

Location Based Services (LBS) to Provide Proximity Services

L. Ertaul, N. Shaikh, S. Kotipalli

Mathematics and Computer Science, California State University East Bay, Hayward, USA

Abstract – In recent years, smartphones have taken over as the

pocket technology of choice. More than a half of smartphone

owners use a location based information service of some kind.

And a core component of Location Based Services (LBS) is

proximity testing of users. These services determine if two

mobile users are close to each other without requiring them to

disclose their exact locations. In this paper, we present Boneh

Protocol 3 which supports private proximity testing by using

location tags. We study the use of “location tags” generated

from the physical environment in order to strengthen the

security of proximity testing in Boneh Protocol 3. In this paper,

we attempt to provide a realistic assessment of proximity testing

for location-based services by implementing Boneh Protocol 3.

We used Android platform for an implementation of Boneh

protocol 3.

Keywords- Location Based Services; Smart Phones;

Proximity Testing; Location Tags; Boneh Protocol 3.

1. INTRODUCTION

 Mobile phones and the Internet have revolutionized the

communication and lifestyle of people. Due to the growing

number of smartphone users, location-based services are

growing in popularity. An increasing number of mobile

phones allow people to access the Internet where ever they

are and whenever they want. From the Internet they can

obtain information on places (city maps, restaurants,

museums, hospitals). Such kind of restaurant search with

respect to position and time can be done by use of LBS [1].

Thus, one can define Location Based Services as-

“Location Based Services are information services

accessible with mobile devices through the mobile network

and utilizing the ability to make use of the location of the

mobile device” [2]

“A Location Based Services is a wireless IP (Internet

Protocol) service that uses geographic information to serve

a mobile user” [3]

 There exist a number of LBS providing location sharing.

This includes Google Latitude, Facebook places, Foursquare,

Loopt, and a large number of smartphone applications [4],

[5]. In recent years there has been considerable research on

privacy in LBS. The fundamental problem seem to be that

few people would like even their closest friends to know

their location all the time, yet will allow distant

acquaintances to know their location some of the time [5],

[11]. These definitions describe Location Based Services

(LBS) as an intersection of three technologies (see figure 1),

such as the mobile telecommunication system and hand held

devices, from Internet and from Geographic Information

Systems (GIS) with spatial databases [13].

Fig.1. LBS as an intersection of technologies

 The paper is organized as follows. The Security and

Privacy Concerns in LBS are reviewed in Section 2 followed

by Proximity Services and Private Set Intersection in Section

3 and 4. The Location Tags and Private Proximity Testing

are discussed in section 5 and 6 and then protocol 1 and 2

are presented in section 7, 8. In section 9, the description of

Boneh Protocol 3 is reported. To end with section 10 and 11,

Implementation of Boneh Protocol 3 and its experimental

results are presented respectively.

2. SECURITY AND PRIVACY ISSUES IN LBS

 According to much of the research in location-based

computing, privacy is an essential issue and the subject is

often addressed in terms of how sensitive information is kept

secured in the application [7]. A major privacy concern with

the use of Location Based Services is the release to untrusted

third parties of the user precise location information. This

concern applies to proximity services as well [1]. One of the

biggest concerns is that it can be possible to compile a very

detailed picture of someone’s movements if they are carrying

a wireless device that communicates its location to network

operators [6]. LBS providers must alleviate consumer

privacy fears by implementing secure network and

encryption technologies to curb illegal activity [6], [16].

2.1 Privacy Requirements

 In general, privacy-preserving systems for LBS services

are expected to satisfy some or all of the basic properties

below [18].

 Location Privacy: The protocol does not reveal the

(exact) user's location information to the LBS provider.

 Identity Privacy (Untraceability): The LBS provider is

not able to find the identity of the user, based on the location

information received during the user access [15], [18].

 Tracking Protection (Unlinkability): The LBS provider

is not able to link two or more successive user positions [15],

[18], [19].

2.2 Security Requirements

 Access control in LBS involves satisfying some or all of

the following security properties [20].

 Mutual Authentication: In order to protect themselves

from spoofing attacks communication messages between

system entities should be authenticated and integrity-

protected [18], [20].

3. PROXIMITY SERVICES

 Proximity based services are a special class of Location

Based Services in which the service adaptation depends on

the comparison between a given threshold value and the

distance between two users [4]. These services inform users

when they are within a certain distance of other people,

businesses, or other things [10], [15]. Proximity testing is

asymmetric which means one party will learn if the other

party is nearby whereas the other party learns nothing [15].

In our paper we show that it is indeed possible to provide

location functionality in a private manner. What this means

is that a pair of friends will be automatically notified when

they are nearby, but otherwise no information about their

locations will be revealed to anyone.

Let us consider a application of proximity testing, keeping in

mind that different applications require different proximity

granularity [1].

 Alice and Bob are friends, and are serendipitously

notified that they are shopping in the same mall. They

meet and have a pleasant time together. Alternatively,

Alice and Bob first meet online, but later decide to meet

in person at a coffee shop. Alice arrives first and is

notified when Bob arrives [1].

 Alice would like to get dinner with her friend Bob who

travels a lot. Using privacy-preserving proximity testing,

Alice can check if Bob is town before calling him. Note

that for this application the proximity granularity is a

wide geographic area [1].

 Bob, a student lands at his college airport and wants to

check if anyone from his college is currently at the

airport and can give him a ride to campus [1].

 Alice is a manager who wants to automatically record

who is present at her daily meetings. However, her

employees do not want their location tracked. Privacy

preserving proximity testing over this well organized

group allows satisfying both requirements [1].

3.1 Proximity Threshold

 The distance threshold for proximity detection should not

be globally fixed but instead configurable by each user. This

is because a larger threshold is neither strictly worse nor

strictly better than a smaller one, either from the security or

the functionality perspective. With a larger threshold, the

user is easier to locate but in case of a match their location is

revealed less accurately [1].

4. PRIVATE SET INTERSECTION

 Boneh protocol 3 is based on location tags and these are

generated by 2 parties who wish to do the proximity test.

Broadly speaking if these location tags have few in common,

then we conclude that the parties are nearby and it there is no

match, we understand that they live far away. In order to

find the matching set of intersection, there are various

methods proposed. In Boneh protocol, we use private set

intersection proposed by Freedman, Nissim and Pinkaas

[10].

5. LOCATION TAGS

 A location tag is a secret associated with a point in space

and time. It is a collection of location features derived from

(mostly electromagnetic) signals present in the physical

environment. Location tagging is a procedure to extract the

tag from a point in space-time, together with a comparison or

matching function [1], [17].

5.1 Properties of Location Tags

 When compare the location tags, we need to compare

two vectors that match approximately, fuzzy set intersection.

Location tag is equal to vector and matching function i.e.

space-time [15]. The two key properties are:

 Unpredictability-Cannot produce matching tag unless

nearby

 Reproducibility-Two devices at same place & time

produce matching tags (not necessarily identical) [17].

 Location tags provide a different model for proximity

testing. The main advantage is that since the location tags of

the two parties need to match, spoofing the location is no

longer possible, which stops online brute force attacks [1].

The main disadvantage is that users no longer have control

over the granularity of proximity: the notion of neighborhood

is now entirely dependent on the type of location tag

considered [1], [17], [12].

6. PRIVATE PROXIMITY TESTING

 In this section we analyse different ways to compute the
proximity of Alice and Bob in terms of performance and
accuracy. The obvious solution would be to calculate the
distance between their positions and decide if the distance
is lower than some threshold.

6. 1 Asymmetry

 Proximity testing is asymmetric: one party will learn if

the other party is nearby whereas the other party learns

nothing [1].

 The position of Alice along with a given range defines a

circle, and the problem is to test if Bob is inside or outside

the circle. Another solution is to approximate the area of the

circle with cells of a grid. A position is then mapped to a

cell, having a unique identifier, in the grid. Using this

approach, proximity testing can be reduced to set inclusion

as noted by others [5]. The way we detect when two friends

are nearby is by dividing the plane [1], [13] into a system of

3 overlapping hexagonal grids. Cryptographic protocols for

“Private Equality Testing” allow a pair of users to compare if

they are within the same grid cell, but otherwise reveal

nothing [1]. See figure 2

Fig.2. Three overlapping hexagonal grids. A blue grid cell is

highlighted

7. PROTOCOL 1 SYNCHRONOUS PRIVATE

EQUALITY TESTING

 In this protocol the server is used only to forward

messages between the two parties, and does not perform any

computation. It is based on a mechanism of Lipmaa [27].

The protocol has the following characteristics:

 It is synchronous, i.e., both parties need to be online.

 Each party performs either 2 or 3 exponentiations.

 There are two rounds, namely Alice sends a message to

Bob (through the server) and Bob responds to Alice

 Communication is about 40 bytes per edge per time

interval using elliptic curves of size 160 bits (additional

end-to-end encryption introduces a negligible

overhead).

It is secure against arbitrary collusion assuming the hardness

of the standard Decision Diffie-Hellman problem [1].

8. PROTOCOL 2 FAST ASYNCHRONOUS PRIVATE

EQUALITY TEST WITH AN OBLIVIOUS SERVER

 Our second private equality test is novel and requires far

less communication and computation, but is only secure

assuming the server does not collude with either party. The

server learns nothing at the end of the protocol. The reason

for the performance improvements is that this protocol uses

three parties (Alice, Bob, and server) and is therefore able to

rely on information theoretic methods such as secret sharing

[1].

9. BONEH PROTOCOL 3

 Boneh and team from Standford have proposed 2

versions of this protocol. Now let’s look at the 1
st
 version of

the protocol. In this protocol, let’s suppose Alice wants to

know if Bob is near or not. So the protocol would work as

follows :

 Alice generates a polynomial p from her set of location

tags.

 Alice then sends the encrypted polynomial coefficients

E(p) to Bob.

 Bob the calculates his own polynomial p(b) which his

location tags and then encrypts it as E(p(b)).

 Then Bob picks random r on E(p) and computes

E(r(p(b)) using polymorphic encryption.

 Then Bob sends Alice the permutation of encryptions

computed in earlier step.

 Alice then decrypts it and outputs the nonzero

decryptions as intersection of A and B.

 This protocol has two disadvantages. First, it requires

|A|.|B| modular exponentiations (E(p(b)) can be evaluated

using Horner’s rule [22] using O(|A|) modular

exponentiations, and there are |B| such encryptions to

compute). Second, it is only secure against semi-honest

players. There is a version that handles malicious players,

but it is significantly less efficient. More recent protocols can

be more efficient [10], [22], [24], [25].

 More importantly, revealing the size of the intersection

can lead to security problems. For example, in our above

example, Alice would come to know the intersection set (no

of matching location tags) and she could resort to dictionary

attack in case the threshold is very small. So to avoid the

weaknesses pointed out in the version 1, the private

threshold set intersection rule has been relaxed and version 2

has been developed on this basis. In version 2 protocol,

neither of the parties will come to know about the

intersection set. Instead one of the party that is seeking to

know the proximity of its friend will come to know if set

intersection has exceeded the threshold or not, but nothing

other than that [5]. So this protocol will ensure the privacy

between both the parties. The threshold value(t) and the

number of location tags that needs to be generated (n) both

are universal constants and if we could allow these values to

change, there might be possibility of security issues (Brute-

force attack) as mentioned in version 1 protocol. Now let’s

look at the protocol version 2 in detail [1].

 Alice generates its location tags using any of the

generation techniques.

 Alice then uses one of the encoding techniques known, to

convert her location tags into ‘n’ set of vertices say P

{(p1, x1)(p2, x2)…… (pn, xn)}, where pi belongs F and

xi belongs to F.

 Similarly Bob also generates his location tags using one

of the generation techniques.

 He also encodes his location tags into a set Q{(q1, y1),

(q2, y2)…. (qn, yn)}.

 Alice constructs a polynomial p of degree n-1 defined by

the points P using Lagrange’s interpolation technique

[26].

 Alice picks a random set of points R on polynomial, p

such that R ∩ P = {} and |R| = 2(n-t), where n is the

number of location tags and t is the threshold.

 Alice sends R points to Bob.

 Bob then tries to find a polynomial p’ such that its degree

is 2n-t of points (Q U R) that Bob has.

 If bob is able to find a polynomial through LaGrange

interpolation. He outputs 1, which means Alice is nearby

him.

 Otherwise he outputs 0 which means Alice is far away

from Bob.

 This protocol version is asymmetric because here only

Bob learns about the Alice’s proximity while Alice remains

uninformed. If Alice also wants to test Bob’s proximity, the

protocol needs to be run from the other end. This above

protocol produces accurate results of proximity and this can

proved by the help of Berlekamp Massey algorithm as

follows:

Suppose there are k pairs (xi, yi) over a field F and a degree

parameter d, then if there exists a polynomial p that passes

through at least (k+d)/2 of the points, BM outputs p

otherwise BM outputs p. The proof of correctness now

continues.

 Case 1. When Alice and Bob are nearby, there are at

least t + 2(n - t) = 2n - t points on the polynomial.

Substituting k = n + 2(n - t) = 3n - 2t and d = n, so will

be able to find a polynomial

 Case 2. When Alice and Bob are far apart, this implies

|A ∩ B| < t. This means that there are fewer than 2n - t

points on the polynomial p, and by BM theorem, Bob

will fail to find an appropriate polynomial.

10. IMPLEMENATION

 This protocol can be better understood by looking at the

following numerical example.

 Let’s assume Alice has values {91, 62,133}. She encodes

them into set of points P = {(9,1), (6,2),(13,3)} where

every entry is less than modulus 19.

 Alice then constructs a polynomial passing through the

points of P by Lagrange interpolation, which is f(x) =

5*x^2+x+3 and picks 2(n-t) = 2(3-2) = 2 points and

forms R.

 Let {4,5} be these points, then R = {(f(4),4), (f(5),5)} =

{(11,4),(0, 5)}

 Bob gets R from Alice and let Bob’s values be {62, 14,

27}, he then forms his Q using same encoding technique

of Alice (lesser than modulus 19) into Q =

{(6,2),(1,4),(2,7)}.

 Using Berlekamp-Massey algorithm [23] Bob supposed

to find a 4
th

 degree (2(3)-2). And since (Q U R) ∩ P is

{(6,2)}, Bob is ouput 1 meaning Alice is nearby.

We have implemented this protocol in Android platform as

follows. We use separate emulators () for Alice and Bob and

to run the application as show below. Android 2.2 (API level

8) for Alice (5556) and Bob (5554), and to run the

application as show below. See Figure 3and 4.

Fig.3. Start message from Bob

Fig.4. Message from Alice

SMSManager class of android package was used for sending

and receiving messages between Alice and Bob emulators.

 Bob sends start message to Alice

 Alice sends R to Bob

 Alice sends R to Bob

We implemented a separate class for receiving SMS from

other emulators as follows.

 To get the last message received from the inbox

Once the message is received from Bob, Alice starts

calculating the location tags. Since location tags are difficult

to be calculated with the present hardware available, we used

Random class of java for generating random numbers as

follows.

 For creating random P (Alice)

SmsManager sms = SmsManager.getDefault();

sms.sendTextMessage(phoneNumber,null, message, pi,

null);

SMS[0].getMessageBody()

Random rand = new Random();

for (int i = 0; i < N; i++)

{

 randP[i] = rand.nextInt(29 -11) + 11;

}

SmsManager sms1 = SmsManager.getDefault()

sms1.sendTextMessage("5554", null, message, null,

null);

Object messages[] = (Object[]) bundle.get("pdus");

 SmsMessage SMS[] = new sms

Message[messages.length];

 for (int n = 0; n < messages.length; n++) {

 SMS[n] = Sms Message .createFromPdu((byte[])

messages[n])

}

 Here (29-11) is the range of the random numbers that

 can be created

Then these location tags are encoded into vertices as follows.

Then using LaGrange interpolation [26] of the matrices

(constant and coordinate) are computed by substituting in a

(n-1) degree polynomial as follows:

Then coefficient matrix is calculated through computing

matrix mathematics like determinant, transpose, inverse,

multiplication of matrices. These were implemented using

different java classes Matrix.java and

MatrixMathematics.java respectively.

 Finding determinant of matrix

 Calculating transpose of matrix

 Calculating transpose of matrix

 Matrix inverse

On running the application, the protocol gets triggered on

Alice receiving a start message from Bob as show below. See

Figure 5.

Fig. 5. Alice received a start message from Bob

Alice then proceeds with the protocol and finally sends R in

a text message to Bob as follows. See Figure 6

Fig.6. Alice then sends R in a text message to Bob

Bob in the meanwhile does the same processing to find Q

and on receiving R from Alice will then try to find a

polynomial that passes through 2n-t points. If he is

successful, he outputs the following. However, if he is not

for(int i = 0; i < N; i++) {

data[i][0] = (int) randP[i] / 10;

 data[i][1] = (int) randP[i] % 10;

 }

for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {

 actualdata[i][j] = 1.0;

 for (int k = 0; k < j; k++) {

 actualdata[i][j] *= data[i][0]; } }

 constdata[i][0] = data[i][1];

 }

public static double determinant(Matrix matrix) throws

NoSquareException {

 if (!matrix.isSquare()) throw new

NoSquareException("matrix need to be square.");

 if (matrix.size()==2)

{ return (matrix.getValueAt(0, 0) * matrix.getValueAt(1,

1)) - (matrix.getValueAt(0, 1) * matrix.getValueAt(1,

0));

}

double sum = 0.0;

for (int i=0; i<matrix.getNcols(); i++) {

 sum += changeSign(i) * matrix.getValueAt(0, i) *

determinant(createSubMatrix(matrix, 0, i)); }

return sum;

}

public static Matrix transpose(Matrix matrix)

{

 Matrix transposedMatrix = new

Matrix(matrix.getNcols(), matrix.getNrows());

 for (int i=0;i<matrix.getNrows();i++) {

 for (int j=0;j<matrix.getNcols();j++) {

 transposedMatrix.setValueAt(j, i,

matrix.getValueAt(i, j));

 } }

 return transposedMatrix;

}

public static Matrix inverse(Matrix matrix) throws

NoSquareException {

return (transpose(cofactor(matrix)).

multiplyByConstant(1.0/determinant(matrix)));

}

able to generate a polynomial, he outputs the following. See

Figure 7,8.

Fig.7. Bob is receiving R from Alice

Fig.8. Proximity successful, Alice is near to Bob

11. RESULTS

 When the protocol was run on Android platform with 2

emulators 1 each of Alice and Bob, it took 1.232 sec on an

average for Bob to get the proximity of Alice. The

performance of this protocol on android platform is good.

The most time consuming parts of the protocol are the matrix

operations like inverse & multiplication. This might take a

longer time if the values of n & t are large. And this can be

improved by implementing Strassen’s algorithm for matrix

multiplication which of order O(N ^ 2.8) or Coppersmith-

Winograd algorithm of order O(N^2.3), when compared to

the standard algorithm O(N^3). The performance of this

protocol with multiple Bobs (Senders testing the proximity

test of Alice simultaneously) can is represented graphically

as follows.

0

500

1000

1500

2000

2500

3000

3500

1 5 10 50 100200

Buddies Vs Time (Sec)

Buddies Vs
Time (Sec)

Fig.9. The performance of the protocol with multiples of Bobs

 As the performance of this protocol is good in Android

Platform but the main limitation is the ability of phone

hardware to extract location tags. Currently the main viable

method is using WiFi traffic; we showed experimentally that

robust tags can be extracted within a few seconds.

 On increasing the size of the location tags, the

performance of this protocol is as depicted below:

Fig.10. Performance of the protocol with increase in location tags

CONCLUSION

 Location privacy is an important and growing concern in

the real world today. In this paper we presented Boneh

Protocol 3, a privacy preserving protocol for proximity

service. We proved its correctness with respect to privacy

preferences and we showed the results of an extensive

experimental evaluation. Proximity is a checking for

inclusion of one user’s location inside another user’s

vicinity, offering users control over both location privacy

and accuracy of proximity detection. We have implemented

an actively secure protocol for proximity testing. Through

the scenario that we targeted on Android Platform, from the

results we have shown that it is feasible to execute the

protocol on contemporary mobile devices through the

android emulator. The protocol discussed in this paper

doesn’t use any cryptographic algorithmes. It merely uses

encoding techniques to convert the location tags into

Buddies

Time (Sec)

vertices. So it remains a question unless it comes in to

practical use.

REFERENCES

 [1] A.Narayanan, N. Thiagarajan, M. Lakhani, M.

Hamburg, and D. Boneh. Location privacy via private

proximity testing. Network and Distributed System

Security Symposium, NDSS, 2011.

 [2] Virrantaus, K., Markkula, J., Garmash, A., Terziyan,

Y.V., 2001. Developing GIS-Supported Location-

Based Services. In: Proc. of WGIS’2001 – First

International Workshop on Web Geographical

Information Systems., Kyoto, Japan. 423–432, 2001.

 [3] Open Geospatial Consortium (OGC), Open

LocationServices.www.nttdocomo.com/corebiz/networ

k/index.html Internet information on mobile networks,

2005.

 [4] S.Mascetti, Claudio Bettini, Dario Freni, X. Sean

Wang, X. Sean Wang, Sushil Jajodia. Privacy-Aware

Proximity Based Services. Tenth International

Conference on Mobile Data Management: Systems,

Services and Middleware, 2009.

 [5] J.Dam Nielsen, Jakob Illeborg Pagter, and Michael

Bladt Stausholm. Location Privacy via Actively Secure

Private Proximity Testing. Fourth International

Workshop on SECurity and SOCial Networking,

Lugano, 19 March 2012

[6] C. Steinfield. The Development of Location Based

Services in Mobile Commerce. Technology

Management for Reshaping the World. Portland

International Conference, 2004.

[7] L. Barkuus, and Anind Dey. Location-Based Services

for Mobile Telephony: a Study of Users’ Privacy

Concerns. 9TH IFIP TC13 International Conference

on Human-Computer Interaction, 2003.

[8] FTC report recommends privacy practices for mobile

platforms, developers, advertisers. http://www.techjour

nal.org/2013/02/ftc-report recommends privacy-practic

es-for-mobile-platfor ms developers-advertisers/, Feb

4th, 2013.

[9] S. Steiniger, Moritz Neun and Alistair Edwardes.

Foundations of Location Based Services, 2006.

[10] M. Freedman, K. Nissim, and B. Pinkas. Efficient

private matching and set intersection. In Proc. of

Eurocrypt’ 04, pages 1–19. Springer-Verlag, 2004.

[11] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and

D.Starin. Persona: an online social network with user

defined privacy. SIGCOMM Computer.

Communication. Rev.,39(4):135–146, 2009.

[12] Brimicombe, A.J. (2009) GIS, Environmental

Modeling and Engineering (2nd Edition) . CRC

Press, Boca Raton, FL, USA. Proceedings GIS,

Bahrain. 33-45, 2009

[13] Shiode, N., Li, C., Batty, M., Longley, P., Maguire,

The impact and penetration of Location Based

Services. In: Karimi, H. A., Hammad, A., ed.

Telegeoinformatics. CRC Press, 349-366, 2004

[14] Sabine Ehlers. Mobile Proximity Services a VAS

Research Series, research report from Berg Insight,

publication date, January 2008.

[15] Mike Hamburg, Joint work with Arvind Narayanan,

Narendran Thiagarajan, Mugdha Lakhani, Dan Boneh

Location Services with Built--In Privacy, 2011

[16] Pravin Shankar, Yun-Wu Huang, Paul Castro, Badri

Nath, Liviu Iftode. Crowds replace Experts: Building

Better Location-based Services using Mobile Social

Network Interactions, 2012

[17] D. Qiu, D. Boneh, S. Lo, and P. Enge. Robust location

tag generation from noisy location data for security

applications. In The Institute of Navigation

International Technical Meeting, 2009

[18] Emmanouil Magkos (Ionian University, Greece).

Cryptographic Approaches for Privacy Preservation in

Location-Based Services, 2011.

[19] Blog of Arvind Narayanan,http://33bits.org/2011/02/

14/cryptographic-approach-location-privacy proximity

-testing/

[20] Saroiu, S., & Wolman, A. (2009). Enabling new

mobile applications with location proofs. In 10
th

Workshop on Mobile Computing Systems and

Applications ACM, 2009

[21] Boneh, D., & Franklin, M. (2001). Identity-based

encryption from the Weil pairing. In Advances in

Cryptology - CRYPTO 2001 (pp. 213–229). Springer

[22] A. Juels and M. Sudan . A fuzzy vault scheme.

Designs Codes and Crytpography, 237-257, 2006.

[23] C. Hazay and K. Nissim. Effiecient set operations in

presence f malicious adversaries. In Proc. of public

key crypto (PKC) , volume 6056 of LNCS, pages 312-

331, 2010

[24] S. Jarecki and X. Liu. Efficient oblivious

pseudorandom function with applications to adaptive

to and secure computation of set intersection.

[25] C. Hazay and Y. Lindell. Effiecient protocols for set

intersection and pattern matching with security against

malicious and covert adversaries.

[26] Jeffrey Hightower and Gaetano Borriella. A survey

and taxonomy of location systems for ubiquitous

computing. IEEE Computer, 34(8):57–66, August

2001.

[27] H. Lipmaa. Verifiable homomorphic oblivious transfer

and private equality test. In Proc. of Asiacrypt,, 2003.

http://www.crcpress.com/
http://www.crcpress.com/

