
A Comparison of HMAC-based and AES-based FFX
mode of Operation for Format-Preserving Encryption

Abstract — As usage and importance of smart phones and

tablets grow, apps have come to dominate digital media. With
limited computation capacity of mobile devices, performance
plays a vital role in providing good user experience to the apps.
This in conjunction with the recent security breaches leading to
millions of stolen credit cards, makes it essential to ensure
confidentiality while maintaining high performance. This paper
presents performance comparison of AES (CBC) and HMAC
(SHA-1) based PRFs for FFX mode of Format Preserving
Encryption for a mobile app that functions as a credit card
wallet.

I. INTRODUCTION
Recent security breaches into various US retailers like

Target [1], Home Depot and 7-11[2] not only indicate financial
losses but also highlight the vulnerability of financial-
information systems.

According to The Nilson Report 2013,[3] Credit Card
Frauds around the world have grown from $2.5 billion to $7.5
billion in the last decade (as we can see in figure 1.1). While
the growing trend continues this decade too, it has sharpened.
Between 2010 and 2012 alone, there was a growth of $3.5
billion. It is only expected to grow in the coming years. This
makes secure storage of Credit Cards or all cards for that
matter even more important.

Figure 1.1 Global Card Fraud.[3]

Credit cards are stored in encrypted form. The encryption
technique used i.e. Format-Preserving Encryption (FPE) [14] is
slightly different than the regular encryption techniques. FPE
encrypts plaintext of a particular length and format into
ciphertext of the exact same length and format. For instance,

encrypting a 16-digit Credit Card Number (CCN) using FPE
would give a 16-digit number. FPE is a rapidly emerging
cryptographic tool in applications like financial- information
security in legacy databases. It becomes vital for structured
data such as CCNs and Social Security numbers as the
databases expect them to be in the exact same format and of
exact same length for data-level encryption. As shown in figure
1.2, a regular encryption scheme like AES [15] would result in
ciphertext of characters and varied length, FPE would give us
ciphertext that would seem to look like a genuine CCN.

Figure 1.2 Format Preserving Encryption against Regular AES
[4].

This also serves as a means to disguise intruders as it
becomes difficult to distinguish between real CCNs and
encrypted CCNs.

Wherever money is involved, security must be high and
rightly so. Confidentiality is the most important thing while
dealing with credit cards. In encryption mechanisms, it is
generally true that increasing number of rounds increases
quantitative security. While storing Credit Cards, we would
ideally want as many numbers of rounds as possible, but,
increasing the number of rounds would make the encryption
process slower. Earlier, we said that performance is very
important from a user point of view. Thus, a right balance has
to be attained so that none is compromised.

Figure 1.3 shows that Mobile devices have out taken
Desktops in terms of numbers globally. Smart phones and
Tablets account for 60% of time spent on digital media in the
US. The same report also suggests that it is ‘usage of apps’ that
leads to this trend as 52% of this time is spent on apps alone.
This also marks the decline of web dominance.

Levent Ertaul, Jalaj Neelesh Shah, Sofiane Ammar
California State University, East Bay, Hayward, CA, USA

levent.ertaul@csueastbay.edu, jshah22@horizon.csueastbay.edu, sammar@horizon.csueastbay.edu

Figure 1.3 Number of Global Users of Digital Media.[5]

Smart phones and Tablets still do not match up with the
computation capacity of desktops. For users to hang on to apps,
good user experience is essential which can be provided if the
app is fast enough. There are various apps like ‘Google
Wallet’[16] for storing Credit Cards and making transactions.

A lot of resources are put into such apps and as momentum
shifts towards such e-payment systems, we reckon it is
essential to have a good balance between security and
performance. While there are no known weaknesses of FPE
[13] (if parameters chosen correctly), not much work has been
done to test performance of FPE. This paper compares various
round functions for FFX mode[6] of FPE and presents
quantitative results. These results would help in choosing the
right round function so that the overall algorithm is fast.

In the section II, we look at the basic algorithm in which
various parameters are given and the Encryption process is
explained. Section III gives specifications of the
implementation followed by the tests and results in section IV.
Finally we lay out the conclusion.

II. ALGORITHM

A. Mode of Operation
We chose the FFX mode for FPE given by Bellare,

Rogaway and Spies [6] as it is an extension to FFSEM [18] and
supports tweaks that prevent dictionary attacks. FFX is defined
as Format Preserving Feistel-based Encryption. The ‘X’ stands
for parameter profile, which in our case is A10.

B. Tweak
Tweak’s literal meaning is to alter or to modify. Tweak is

defined as a set of unrelated mappings by the authors of
FFX.[6] The idea behind tweaking is that while Issuer
Identification Number (IIN)[12] for different Credit Card
issuers ensures that the first few digits for each of them are
different, the remaining digits can still be identical. This could
lead to Dictionary attacks [17]. Thus, it is recommended to
tweak some of the middle digits with the remaining ones.

In our algorithm, we tweak the middle eight digits with the
starting four and the last four. We, however, do not use
unrelated mappings to tweak. We use arithmetic and logical

operations over the middle eight digits with the combination of
first and last four digits. In this way, we believe we are
bringing in more variation. For instance, for a Visa [22] card
starting with 4, the original paper would only have one
tweaked output per mapping, while with our tweak it could be
anything from 0 to 9 depending on the fifth digit.

Figure 2.1 Working of Tweak

As we can see in figure 2.1, the tweaked middle eight digits
are then combined together with the original first four and the
last four. This together goes through the FFX.Encrypt (shown
in figure 2.2).

C. Round Function
The Round Function that is basically a Pseudo Random

Function (PRF) can be constructed from a Block cipher or a
Hash Function. AES and HMAC [19] are recommended for
Block cipher and hash function respectively [6]. We use CBC
mode[20] for AES-based round function while SHA-1[21] for
HMAC-based round function.

D. Parameter Choices
We use Parameter collection A10 as our implementation is

based on 16 digit decimal numbers. Another set of parameters
known as Parameter collection A2 is to be used for binary
inputs.[6] Parameter Choices for A10 are given in Table I.

TABLE I. PARAMETER COLLECTION A10

Parameter Choice

Radix 10

Key 128, 192, 256-bit keys

Addition Blockwise

Method 1

Split 8

Rounds 12

E. FFX.Encrypt
The tweakedCCN, Tweak and the Key are then passed on

to the main encryption function (figure 2.2). The tweaked CCN
is split into two halves. The right half is hashed with SHA-1
based HMAC using a secret key. The hashed right half is then
added (blockwise) to the left half. This becomes the right half
for the next round while the right half of the last round
becomes the left half of the next. The process goes on for
twelve rounds until the two halves are finally merged.

Figure 2.2 One complete cycle of unbalanced Feistel-based
FFX.Encrypt

F. Cycle Walking
Cycle Walking is essential to FFX as it ensures that the

ciphertext from FFX is of the desired format. With respect to
our algorithm, this essentially means that if we assume that we
want to encrypt an American Express [23] card. We know that
the IIN for American Express is either ‘34’ or ‘37’. In order to
maintain its format, the ciphertext should also start with ‘34’ or
‘37’. FFX alone cannot guarantee this. It has to be used in
conjunction with Cycle Walking or Dense Encoding [6]. We
choose Cycle Walking. As soon as FFX.Encrypt terminates, it
is checked if the ciphertext falls within the set of
VALIDCCN(X) that specifies the validity predicate. (For
which American Express would be 34XXXX and 37XXXX).
If yes, the algorithm terminates, otherwise FFX.Encrypt is
called upon the result of the first cycle.

III. IMPLEMENTATION

A. Specification
The detailed Hardware and Software specifications are

given in Table II and Table III respectively.

TABLE II. HARDWARE SPECIFICATION

Type Specification

Type of System 64-bit Operating System

Processor Intel® i5 Quad-Core 2.5GHz
Memory 4GB RAM

TABLE III. SOFTWARE SPECIFICATION

Type Specification

Operating System Windows 8

IDE NetBeans 8.01[27], Android Studio[26]
Programming
language Java
Runtime
Environment JRE 6

Development Kit JDK 1.7.0.45
Database MySQL 6.1
Network Model TCP/IP Client/Server Model
Crypto Library Java.Security

B. Screenshots
We implemented a mobile wallet that can store encrypted

credit cards. The screenshots are taken on Android Studio.

On launching the app, it would ask for a four-digit access
pin (figure 3.1). It is done to avoid unauthorized access to the
wallet. This four-digit pin can be set up at the time of installing
the app.

Figure 3.1 Access Page

If the pin is verified, the user is logged in (figure 3.2). The
user can now see current credit cards that the wallet holds or
the user can add a new card.

Figure 3.2 Home Page

Let’s assume that the user taps on ‘ADDNEWCARD.’ The
next screen will take the card details in the manner shown in
figure 3.3.

Figure 3.3 Add Card Details Page

For user convenience and ease in remembering, the user
can nick name the newly entered card (figure 3.4).

Figure 3.4 Nick Name page

The user is now taken back to the Home page from where
current cards can be seen by tapping ‘SEEMYCARDS’ as
shown in figure 3.5.

Figure 3.5 Stored Card Display Page

IV. TESTS AND RESULTS
For testing purpose, simulation of a sample size of 1000 or

4000 on android based mobile phone was not possible due to
limited memory on mobile devices. The file containing log of
CCNs could not be processed. Thus, we used CPU clock to
time the performance of various combinations on the system
specified in the above tables. We timed FPE only so as to get a
precise measure of the performance of the algorithm itself by
removing anomalies due to lag in Client-Server model and
Database connections.

While we ran tests for big samples on Windows system
having much more computation capabilities, we also ran test
for very small sample sizes on Android Studio as well.
Simulation on mobile emulator, showed no notable deviation
from the performance seen on computer system. This could be
due to the fact that the mobile device configured on the
emulator did not have any other resources taken by the system.

A. Comparison of AES CBC v. HMAC (SHA-1)
The basic motivation of the paper was to find out that

among the two round function candidates i.e. CBC mode of
AES and HMAC, which one performs better. We used 256-bit
key on a sample of 4000 credit cards. HMAC SHA-1 shows
67% better performance than AES CBC (Figure 4.1)

Figure 4.1 AES CBC v. HMAC (SHA-1)

B. Comparison between different key sizes: 128-bit v. 192-bit
v. 256-bit
We can see in figure 4.2 that there is little difference in

performance of SHA-1 when different key sizes are used. It is
because of the change in number of cycles that each run took.
On the first look of it, it gives an idea that changing key size
affects the number of cycles. After several runs, we can
conclude that variation in key size does not affect performance
and that the number of cycles was completely random and
independent of key size.

Performance figures according to benchmarks[9] suggest
that as we increase key size for AES CBC, the performance
deteriorates. However, in our tests the results (figure 4.3) were
surprising. 192-bit key size showed dramatically good results.
The random number of cycles again played a role in this.

Figure 4.2 128-bit v. 192-bit v. 256-bit keys

Figure 4.3 128-bit v. 192-bit v. 256-bit keys

C. Comparison based on Credit Card Issuers: Visa v.
MasterCard[24] v. Discover[25] v. American Express
In order to look at the practical aspect of the

implementation, we ran tests on different samples each limited
to credit cards issued by a particular company. Typically one
would assume that, the greater the fixed number of digits for a
credit card, the higher the constraint on Cycle Walking, thus,
the algorithm would go through more number of cycles. As a
result, the number of fixed digits at the beginning of a CCN
that vary as the issuer varies, alters the time that the encryption
would take. We ran the tests through both round functions i.e.
AES CBC and HMAC SHA-1.

As we can see in figure 4.4 and 4.5, the results are no
different than expected. Visa shows the best performance as its
Issuer Identification Number (IIN) is 4.[13] Just one condition
has to be satisfied, thus, fewer cycles. With MasterCard the IIN
is 51-55. With American Express, the IIN is ‘34’ and ’37.’[10]
Thus, American Express takes more time and cycles as despite
the equal number of conditions on MasterCard and American
Express, the latter has a stricter choice between two digits only.
While the IIN for Discover is ‘6011’ [11], the four conditions
take a toll on the performance of the algorithm that it
practically crashed most times. Thus, we relaxed the Cycle
Waking constraint to ‘60’.

Figure 4.4 Visa v. MasterCard v. Discover v. American
Express

Figure 4.5 Visa v. MasterCard v. Discover v. American
Express

D. Comparison of SHA-1 v. SHA-256[21] v. SHA-512[21]
It is proven that it takes a complexity of less than 80 to find

collisions in SHA-1[7]. If Moore’s law [8] holds still until mid-
2020s, the computation power would be 2 times from what it is
now. Thus, there is ample evidence why we need to migrate
from SHA-1 to SHA-2 [21]. In alignment with this, we
extended our tests to SHA-256 and SHA-512. As we can see in
figure 4.6, SHA-512 performs better. According to the
performance benchmarks [9], one would expect SHA-1 to be
the fastest. However, SHA-1 based HMAC as a round function
takes more number of cycles. While the difference between the
number of cycles taken by SHA-256 and SHA-512 is not
much, SHA-512 is much faster [9]. Although SHA-256 is
slower (per round) than the rest, it takes lesser number of
rounds and thus shows better performance than SHA-1.

Figure 4.6 SHA-1 v. SHA-256 v. SHA-512

V. CONCLUSION
In this paper, we compared how different round functions

for FFX line up in terms of performance. We also tested for
different key sizes as migration from 128-bit keys to 256- bit
keys has already initiated.

We also show how using different credit card companies

affect performance. Discover cards took a toll on performance
as it took more cycles to give the ciphertext because of the
longer IIN. Visa took the least number of cycles and thus least
time.

While we use SHA-1 for HMAC-based round function, we
also extend our implementation for SHA-256 and SHA-512.

We come to the conclusion that HMAC is a good candidate
for FFX in terms of performance. It outruns AES by almost
67%. We recommend using SHA-512 for implementing
HMAC as it shows promising performance and has fewer
collisions as well.

We hope that more enhanced mobile wallets are launched in
the future and the results presented in this paper help the
designers.

VI. ACKNOWLEDGEMENT
We gratefully acknowledge the assistance and participation

of Jil Trivedi, Sowjanya Kosaraju: Math and Computer
Science, CSU East Bay. Jil and Sowjanya contributed towards
implementation and testing of AES (CBC) based design.

VII. REFERENCES
[1] Sara Germano, Robin Sidel, Danny Yadron. “Target Faces

Backlash After 20-Day Security Breach.” The Wall Street
Journal. 19 Dec 2013. Web. 19 Mar 2015.

[2] Dan Goodin. “TJX suspect indicted in Heartland, Hannaford
breaches.” The Register. 17 Aug 2009. Web. 18 March 2015.

[3] “Global Card Fraud.” 2013 Nilson Report. Aug 2013. 18 March
2015.

[4] “Preserving Critical Business Functions by Maintaining Data
Format” Voltage security.

[5] Adam Lella, Andrew Lipsman. “The U.S. Mobile App Report”
comScore. 21 Aug 2014. Web. 18 March 2015.

[6] Mihir Bellare, Phillip Rogaway, Terence Spies. “The FFX Mode
of Operation for Format-Preserving Encryption.” NIST
submission. 20 Feb 2010.

[7] Xiao Yun Wang, Yiqun Lisa Yin, Hongbo Yu. “Finding
Collisions in Full SHA-1.” NSFC Grant No. 90304009.

[8] Moore, Gordon E. "Cramming more components onto integrated
circuits" (PDF). Electronics Magazine. 1965.

[9] "Crypto++ 5.6.0 Benchmarks". 1 April 2009. Web. 18 March
2015

[10] "Card Security Features" (PDF). American Express. January
2001.

[11] "Discover Network - IIN Range Update, 8.2" (PDF). September
2008.

[12] “Identification cards -- Identification of issuers.” Part 1:
Numbering system. ISO/IEC 7812-1:2006.

[13] Phillip Rogaway. “A Synopsis of Format-Preserving
Encryption”. 27 March 2010. University of California, Davis,
CA, USA.

[14] John Black and Philip Rogaway, “Ciphers with Arbitrary
Domains”. Proceedings RSA-CT, 2002, pp. 114–130.

[15] Joan Daemen, Vincent Rijmen, "The Design of Rijndael: AES –
The Advanced Encryption Standard". Springer, 2002. ISBN 3-
540-42580-2.

[16] "Coming soon: make your phone your wallet". Official Google
Blog. May 26, 2011. Retrieved April 22, 2015.

[17] R. Shirey. “Internet Security Glossary”. May 2000. RFC 2828.
[18] Terence Spies. “Feistel Finite Set Encryption Mode”. NIST.
[19] H. Krawczyk, M. Bellare, R. Canetti. “HMAC: Keyed-Hashing

for Message Authentication”. February 1997. RFC 2104.
[20] NIST Computer Security Division's (CSD) Security Technology

Group (STG) (2013). "Block cipher modes". Retrieved April
22, 2015.

[21] NIST. “Secure Hash Standard (SHS)”. FIPS PUB 180-4.
[22] “Visa Inc.”. visa.com. Retrieved April 22, 2015.
[23] “American Express”. Americanexpress.com. Retrieved April 22,

2015.
[24] “MasterCard”. Mastercard.com. Retrieved April 22. 2015.
[25] “Discover Financial”. discover.com. Retrieved April 22, 2015.
[26] “Android Studio”. developer.android.com. Retrieved April 22,

2015.
[27] “Net Beans”. netbeans.org. Retrieved April 22, 2015.

	I. Introduction
	II. ALGORITHM
	A. Mode of Operation
	B. Tweak
	C. Round Function
	D. Parameter Choices
	E. FFX.Encrypt
	F. Cycle Walking

	III. implementation
	A. Specification
	B. Screenshots

	IV. tests and results
	A. Comparison of AES CBC v. HMAC (SHA-1)
	B. Comparison between different key sizes: 128-bit v. 192-bit v. 256-bit
	C. Comparison based on Credit Card Issuers: Visa v. MasterCard[24] v. Discover[25] v. American Express
	D. Comparison of SHA-1 v. SHA-256[21] v. SHA-512[21]

	V. conclusion
	VI. ACKNOWLEDGEMENT
	VII. References

