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Summary 
A Mobile Ad hoc Network (MANET) consists of multiple 
wireless mobile devices that form a network on the fly to allow 
communication with each other without any infrastructure. Due 
to its nature, providing security in this network is challenging. 
Threshold Cryptography (TC) provides a promise of securing 
this network. In this paper, our purpose is to find most suitable 
ECC algorithm compared to RSA. Through our implementation 
of Elliptic Curve Cryptography -based Threshold Cryptography 
(ECC-TC), we have explored three most-efficient ECC 
encryption algorithms and put forth possibility of using these 
ECC-TC algorithms in different scenarios in a MANET. We 
compare all ECC-TC results and suggest an algorithm that would 
be most suitable for MANET. Finally, we put forth a new secret 
sharing alternative that limit communication overheads for 
transmitting multiple secrets at the same time. 
Key words: 
Threshold Cryptography, Elliptic Curve Threshold 
Cryptography, Security in MANETs. 

1. Introduction 

Mobile ad hoc network (MANET) is vulnerable to various 
attacks including denial-of-service attack because of 
wireless nature of this network [1], [2], [3], [4]. Devices 
with constraint resources add to its vulnerability. To 
ensure availability of nodes, threshold cryptography can 
be implemented in the network so that even if some of the 
information is lost still the actual message reaches the 
intended receiver without compromising security in terms 
of confidentiality, integrity, and authenticity. 

Threshold cryptography (TC) involves the sharing of a 
key by multiple individuals engaged in encryption or 
decryption or splitting of message either before or after 
encryption. The TC avoids trusting and engaging just one 
individual node for doing the job. Hence, the primary 
objective is to share this authority in such a way that each 
individual node performs computation on the message 
without revealing any secret information about its partial 
key or the partial message. Another objective is to have 
distributed architecture in a hostile environment. A certain 
number of nodes called threshold, t are required to encrypt 
and/or decrypt a message. Thus, the TC enhances security 
till compromised nodes are less than t since it is difficult to 
decode partial messages if the number is less than the 

threshold [5], [6], [7], [8], [9], [20]. 
Threshold cryptography achieves the security needs 

such as confidentiality and integrity against malicious 
nodes. It also provides data integrity and availability in a 
hostile environment and can also employ verification of 
the correct data sharing. All this is achieved without 
revealing the secret key. Thus, taking into consideration 
these characteristics, implementing TC to secure messages 
seems a perfect solution in MANET. 

Table 1: Key Sizes in Bits for Equivalent Levels 
Symmetric ECC DH/DSA/RSA 

80 163 1024 
128 283 3072 

192 409 7680 
256 571 15,360 

 
Table 2: Sample ECC Exponentiation over GF(p)  and RSA 

Encrypt./Decrypt Timings in Milliseconds 
 163 

ECC 
192 
ECC 

1024 
RSAe 

1024 
RSAd 

2048 
RSAe 

2048 
RSA

d 
Ultra 
SparcII 
400MHz 

6.1 8.7 1.7 32.1 6.1 205.5 

Strong 
ARM 
200MHz 

22.9 37.7 10.8 188.7 39.1 1273.
8 

ECC: rG operation, RSAe: RSA Public key operation, RSAd: RSA 
Private key operation. 

RSA based TC has been implemented in computer 
networks to provide security solutions against various 
attacks e.g. threshold authentication [19]. These nodes 
have large storage capacity and computational power. In 
this paper, we discuss in brief why RSA based TC, 
commonly used in these networks, is unsuitable for 
MANETs. Elliptic curve cryptography has gained 
attention in recent years due to ability to provide 
equivalent security as RSA but at much smaller key sizes 
and at fast rates as seen in Table 1 [10]. ECC has been 
considered for applications such as smart card encryption 
due to less storage requirements and its computational 
efficiency [10] as seen in Table 2. Hence, we have 
selected three best algorithms that are ECC-based and can 
be implemented for TC. We make a case why and which 
ECC-based algorithms for TC will be more appropriate for 
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MANETs.  
For all ECC-TC algorithms, multiple secrets are 

required to be transmitted over the network. But the packet 
size varies depending on the implemented algorithm thus 
adding communication overheads. To solve this problem, 
we propose a solution for sharing up to 4 secrets which 
results in constant packet size irrespective of the 
algorithm. 

In next section, we briefly discuss our RSA-TC 
implementation using partial encryption i.e. encryption 
key is split and its performance results. Further, changes 
are suggested in RSA-TC implementation by splitting 
message after encryption to compare these results with 
ECC-TC. 

2. RSA-TC Implementation 

 
Fig. 1. Class Structure of MANET implementation with RSA-TC 
 

Figure 1 represents JAVA 1.4 implementation of 
MANET and its class hierarchy. All classes except RSA 
and Shared Keys form a basic infrastructure for a MANET 
node. PolynomialBig class generates and stores 
coefficients for a polynomial used to generate shares using 
Lagrange interpolation. LInterpolationBigInt class 
implements Lagrange interpolation scheme. From a secret, 
a generated polynomial, and a set of x-values, partial 
shares are derived. It also retrieves a secret when given a 
set of x-values and corresponding partial messages. 
Neighbour class stores information of each neighbour in 
the MANET such as encryption algorithm type, public 
key, threshold t, n, and x-value along with partial shared 
key for RSA-TC.  EPacket class is instantiated only at the 
receiver where it stores partially encrypted messages along 
with encryption algorithm, public key, x-values, 
corresponding neighbour/shareholder, sender, packet id, 
threshold t, and n. MobileClient is the base class for all 
types of nodes in a MANET i.e. MobileClientSender, 
MobileClientReceiver, and MobileClientShareholder. 
SharedKeys class stores information of partial keys and its 
shareholder/neighbour at the sender. This class is 
instantiated within RSA class that carries out RSA keys 
and partial keys generation and partial encryption and 
decryption. Each node in the MANET has capability to 
carry out RSA-TC encryption.   
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In RSA,  
i) C = M d mod N and M’ = M = C e mod N 
ii) C = M e mod N and M’ = M = C d mod N 

In RSA-TC authentication/signature scheme, 
    C’ = ∏ i=0 till i=t C xi* f’( i)  mod N,  
           where Ci = Cxi  mod N, 
           f (x)= (a0x0  + a1x1  +…+ a(t-1) x( t-1) )mod ф(N)  
          and a0 = d 
           f’(x i)= ∏ j=0,j≠i till j=t  (x j /(x i – x j)) * f(x i) mod ф(N)
Thus, 

C’ = M {∑ 
i=0, j=0, j≠i till i=t, j=t

 (x j / ( x i – x j)) * f ( xi)} mod N 
M’ = M = C’ e  mod N = C e  mod N 
 
ig.  2.  RSA and RSA-TC using Shamir’s Lagrange Interpolation 

 
RSA-TC Implementation involved simulation of 
ANET consisting of a sender S, receiver R, and other n 

odes called shareholders (SH). MANET was simulated in 
NIX environment on SUN Sparc Ultra 5_10 machines.  
igure 2 explains the RSA-TC scheme [11]. Three main 
odules in this application required were generation of 
SA keys, determination of threshold t, and share 
eneration. 

For RSA key generation, the prime numbers p and q 
re generated using available functions in JAVA for key 
izes 512, 1024, and 2048 bits. Then the private key (d, N) 
nd public (e, N) are calculated.  
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The n and t are fixed to (10, {6,8,10}), (15, {8, 11, 15}), 
and (20, {11, 15, 20}).  

For RSA-TC, private key d is split using Shamir’s t-out-
of-n scheme based on Lagrange  interpolation [7] to 
generate partial keys over modulus ф(N) such that any t 
out of n partial messages will allow retrieval of the 
original message. These keys are used to carry out partial 
encryption. 

As shown in Figure 3, sender S carries generates partial 
keys f(xi) using Lagrange interpolation and polynomial 
generation over mod ф(N) as per Fermat’s theorem. 
Sender S retains ф(N) but distributes partial keys to 
shareholders SH. The shareholders only apply their partial 
keys f(xi)s to the message M and forward these partial 
messages Cis along-with the xi-values to the receiver. 
After receiving t or more Cis, the receiver selects t Cis for 
recovery of C. The receiver encrypts xi-values using the 
sender’s public key (N, e), and sends it to the sender via 
more than one route. The sender calculates respective xi’-
values using Lagrange interpolation over mod ф(N) and 
sends them back to the receiver. The receiver then applies 
this xi’-values to the respective partial messages and 
combines the results to recover the final C. It then 
computes Ce mod N to recover the final message M. 
 

 
Fig. 3. Model protocol for RSA based threshold encryption in Ad hoc 
network 
 

In RSA-TC simulation, sender S and receiver R are 
available at all times. To simulate the propagation delay 
during network transmission, the messages are randomly 
delayed at the shareholders, thus, ensuring that set of xi’-
values received are always different. Issues of sharing the 
ф(N) with shareholders, the storing of message at the 
shareholders, and number of message exchanged between 
the shareholders and the receiver are resolved. The sender 
carries out computation of the xi’-values. Thus, the 
shareholders need not know t and other xi-values that are 
obtained by the receiver. Instead of sending the xi-values 
to all the shareholders, the receiver would send it to the 
sender on multiple reverse routes, less than t, thus 
reducing the message-exchanges carried over the wireless 
network. Thus, it does not affect the message-exchange 
even if a few shareholders dropped out of the network 
after step 3. 

2.1 Performance Results 
 Total RSA-TC encryption timings increased gradually for 
a given key size with increase in n and t. As the key-size 
increased, the encryption time increased exponentially. 

Share generation time increased exponentially as the 
key-size was doubled. These timings included time to 
generate a polynomial with t coefficients and then to 
calculate f(x) for n different x values. Thus, as t value 
increased the share generation time increased gradually for 
a key size and n. 

 

 
S 

SH-1 

SH-n 

 
R 

1, 2 

1, 2 3 

3 

4, 6 

5 

 
 One hop between 2 nodes 
 Multi-hop involves more than 2 nodes on single disjoint route 
 Multi-hop involves more than 2 nodes on one or more disjoint 

routes 
1. Sender S distributes the shared keys along with xi-values amongst its 
‘n’ neighbors which will act as Shareholders SH. (f(xi) mod ф, xi, N) 
assigned to each shareholder. 
2. S sends message M securely to all SHs for partial encryption. 
3. SHs apply f(xi) to M and send partial encrypted messages as Ci  = 
Mf(xi) mod N and xi to Receiver R.  
    Note: A few SHs may not be available or a few messages from SH 
may be lost during the transmission. 
4. S notifies R about threshold t, N and e. 
5. R sends selected xi -values to the S for xi’ values. 
6. S calculates xi’ values over mod ф(N) and sends them to R. R applies 
xi’ values to Cis  and combines them to get the original C. Ce mod N 
then gives the message M. 

Combination time is the time required to combine 
partially encrypted message to retrieve original cipher text. 
For a given key-size, combination time and decryption 
time gradually increased with n and t. Further, increasing 
key-size results into exponential increase in these timings 
for a given n and t. 

Success rate increases as t increases from n/2 to n. For 
t=n, success rate is 100% [11]. Success rate varies as ф(N) 
is even number and all inverses do not exist in mod ф(N), 
when t ≠ n. 

The described RSA-TC requires knowledge of ф(N), to 
carry out share generation and partial message 
combination to retrieve cipher-text [11], [12]. Comparing 
the share generation timings with the actual encryption 
timings, it is observed that for smaller key sizes the share 
generation timings are greater or comparable with the 
encryption timings as n increases but for larger key-sizes, 
share generation takes longer time but is negligible in 
comparison with encryption time. Further, suggest that 
success rate cannot be guaranteed for any keys unless 
implemented. 

To achieve 100% success rate in RSA-TC 
implementation, another method to implement threshold 
cryptography is to split the message before or after 
encryption. Results will be similar as above but with 100% 
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success rate when we implement message split before 
encryption because partial encryption requires n 
encryptions and one Lagrange operation [11]. Similarly, 
RSA-TC with message split before encryption would 
generate n partial messages using Lagrange interpolation 
once and then these partial messages are then encrypted 
using n encryptions. 

Given the constraints with RSA-TC, in next section, we 
would discuss our ECC based threshold cryptography 
implementation based on three different algorithms. 

 
3. ECC Based TC 
 
Many variants of ECC based algorithms exist such as ECC 
El Gamal [15], EC Diffie-Hellman [16] (EC-DH), 
Massey-Omura (MO), Menezes-Vanstone (MV), Koyama-
Maurer-Okamoto-Vanstone (KMOV), Ertaul, and 
Demytko [14]. These variants can be modified to 
implement ECC-TC in MANET.  

Table 3[14] displays performance results for ECC-TC, 
implemented using Maple. These timings are 
approximation of results for carrying out point 
exponentiation and n represents number of shares on 
which the operation would be carried out for t-out-of-n 
sharing scheme. Table 4 [14] compares the complexity of 
all ECC-TC Split before and after  encryption algorithms 
by considering number of times point exponentiation (rG), 
point addition (P+Q), and Lagrange operations are 
required. It also lists the number of packets and the packet 
size to be transmitted over the network for each algorithm. 
w represents length in bits for the largest number used 
which is p, so w = ┌log(p)┐[14]. n represents the number 
of shares a message is split into. Of the above listed three 
operations, theoretically point exponentiation i.e. rG takes 
maximum time and resources while point addition takes 
the least.  From Table 3 and 4, DH, MV, and Ertaul have 
been identified as best ECC-TC algorithms suitable for 
MANETs.  These algorithms are efficient in terms of 
complexity for both share split before and after encryption 
and have constant timings irrespective of n and t values.  

Our goal is to implement ECC based DH, MV, and 
Ertaul (most efficient algorithms) for share as well as 
message splitting before and after encryption in simulated 
MANET environment. Then we will compare their 
performances based on timings of different operations that 
are required for carrying out these encryptions. These 
timings include timings for splitting the message, 
converting message to point, and the actual encryption at 
the sender. At the receiver, timings comprise of 
combination timings to retrieve the original message from 
partial messages using Shamir’s secret sharing based on 
Lagrange, to convert point to message and the decryption 
time. 

For ECC-TC, key is not shared here because the public 

as well as private keys are in form of points and we cannot 
apply Lagrange on the points altogether to split message 
or to combine it. Hence, either message is split before 
encryption and then the partial messages are encrypted 
into points or the message is encrypted into a point and 
then the point co-ordinates are split. First, we will briefly 
study the three ECC-TC algorithms in following sections. 

 
Table 3: ECC secret sharing timings in milliseconds over prime fields 

ECC 
Share split before 

encryption 
Share split after 

encryption 

 

163-
bit 
Sun 

192-
bit 
Sun 

163-
bit 

ARM 

192- 
bit 

ARM 

163-
bit 
Sun 

192-
bit 
Sun

163- 
bit 

ARM

192- 
bit 

ARM 
EG 68.7n 113.1n 18.3 26.1 68.7 113.1 18.3n 26.1n 
MO 24.4n 34.8n 91.6n 150.8n 24.4 34.8 91.6 150.8 
DH 6.1 8.7 22.9 37.7 6.1 8.7 22.9 37.7 
MV 12.2 17.4 45.8 75.4 12.2 17.4 45.8 75.4 

KMOV 12.2n 17.4n 45.8n 75.4n 12.2 17.4 45.8 75.4 
Ertaul 68.7 113.1 18.3 26.1 68.7 113.1 18.3 26.1 

D 18.3n 26.1n emytko 68.7n 113.1n 12.2 17.4 45.8 75.4 
Sun: Ult r  M  M

 
C x p yp

encryption ption 

ra Spa c II 450 Hz        ARM: Strong ARM 200 Hz 

Table 4: omple ity com arison of ECC-TC Encryption/Decr tion 
algorithms 

Share split Share split 
before after 

encryECC TC 
Algorith
m  g g 

Pkt 

e 

 
Pkt 
# 

r
G 

P+
Q 

La r
G 

P+
Q 

La siz

ECCEG 3n 2n 1   3 2 2 5w n
MO 4n 0 1 4 0 6 3w 3n 
DH 0 2n 1 0 2 2 3w n 
MV 3 0 1 3 0 2 5w n 
KMOV 2n 0 1 2 0 2 3w n 
Ertaul 3 0 1 3 0 1 4w n 
Demytk
o 2 0 1 2 0 1 3w n 

Note: Lag= gra  Tim s 

3 ll n CC H)  
 

La nge ing
 

.1 ECC fie e
Encryption/Decryption Algorithm

Dif -H ma (E  D

ECCDH and its threshold implementation [14] is 
suggested as follows: The order of a point G on an elliptic 

e E (a, b) is q. P is a large prime. Thecurv p  secret key K = 
nAnBG is generated using DH algorithm.  
Encryption algorithm: 

• Alice finds the point PM corresponding to M, and 
sends P  + n n G to Bob. M A B

Decryption algorithm: 
• Bob subtracts nAnBG from PM + nAnBG, and converts 

P  to the plaintext M. M
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3.1.1 Share split before encryption 
thod to split the 

• the EC.  

AnBG. 

 PM = (x, y) on the 

•  computes PC = nAnBG + PM = (xC, yC). 
split xC and 

•

arately to get 

•  = PC - nAnBG. 
t PM to the secret M. 

3.2 enezes-Vanstone (MV) algorithm   
encoding a 

m number r < |H|, and calculates 

G, xkx mod p, yky mod p) to Bob. 

 rnBG = (xk, yk). 
 and yk

-1yky mod 

ob converts the point (x, y) to get the original plaintext 

 
3.2.1 Share split before encryption 

res of secret Mt, 1≤ 

 converts each share Mt into a point Pt (xt, yt). 
ulates 

, xkxt mod p, ykyt mod p) to Bob. 

p and yk ykyt mod 

ith at least t shares of PM, Bob recovers PM, and 

.2.2 Share split after encryption 
int PM( x, y). 

calculates z = xkx 

ares of zt, and wt respectively, 

nds rG and n pieces of zt, and wt to Bob. 
 get (z, 

b calculates n

• Alice uses Shamir’s secret sharing me
secret M into n shares of secret M t, 1≤ t ≤ n. 
 Alice converts  each share Mt to a point Pt on 
• Alice computes Pt + nAnBG and sends it to Bob. 
• Bob recovers Pt by subtracting nAnBG from Pt + n
• With at least t share of PM, Bob is able to recover PM. 
• Finally Bob will convert the point PM to the secret M. 

 
3.1.  Share split after encryption 2
• Alice converts the secret M to a point

EC. 
 Alice
• Alice uses Shamir’s secret sharing method to 

yC into n shares of xCt
 and yC t

 respectively, 1≤ t ≤ n. 
 Alice sends n pieces of xC  and y

t C  to Bob. 
 t

• Bob combines t pieces of xCt t
(x

 and yC  sep
C, yC), i.e. PC.  

 Bob computes PM

• Finally Bob will convert the poin
 

M
MV [17] is a solution to the problem of 
message into a point on EC. It uses a point on an EC to 
mask a point in the plane. It is fast and simple. Let H be a 
cyclic subgroup of Ep(a, b) with the generator G. Bob has 
a private key nB, and a public key nBG. The message M is 
converted into a point PM = (x, y) in GF(p). 
Encryption algorithm: 
 Alice select a rando

rnBG = (xk, yk). 
 Alice sends (r

Decryption algorithm: 
 Bob calculates nBrG =
 Bob recovers x and y by xk

-1xkx mod p
p. 
 B

M. 

• Alice splits the message M into n sha
t ≤ n. 
• Alice
• Alice select a random number r < |H|, and calc
rnBG = (xk, yk). 
• Alice sends (rG
• Bob calculates nBrG = rnBG = (xk, yk). 

-1• Bob recovers xt and yt by xk
-1xkxt mod 

p. 
• W
converts the PM to the secret M. 

 
3
• Alice converts the message M into a po
• Alice select a random number r < |H|. 
• Alice calculates rnBG = (xk, yk), and 
mod p, and w = yky mod p. 
• Alice splits z, w into n sh
1≤ t ≤ n. 
• Alice se
• Bob combines t pieces of zt and wt separately to
w). 
• Bo BrG = rnBG = (xk, yk). 

 p and yk
-1w = yk

-

ob converts PM to the secret M. 

 is the private key, and Y = 

or yi ) is a HASH function such as 

rithm: 
 value r from Zq. 

*Y) xor M, and 

 = (U, V), Bob computes x*U= 

 V xor H(r*x*P) = H(r*Y) xor M xor 

.3.1 Share Split Before Encryption 
ecret Mt, 1≤ t ≤ 

lice selects a random value r from Zq, and computes U 

ch share Mt, Alice computes Vt = H(r*Y) xor Mt. 

x*r*P. 
(r*Y) 

b is able to recover M. 

.3.2 Share Split After Encryption 
q, computes U = 

e computes V = H(r*Y) xor M, splits V into n shares 

t Ct = (U, Vt) to Bob. 
. 

) = H(r*Y) 

• Bob recovers PM by xk
-1z = xk

-1xkx mod
1y y mod p. 
• Eventually B

k

3.3 Ertaul Crypto-system 
P is the generator point while x
x*P is the public key. 
H((xi, yi)) = Hash(xi x
MD5, SHA-1. 
Encryption algo
• Alice selects a random
• Alice computes U = r*P and V = H(r
sends C = (U, V) to Bob. 
Decryption algorithm: 
• Given a ciphertext C
x*r*P = r*x*P. 
• Bob computes
H(r*x*P) = M. 
 
3
• Alice splits the secret M into n shares of s
n. 
• A
= r*P. 
• For ea
• Alice sends ciphertext Ct = (U, Vt) to Bob. 
• Given a ciphertext Ct, Bob computes x*U= 
• Bob computes H(r*x*P) and Vt xor  H(r*x*P) = H
xor Mt xor  H(r*x*P) = Mt. 
• With at least k share of Mt, Bo
 
3
• Alice selects a random value r from Z
r*P. 
• Alic
of secret Vt, 1≤ t ≤ n. 
• Alice sends ciphertex
• Bob recovers V, and computes x*U= x*r*P
• Bob computes H(x*r*P) and V xor H(x*r*P
xor M xor H(x*r*P) = M. 
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3.4 ECC-TC Implementation Model 
 

 
Fig. 4. Class Structure of MANET implementation with ECC-TC 
 

Figure 4 displays class hierarchy of ECC-TC 

 
Fig. otocol for ECC based threshold encryption in Ad hoc 

Assumptions during implementation are that in any 
giimplementation using JAVA 1.4 in Unix environment on 

SUN Sparc Ultra 5_10(360 MHz) machines. ECC-TC 
algorithms are implemented in JAVA since it is widely 
applicable in mobile devices with resource restraints [18]. 
A MANET with varying node density, n, is simulated with 
a capability to send messages using earlier mentioned 
ECC-TC algorithms. As seen in Figure 1 for RSA-TC 
implementation, the basic MANET infrastructure is same 
here except the additional classes: ECCPoint, ECC, 
ECCDH, MV, and Ertaul. ECCPoint class represents a 
point on elliptic curve and stores its co-ordinates. ECC 
class implements basic elliptic curve point operations such 
as point exponentiation and addition, message to point and 

point to message conversion. As illustrated in Figure 4, 
ECCDH class carries out ECCDH based threshold split 
before or after encryption. Likewise, the implementation 
can carry out Ertaul and MV based threshold encryption. 

 

 5.  Model  pr
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 Multi-hop involves more than 2 nodes on single disjoint route 
s 

i

1. For Split before encryption: Sender S generates partial message
using Shamir’s Lagrange interpolation from message M and then 
encrypts these partial messages to points. For split after encryption, 
sender s first encrypts the message to a point and then the encrypted 
point is split into partial messages using Lagrange interpolation. 
Partial messages are generated by either before or after message 
encryption using one of the ECC algorithms.  
2. S distributes the partial messages Cis along with corresponding x s 
securely to all neighboring nodes on distinct disjoint routes.  
3. Available nodes on these routes perform the task of forwarding 
partial message packets till it reaches the receiver R. None of these 
nodes is either shareholder or combiner in ECC-TC implementation.  
4. When R receives t or more Cis and xis, using first t xi values, it 
calculates the corresponding ciphertext C. In case of split before 
encryption, these partial messages are first decrypted using ECC-TC 
algorithm and then using Lagrange interpolation, the original message 
is recovered. For split after encryption, partial messages are first 
combined using Lagrange interpolation to recover original C and then 
using ECC-TC algorithm for decryption, the original message M is 
recovered. 

network. 
 

ven scenario, there is a sender S, a receiver R, and 
multiple nodes on distinct routes that forward the message 
from S to R. All the nodes are assigned unique ids. Sender 
S and receiver R are already identified in the network. The 
key or partial message combination procedure in TC is 
impacted by the node availability and the connections in 
the network. So in this model, sender splits the message 
into number of partial messages while receiver does the 
job of combining partial messages and retrieving original 
message. Hence, no separate combiner defined in the 
network. In addition to this, we consider t or more nodes 
are always available, so receiver receives t or more partial 
messages. Multiple disjoint routes already traced. Here we 
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are not dealing with routing issues, so we assume that the 
multiple disjoint routes can be identified using any of the 
available multi-path routing protocols. Additionally, 
though with multiple partial messages traveling over 
different routes, we are not working on the communication 
overhead computations in this implementation. Instead of 
using multiple random ‘r’ values for each partial message 
in split before encryption scenario, a single random value r 
is used. Thus, the rG or rKb multiplication timing is 
reduced drastically by n-1 times for each message 
exchange. 

Figure 5 depicts the ECC-TC model where in sender S 
g

implement 

3.5.1 Determination of ECC parameters 
p y accepted 

Curve P-192 
353866807638357894232076664160839087/00390324961279 

fd 82ff1012 

 

urve P-224 
= 

= 

bd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5 
506d031 218291fb 

 

urve P-256 
921035624876269744694940757353008614/ 

52999695/ 

9f7e90 
114abc af317768 0104fa0d 

7d1f2 e12c4247 f8bce6e563a440f2 77037d81 2deb33a0 f4a13945 

342e2 fe1a7f9b 8ee7eb4a7c0f9e16 2bce3357 6b315ece cbb64068 

 
Table 5: Maximum Message mits in ECC implementation  

enerates partial messages using Shamir’s Lagrange 
interpolation and ECC-TC algorithm. For split before 
encryption, a message M first split into n partial messages 
that are individually converted to ECC point and then 
encrypted using one of the three ECC algorithms 
discussed earlier. But in split after encryption, the message 
M is first converted to ECC point and encrypted using 
ECC-TC algorithm. Next, this encrypted information is 
further split into partial encrypted messages using multiple 
Lagrange interpolation.  Sender thus transmits each 
partially encrypted message on different route.  The nodes 
on these routes forward these messages to receiver after 
adding a random delay to simulate propagation delay that 
ensures that set of t xi values at the receiver is different 
each time. When receiver R collects t or more partially 
encrypted messages, then it recalculates the message M by 
combining them. For split before encryption, first these 
messages are individually decrypted, converted from ECC 
point to Mis and then combined to get M, while in split 
after encryption, these messages are first combined to 
recover C and then ECC-TC decryption is carried out to 
retrieve ECC point which is then converted to M. 

3.5 Modules in ECC-TC Implementation 
Important modules required to successfully 
ECC-TC are as follows: 

 
 

For im lementation of the ECC-TC, widel
NIST curves were selected for implementation for 192, 
224, and 256 bits [17] as shown below. For each 
algorithm, further respective parameters are determined 
beforehand for the sender and receiver. 

 

p = 62771017
r = 62771017353866807638357894231760590137671947/73182842284081 
s = 3045ae6f c8422f64 ed579528 d38120ea e12196d5 
c = 3099d2bb 

cd5f b078b6ef 5f3d6fe2 c745de65 bfcb2538 542d
b = 64210519 

9ab 72243049 feb8deec c146b9b1 e59c80e7 0fa7e
Gx = 188da80eb03090f6 7cbf20eb 43a18800 f4ff0a

Gy = 07192b95ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811
 
C
p 
26959946667150639794667015087019630673557916/2600263081435100662988
81 
r 
26959946667150639794667015087019625940457807/7144243917216827223680
61 
s = 
c = 5b056c7e 11dd68f40469ee7f 3c7a7d74 f7d12111 6
b = b4050a85 0c04b3abf5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4 
Gx = b70e0cbd 6bb4bf7f321390b9 4a03c1d3 56c21122 343280d6 115c1d21
Gy = bd376388 b5f723fb4c22dfe6 cd4375a0 5a074764 44d58199 85007e34 
 
C
p = 11579208
      3415290314195533631308867097853951 
r = 115792089210356248762697446949407573
      5224135760342422259061068512044369 
s = c49d3608 86e70493 6a6678e1 139d26b7 81
c = 7efba166 2985be94 03cb055c75d4f7e0 ce8d84a9 c5
b = 5ac635d8 aa3a93e7 b3ebbd55769886bc 651d06b0 cc53b0f6 3bce3c3e 
27d2604b 
Gx = 6b1
d898c296 
Gy = 4fe
37bf51f5 

 
3.5.2 Transformation between Message and ECC 

points  

Li
Key Size Maximum Message Limit 

1 667541457033502841776592 37537469520960937762496
993507829221 

224 242105523519767084637018751061962369242952420
647905805550448659123 

256 198820601855515832876389007208418356947653493
9011764732119112202020563046577 

For conv ECC point, 
method discussed by Kobiltz is used [13], [14] such that 
(kappa*M)mod p < x <(kappa*(M+1))mod p, where (x, y) 
is a point on elliptic curve. In our ECC TC 
implementation, kappa is fixed to 2

ersion of message to and from 

8. This is seen to 
accommodate the possible conversion of the ASCII 
characters represented as message M into ECC points such 
that M< Maximum Message Limit value, which is fixed 
for all ECC key sizes as shown in Table 5.  

To retrieve a message from a ECC point (x, y), 
M=x/kappa mod p 

 
3.5.3 ECC point operations 

 As scussed earlier, given EC
 

di C points, we can carry 
out point addition or multiplication/exponentiation. These 
operations are prerequisite for carrying out encryption 
using ECCDH, MV, and Ertaul algorithms.  

 
3.5.4 Share generation 

First n, t) values are fixed
 

  to one of the following: (10, 
{6

(
, 8, 10}), (15, {8, 11, 15}), or (20, {11, 15, 20}). Next, 
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for calculating the shares and for combining partial 
messages, Shamir’s Lagrange interpolation scheme is 
implemented. For its polynomial of degree t-1, the 
coefficients are randomly generated over the modulus p. 
The co-efficient zero depends on the x and y values of 
ECC point information that needs to be transmitted based 
on ECC algorithm used. In ECC-TC implementation, the 
partial shares of the ECC point information are generated 
by the sender and forwarded via diverse paths to the 
receiver. Currently, xi-values used for calculating the 
shares are 1 to n, rather than randomly picking these 
values. 

3.5.6 Performance Results for ECC-TC algorithms 

di

n time is the time to calculate rnBG, 
rG

rt a 
m

th

e time required to perform a 
en

e is the time required to perform 
a 

 means the sum of all the 
op

 the total encryption and total 
de

Before discussing performance results, let us first 
scuss various terms used in the graphs for the 

performance results: 
Point exponentiatio
,  nAKB., or U i.e.(r*P).  This is represented by rG or 

nKB or U time in the following figures depending on 
which one is required for a given ECC-TC algorithm. 

Conversion time at the sender means time to conve
essage to a ECC point. At the receiver, conversion time 

means time required to convert a ECC point to a message. 
Lagrange time at the sender is the time required to split 
e message into partial messages while at the receiver it is 

the time required to combine t partial messages to retrieve 
original message. 

Encryption time is th
cryption operation specific to a ECC-TC algorithm. E.g. 

in ECCDH, point addition encrypts the message ECC 
point by using operation PM + nAnBG. So here the 
encryption time equals to the time required to carry out 
point addition. Similarly for MV, encryption time is the 
time required to carry operations xkx mod p and yky mod p. 
And for Ertaul, it is the time required to carry out XOR 
operation in H(r*Y)/M. 

Further, decryption tim
decryption operation specific to a ECC-TC algorithm. 

E.g. in ECCDH, point addition decrypts a ECC point to a 
by using operation PM + nAnBG. So here the encryption 
time equals to the time required to carry out point addition. 
Similarly for MV, encryption time is the time required to 
carry operations xkx xk

-1xkx mod p and yk
-1yky mod p. And 

for Ertaul, it is the time required to carry out XOR 
operation in V/H(r*x*P). 

Total encryption time
erations to encrypt a message in an ECC-TC algorithm, 

and total decryption time means sum of all the operations 
taken to decrypt a message. 

Total timing is the sum of
cryption timings i.e. time required to encrypt a message 

and to retrieve it back by decrypting it. 

Y-axis in the graphs below represents timings in milli-
seconds while X-axis represents {(t, n), key size}. As 
mentioned earlier, t and n are fixed to ({6,8,10}, 10), ({8, 
11, 15}, 15), and ({11, 15, 20}, 20) while key sizes are 
192, 224, and 254. 
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 Fig. 6. Encryption timings for ECCDH-TC Split before encryption 
 

ECCDH-Split before encryption (Decryption timings)
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 Fig. 7. Decryption timings for ECCDH-TC Split before encryption 
 

As observed from Figure 6 and 7, for ECCDH TC 
schemes, encryption and decryption timings consist of 
large naKb timings. From Figure 6 and 7 for split before 
encryption, conversion timings contribute greatly and for 
most instances more than Lagrange timings. naKb, 
Lagrange and conversion timings increase as we increase 
t, n or the key-size.  

From Figure 8 and 9 for split after encryption, during 
encryption as t and n increases Lagrange timings 
contributes more than naKb that is constant for any given 
key size irrespective of t and n values. For decryption, 
Lagrange timings are small but increase with t, n, and key 
sizes. 
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 Fig. 8. Encryption timings for ECCDH-TC Split after encryption 
 

ECCDH-Split after encryption (Decryption timings)

0

200

400

600

800

1000

1200

(6,
10

)(1
92)

(8,
10

)(1
92)

(10
,10

)(1
92

)

(8,
15

)(1
92)

(10
,15

)(1
92

)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15
,20

)(1
92

)

(20
,20

)(1
92

)

(6,
10

)(2
24

)

(8,
10

)(2
24

)

(10
,10

)(2
24

)

(8,
15

)(2
24)

(10
,15

)(2
24

)

(15
,15

)(2
24

)

(11
,20

)(2
24

)

(15
,20

)(2
24

)

(20
,20

)(2
24

)

(6,
10

)(2
54)

(8,
10

)(2
54)

(10
,10

)(2
54

)

(8,
15

)(2
54)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11
,20

)(2
54

)

(15
,20

)(2
54

)

(20
,20

)(2
54

)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Decryption Time rKb Time Decryption Time
Conversion Time Lagrange Time

 
  Processor: SUN Sparc Ultra 5_10 Timings for 200 runs 
 Fig. 9. Decryption timings for ECCDH-TC Split after encryption 

 
Figure 10 and 11 display encryption and decryption 

timings for Ertaul-Split before encryption while Figure 12 
and 13 display timings for Ertaul-Split after encryption. 
For Ertaul-split before and after encryption, rKb and U 
calculation timings cost the most for encryption, while 
Lagrange contributes significantly to it for larger t and n 
values for all key-sizes. Hashing and encryption timings 
are negligible. There is no point conversion in Ertaul-TC 
scheme, hence the encryption timings are almost similar 
for both before and after encryption schemes. 
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 Fig. 10. Encryption timings Ertaul-TC Split before encryption 
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 Fig. 11. Decryption timings for Ertaul-TC Split before encryption 
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 Fig. 12. Encryption timings for Ertaul-TC Split after encryption 
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 Fig. 13. Decryption timings for Ertaul-TC Split after  encryption 
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 Fig. 14. Encryption timings for MV-TC Split before encryption 
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 Fig. 15. Decryption timings for MV-TC Split before encryption 

From Figure 14 for MV split before encryption, rKb and 
rG timings are similar for all t, n, and key size. Conversion 
timings are contributing significantly for this type of 
encryption and it increases with t, n, and key size.  

As seen in Figure 15, decryption timings mainly consist 

of rKb timings that vary with changing t, n, and key-sizes. 
From Figure 14 and 15, overall encryption, decryption, 
and Lagrange timings are negligible compared to other 
timings for this TC scheme. 

It is observed in Figure 16 for MV Split after encryption   
graph that rG and rKb calculations are almost same and 
contribute the most to the encryption timings. Next, share 
splitting using Lagrange interpolation contributes 
significantly as t, n, and keysizes increase. Total 
encryption timings display a gradual increase as t, n, and 
keysizes are increased. 

From Figure 17, total decryption timings for MV-split 
after encryption vary significantly and most of the timings 
is contributed by rKb calculation. But as t value is 
increased, the Lagrange timings increase exponentially by 
contributing significantly at when t=n. 

MV-Split after encryption (Encryption timings)

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

(6,
10

)(1
92

)

(8,
10

)(1
92

)

(10
,10

)(1
92

)

(8,
15

)(1
92

)

(10
,15

)(1
92

)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15
,20

)(1
92

)

(20
,20

)(1
92

)

(6,
10

)(2
24

)

(8,
10

)(2
24

)

(10
,10

)(2
24

)

(8,
15

)(2
24

)

(10
,15

)(2
24

)

(15
,15

)(2
24

)

(11
,20

)(2
24

)

(15
,20

)(2
24

)

(20
,20

)(2
24

)

(6,
10

)(2
54

)

(8,
10

)(2
54

)

(10
,10

)(2
54

)

(8,
15

)(2
54

)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11
,20

)(2
54

)

(15
,20

)(2
54

)

(20
,20

)(2
54

)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Encryption Time rG Time rKb Time
Encryption Time Conversion Time Lagrange Time

  Processor: SUN Sparc Ultra 5_10 Timings for 200 runs 
 Fig. 16. Encryption timings for MV-TC Split after encryption 

MV-Split after encryption (Decryption timings)
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 Fig. 17. Decryption timings for MV-TC Split after encryption 

From Figure 16 and 17, overall conversion, encryption, 
and decryption timings are negligible compared to other 
timings for MV-split after encryption. 

In Figures 18, 19, and 20, we compare total timings for 
the three ECC-TC based algorithms.  
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Considering total Encryption timings for all ECC-TC 
algorithms, it is observed in Figure 18 that with increase in 
key size and (t, n), the encryption timings increase 
gradually for all algorithms. ECCDH is most efficient for 
both split before and after encryptions and hence can be 
used when sender has resource restraints. As against this, 
MV seems most inefficient with wide difference in the 
timings for split before and after encryption timings. For 
Ertaul, the timings are very close for both split before and 
after encryption. Thus, from Figure 18, ECC-DH is ideal 
for scenarios where the sender has resource constraints. 

Total Decryption Timings Comparison for ECC-TC 
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Figure 19 exemplifies that for decryption timings, MV 
split before encryption seems to be efficient. MV-Split 
after encryption is efficient at lower t and n values but as 
we increase the t, n, and key size the decryption timings 
increase exponentially. Ertaul decryption timings seem to 
be stable for split before encryption as well as decryption 

scenarios. As against the above algorithms, ECCDH's 
decryption timings are worst with exponential rise as t, n, 
key-sizes are increased. Thus, MV is ideal for scenarios 
where the receiver has more power and CPU constraints 
while ECCDH is not. 
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 Fig. 20. Total Timings for ECC-TC algorithms 
 

From Figure 20, consider total timings to carry out 
threshold cryptography i.e. encryption and decryption 
timings combined. MV seems to be the worst algorithm as 
the changes in the total timings are exponential and 
variation increases at higher values of t, n, and key-sizes. 
ECCDH is ideal for lower t and n values irrespective of 
key-sizes but at higher t and n values, Ertaul split before 
encryption is a better choice. 

By and large, it appears that the ECC point 
multiplication is the only operation that would cost 
significantly when carrying out ECC encryption or 
decryption. But from our results, we have proved that for a 
given key-size, as the t and n values are increased, ECC 
point multiplication timings i.e. rG or rKb or naKb timings 
remain constant. On the other hand, Lagrange timings start 
increasing and contribute significantly to encryption and 
decryption timings for threshold cryptography involving 
split after encryption as Lagrange is applied to multiple 
values. Also, for larger n values, the conversion timings to 
convert message to point also add significantly to the 
encryption time for split before encryption. Comparing 
results from split before and after encryptions, we have 
observed that split before encryption is inefficient than 
split after encryption schemes except for Ertaul where the 
timings are based more on the t, n, and key-size values. In 
Ertaul, the difference in the total timings for both schemes 
is small as against ECCDH and MV where one can 
observe vast difference in the timings. Given that the 
timings in Ertaul scheme are constant for encryption and 
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decryption and are close, it is ideal scheme to be 
implemented in a MANET where both sender and receiver 
have equal resources as well as power constraints. 

For ECC-TC, more than one packet of size w is 
transmitted from sender to receiver in MANETs to be able 
to achieve threshold cryptography. In next section, we put 
forth an alternative to Shamir’s secret sharing scheme 
using Lagrange interpolation wherein up to 4w 
information can be sent using just one split. 

4. Alternative Secret Sharing Scheme for 
Threshold Cryptography in MANETs 
 
In ECC, after encrypting a message, multiple point 
information is sent to receiver. For example, in ECC El 
Gamal encryption, {C1 = rG, C2 =KbG + Pm} are 
transmitted where C1=(x1, y1) and C2= (x2, y2). If threshold 
cryptography using Shamir’s (t, n) secret sharing scheme 
[5], [6], [7] is used, then either 4 different messages, each 
representing one of the x or y values and of 3w packet size, 
or a single message, with 5w packet size, would be 
broadcasted over each of the n disjoint paths between the 
sender and receiver.  

In MANET, bandwidth is limited and so we propose 
using Vandermonde matrix equations [21] with a slight 
modification for sending messages. The x and y values 
should be inserted into the polynomial of degree t-1 as 
coefficients a0, ak-3, ak-2, and ak-1, where a0 = x1, at-3 = y2, 
at-2 = x2, and at-1 = y2. If threshold t > 4, then remaining 
coefficients of the polynomial are randomly generated. So 
the polynomial would be: 

 
f(x) = at-1xt-1 + at-2xt-2 + at-3xt-3 +…+ a1x + a0 mod p, if 
t>4. 

Thus, sender would calculate f(x) for different x-values 
and distribute f(x) and corresponding x over n disjoint 
routes. Given that at least t different messages are 
received, rather than retrieving all the coefficients using 
Vandermonde matrix, receiver R would retrieve the C1 and 
C2 values as shown below. 

R recalculates C1 (x1, y1) and C2 (x2, y2) as below. The 
message is recovered as M = C2 – nbC1. 

Let Li = ∏ j=1…t,  j !=i 1 /( xj - xi), then  
a0   = x1 = ∑ i=1…t (∏ j=1…t, j !=i xj ) fi Li mod p,  
at-3 = y1 = (-1)t-3 [[(x2x3 + x2x4 + …+ xt-1xt)f1 L1 mod p]  +  

[(x1x3 + x1x4 + …+ xt-1xt) f2 L2 mod p] + …  
           [(x1x2 + x1x3 + …+ xt-2xt) ft-1 Lk-1 mod p] +  

[(x1x2 + x1x3 + …+ xt-2xt-1) ft Lk mod p]] mod p 
 at-2 = x2 = (-1)t-2[ [(x2 + x3+...+ xt) f1L1 mod p]+ 

[(x1 + x3 +…+ xt)  f2 L2 mod p] +... 
           [(x1 + x2 +…+ xt-2 + xt) ft-1 Lt-1 mod p] + 

[(x1 + x2+…+xt-1) ftLt mod p]] mod p 
 at-1 = y2 = (-1) t-1[ ∑ i=1…t fi  Li mod p] mod p 

The advantages of this alternative method are: 
Instead of nX packets, where X is the number of x and y 

values of points to be transmitted, just n packets are 
distributed, thus, reducing bandwidth and storage 
consumption by 1/X for each message transmission. Also, 
the retrieval of message is faster since the wait-time 
between the messages is eliminated.  

By adding this scheme once, instead of multiple 
Lagrange, after or before encryption, the packet size for all 
the ECC-based schemes can be reduced to be 2w while 
keeping the number of packets sent between sender and 
receiver nodes to n. In case of MO, the packet-size would 
be 2w but the number of packets exchanged is 3n.  

Based on computational complexity of retrieving the 
coefficients as discussed above, the order of coefficient 
selection, for securely sending multiple messages, should 
be as at-1, at-2, at-3, and a0. The terms (fiLi mod p) are 
common in all the above equations and required to retrieve 
all the 4 coefficients. Further, if we observe closely, this 
term is also present in Shamir’s scheme. These terms can 
be calculated once and stored.  

Next, to retrieve a0 in the above scheme or a secret f(0) 
in Shamir’s scheme, the term (∏ j=1…t, j !=i xj ) requires the 
computations of order O(t2). Similarly, even at-3 requires 
the computations of order O(t2). But, for ak-2 and ak-1, the 
computations are negligible. In Shamir’s scheme, four 
O(t2) computations would be required as against  two O(t2) 
computations in the above scheme. Thus, in MANET 
where computing power, memory, and battery life of 
devices is limited, this scheme would reduce the power 
consumption to half for threshold implementation. 

Lastly, since r, the random number in rG, can be reused 
as r or its partial form is never exposed during 
transmission by using this scheme. 

The only constraint identified in this scheme is that t 
and n must be greater than or equal to 4 (t, n ≥ 4) to 
securely transmit at-1, at-2, at-3 and a0 at one time. 

Considering the bandwidth restrictions in MANETs, an 
alternative to Shamir’s secret sharing scheme using 
Lagrange interpolation is suggested to reduce the packet 
size for all the above ECC algorithms to constant 2w i.e. 
partial share Ci and its corresponding xi value. Using this 
method up to 4 secrets can be transmitted with constant 
packet size of 2w without adding minimum complexity 
irrespective of which algorithm is used. We have also 
identified that this method is applicable only when n and t 
≥ 4. Thus, using our ECC-TC implementation the 
complexity for the algorithms reduces to as shown in 
Table 6. 
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Table 6: Complexity comparison of  ECC-TC Encryption/Decryption 
algorithms 

Share split 
before 
encryption 

Share split 
after 
encryption ECC TC 

Algorith
m  

r
G 

P+
Q 

La
g 

r
G 

P+
Q 

La
g 

Pkt 
size 

 
Pkt
# 

DH 2 2n 1 0 2 1 2w n 
MV 3 0 1 3 0 1 2w n 
Ertaul 3 0 1 3 0 1 2w n 

Note: n, t should be ≥ 4 for to achieve 2w packet size 
Lag= Lagrange Timings 

5. Conclusion 
From earlier RSA-TC implementation, we have put forth 
reasons that justify why it is unsuitable for implementation 
in MANET. 

Through implementation of three most efficient ECC-
TC based algorithms ECC-DH, MV, and Ertaul, we have 
proved that for higher t and n, share generation and point 
conversion adds largely to encryption and decryption 
timings. We have suggested different scenarios where 
each ECC-TC algorithm could provide security for 
MANETs by comparing different timings. We have 
proved earlier that ECC-DH split before encryption is 
ideal for implementing at sender with resource constraints 
as encryption timings are lowest. Further, MV split before 
encryption is ideal for scenarios where receiver has 
resource constraints as decryption timings as lowest. It is 
confirmed that the encryption and decryption timings 
differ significantly for ECC-DH and MV in both split 
before and after encryption scenarios. From the results, 
compared to ECC-DH and MV, Ertaul TC has moderate 
encryption and decryption timings that are very close and 
do not vary significantly with changes in key-size, t, and n 
values for both split before and after encryption. By 
comparing the implementation results for all techniques, 
we have concluded in dynamic environment such as 
MANET where t and n values would be adjusted 
frequently, ECC-DH and MV TC will not prove effective 
as timings will change significantly and may hinder 
performance as nodes that may have resource constraints 
have to act both as sender and receiver. Thus, Ertaul 
would be better for MANETs compared to other two 
algorithms.  

In this paper, we have presented an efficient substitute 
for Shamir’s secret sharing that provides for multiple 
secret sharing scenarios such as ECC-TC. For n, t >=4, 
this scheme allows sharing of up to 4 secrets but the 
packet size is constant, 2w. It does not depend on any 
variable i.e. n, t, or ECC-TC algorithm which means that 
the communication overheads remain constant for all 

algorithms. Thus, selection of an efficient ECC-TC 
algorithm depends on the operations involved in it.  

Applications of MANETs are on rise and hence it is 
necessary to provide security to this highly vulnerable 
wireless network. And by further exploring and 
implementing ECC based threshold cryptography 
algorithms, secure MANETs are feasible. 
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