
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 1

Elliptic Curve Cryptography based Threshold Cryptography (ECC-
TC) Implementation for MANETs

Levent Ertaul† and Nitu J. Chavan††,
levent.ertaul@csueastbay.edu nchavan@gmail.com
California State University, East Bay, Hayward, CA, USA

Summary
A Mobile Ad hoc Network (MANET) consists of multiple
wireless mobile devices that form a network on the fly to allow
communication with each other without any infrastructure. Due
to its nature, providing security in this network is challenging.
Threshold Cryptography (TC) provides a promise of securing
this network. In this paper, our purpose is to find most suitable
ECC algorithm compared to RSA. Through our implementation
of Elliptic Curve Cryptography -based Threshold Cryptography
(ECC-TC), we have explored three most-efficient ECC
encryption algorithms and put forth possibility of using these
ECC-TC algorithms in different scenarios in a MANET. We
compare all ECC-TC results and suggest an algorithm that would
be most suitable for MANET. Finally, we put forth a new secret
sharing alternative that limit communication overheads for
transmitting multiple secrets at the same time.
Key words:
Threshold Cryptography, Elliptic Curve Threshold
Cryptography, Security in MANETs.

1. Introduction

Mobile ad hoc network (MANET) is vulnerable to various
attacks including denial-of-service attack because of
wireless nature of this network [1], [2], [3], [4]. Devices
with constraint resources add to its vulnerability. To
ensure availability of nodes, threshold cryptography can
be implemented in the network so that even if some of the
information is lost still the actual message reaches the
intended receiver without compromising security in terms
of confidentiality, integrity, and authenticity.

Threshold cryptography (TC) involves the sharing of a
key by multiple individuals engaged in encryption or
decryption or splitting of message either before or after
encryption. The TC avoids trusting and engaging just one
individual node for doing the job. Hence, the primary
objective is to share this authority in such a way that each
individual node performs computation on the message
without revealing any secret information about its partial
key or the partial message. Another objective is to have
distributed architecture in a hostile environment. A certain
number of nodes called threshold, t are required to encrypt
and/or decrypt a message. Thus, the TC enhances security
till compromised nodes are less than t since it is difficult to
decode partial messages if the number is less than the

threshold [5], [6], [7], [8], [9], [20].
Threshold cryptography achieves the security needs

such as confidentiality and integrity against malicious
nodes. It also provides data integrity and availability in a
hostile environment and can also employ verification of
the correct data sharing. All this is achieved without
revealing the secret key. Thus, taking into consideration
these characteristics, implementing TC to secure messages
seems a perfect solution in MANET.

Table 1: Key Sizes in Bits for Equivalent Levels
Symmetric ECC DH/DSA/RSA

80 163 1024
128 283 3072

192 409 7680
256 571 15,360

Table 2: Sample ECC Exponentiation over GF(p) and RSA

Encrypt./Decrypt Timings in Milliseconds
 163

ECC
192
ECC

1024
RSAe

1024
RSAd

2048
RSAe

2048
RSA

d
Ultra
SparcII
400MHz

6.1 8.7 1.7 32.1 6.1 205.5

Strong
ARM
200MHz

22.9 37.7 10.8 188.7 39.1 1273.
8

ECC: rG operation, RSAe: RSA Public key operation, RSAd: RSA
Private key operation.

RSA based TC has been implemented in computer
networks to provide security solutions against various
attacks e.g. threshold authentication [19]. These nodes
have large storage capacity and computational power. In
this paper, we discuss in brief why RSA based TC,
commonly used in these networks, is unsuitable for
MANETs. Elliptic curve cryptography has gained
attention in recent years due to ability to provide
equivalent security as RSA but at much smaller key sizes
and at fast rates as seen in Table 1 [10]. ECC has been
considered for applications such as smart card encryption
due to less storage requirements and its computational
efficiency [10] as seen in Table 2. Hence, we have
selected three best algorithms that are ECC-based and can
be implemented for TC. We make a case why and which
ECC-based algorithms for TC will be more appropriate for

 Manuscript received April 5, 2007
Manuscript revised April 25 2007

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 2

MANETs.
For all ECC-TC algorithms, multiple secrets are

required to be transmitted over the network. But the packet
size varies depending on the implemented algorithm thus
adding communication overheads. To solve this problem,
we propose a solution for sharing up to 4 secrets which
results in constant packet size irrespective of the
algorithm.

In next section, we briefly discuss our RSA-TC
implementation using partial encryption i.e. encryption
key is split and its performance results. Further, changes
are suggested in RSA-TC implementation by splitting
message after encryption to compare these results with
ECC-TC.

2. RSA-TC Implementation

Fig. 1. Class Structure of MANET implementation with RSA-TC

Figure 1 represents JAVA 1.4 implementation of
MANET and its class hierarchy. All classes except RSA
and Shared Keys form a basic infrastructure for a MANET
node. PolynomialBig class generates and stores
coefficients for a polynomial used to generate shares using
Lagrange interpolation. LInterpolationBigInt class
implements Lagrange interpolation scheme. From a secret,
a generated polynomial, and a set of x-values, partial
shares are derived. It also retrieves a secret when given a
set of x-values and corresponding partial messages.
Neighbour class stores information of each neighbour in
the MANET such as encryption algorithm type, public
key, threshold t, n, and x-value along with partial shared
key for RSA-TC. EPacket class is instantiated only at the
receiver where it stores partially encrypted messages along
with encryption algorithm, public key, x-values,
corresponding neighbour/shareholder, sender, packet id,
threshold t, and n. MobileClient is the base class for all
types of nodes in a MANET i.e. MobileClientSender,
MobileClientReceiver, and MobileClientShareholder.
SharedKeys class stores information of partial keys and its
shareholder/neighbour at the sender. This class is
instantiated within RSA class that carries out RSA keys
and partial keys generation and partial encryption and
decryption. Each node in the MANET has capability to
carry out RSA-TC encryption.

F

M
n
U
F
m
R
g

a
s
a

In RSA,
i) C = M d mod N and M’ = M = C e mod N
ii) C = M e mod N and M’ = M = C d mod N

In RSA-TC authentication/signature scheme,
 C’ = ∏ i=0 till i=t C xi* f’(i) mod N,
 where Ci = Cxi mod N,
 f (x)= (a0x0 + a1x1 +…+ a(t-1) x(t-1))mod ф(N)
 and a0 = d
 f’(x i)= ∏ j=0,j≠i till j=t (x j /(x i – x j)) * f(x i) mod ф(N)
Thus,

C’ = M {∑
i=0, j=0, j≠i till i=t, j=t

 (x j / (x i – x j)) * f (xi)} mod N
M’ = M = C’ e mod N = C e mod N

ig. 2. RSA and RSA-TC using Shamir’s Lagrange Interpolation

RSA-TC Implementation involved simulation of
ANET consisting of a sender S, receiver R, and other n

odes called shareholders (SH). MANET was simulated in
NIX environment on SUN Sparc Ultra 5_10 machines.
igure 2 explains the RSA-TC scheme [11]. Three main
odules in this application required were generation of
SA keys, determination of threshold t, and share
eneration.

For RSA key generation, the prime numbers p and q
re generated using available functions in JAVA for key
izes 512, 1024, and 2048 bits. Then the private key (d, N)
nd public (e, N) are calculated.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 3

The n and t are fixed to (10, {6,8,10}), (15, {8, 11, 15}),
and (20, {11, 15, 20}).

For RSA-TC, private key d is split using Shamir’s t-out-
of-n scheme based on Lagrange interpolation [7] to
generate partial keys over modulus ф(N) such that any t
out of n partial messages will allow retrieval of the
original message. These keys are used to carry out partial
encryption.

As shown in Figure 3, sender S carries generates partial
keys f(xi) using Lagrange interpolation and polynomial
generation over mod ф(N) as per Fermat’s theorem.
Sender S retains ф(N) but distributes partial keys to
shareholders SH. The shareholders only apply their partial
keys f(xi)s to the message M and forward these partial
messages Cis along-with the xi-values to the receiver.
After receiving t or more Cis, the receiver selects t Cis for
recovery of C. The receiver encrypts xi-values using the
sender’s public key (N, e), and sends it to the sender via
more than one route. The sender calculates respective xi’-
values using Lagrange interpolation over mod ф(N) and
sends them back to the receiver. The receiver then applies
this xi’-values to the respective partial messages and
combines the results to recover the final C. It then
computes Ce mod N to recover the final message M.

Fig. 3. Model protocol for RSA based threshold encryption in Ad hoc
network

In RSA-TC simulation, sender S and receiver R are
available at all times. To simulate the propagation delay
during network transmission, the messages are randomly
delayed at the shareholders, thus, ensuring that set of xi’-
values received are always different. Issues of sharing the
ф(N) with shareholders, the storing of message at the
shareholders, and number of message exchanged between
the shareholders and the receiver are resolved. The sender
carries out computation of the xi’-values. Thus, the
shareholders need not know t and other xi-values that are
obtained by the receiver. Instead of sending the xi-values
to all the shareholders, the receiver would send it to the
sender on multiple reverse routes, less than t, thus
reducing the message-exchanges carried over the wireless
network. Thus, it does not affect the message-exchange
even if a few shareholders dropped out of the network
after step 3.

2.1 Performance Results
 Total RSA-TC encryption timings increased gradually for
a given key size with increase in n and t. As the key-size
increased, the encryption time increased exponentially.

Share generation time increased exponentially as the
key-size was doubled. These timings included time to
generate a polynomial with t coefficients and then to
calculate f(x) for n different x values. Thus, as t value
increased the share generation time increased gradually for
a key size and n.

S

SH-1

SH-n

R

1, 2

1, 2 3

3

4, 6

5

 One hop between 2 nodes
 Multi-hop involves more than 2 nodes on single disjoint route
 Multi-hop involves more than 2 nodes on one or more disjoint

routes
1. Sender S distributes the shared keys along with xi-values amongst its
‘n’ neighbors which will act as Shareholders SH. (f(xi) mod ф, xi, N)
assigned to each shareholder.
2. S sends message M securely to all SHs for partial encryption.
3. SHs apply f(xi) to M and send partial encrypted messages as Ci =
Mf(xi) mod N and xi to Receiver R.
 Note: A few SHs may not be available or a few messages from SH
may be lost during the transmission.
4. S notifies R about threshold t, N and e.
5. R sends selected xi -values to the S for xi’ values.
6. S calculates xi’ values over mod ф(N) and sends them to R. R applies
xi’ values to Cis and combines them to get the original C. Ce mod N
then gives the message M.

Combination time is the time required to combine
partially encrypted message to retrieve original cipher text.
For a given key-size, combination time and decryption
time gradually increased with n and t. Further, increasing
key-size results into exponential increase in these timings
for a given n and t.

Success rate increases as t increases from n/2 to n. For
t=n, success rate is 100% [11]. Success rate varies as ф(N)
is even number and all inverses do not exist in mod ф(N),
when t ≠ n.

The described RSA-TC requires knowledge of ф(N), to
carry out share generation and partial message
combination to retrieve cipher-text [11], [12]. Comparing
the share generation timings with the actual encryption
timings, it is observed that for smaller key sizes the share
generation timings are greater or comparable with the
encryption timings as n increases but for larger key-sizes,
share generation takes longer time but is negligible in
comparison with encryption time. Further, suggest that
success rate cannot be guaranteed for any keys unless
implemented.

To achieve 100% success rate in RSA-TC
implementation, another method to implement threshold
cryptography is to split the message before or after
encryption. Results will be similar as above but with 100%

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 4

success rate when we implement message split before
encryption because partial encryption requires n
encryptions and one Lagrange operation [11]. Similarly,
RSA-TC with message split before encryption would
generate n partial messages using Lagrange interpolation
once and then these partial messages are then encrypted
using n encryptions.

Given the constraints with RSA-TC, in next section, we
would discuss our ECC based threshold cryptography
implementation based on three different algorithms.

3. ECC Based TC

Many variants of ECC based algorithms exist such as ECC
El Gamal [15], EC Diffie-Hellman [16] (EC-DH),
Massey-Omura (MO), Menezes-Vanstone (MV), Koyama-
Maurer-Okamoto-Vanstone (KMOV), Ertaul, and
Demytko [14]. These variants can be modified to
implement ECC-TC in MANET.

Table 3[14] displays performance results for ECC-TC,
implemented using Maple. These timings are
approximation of results for carrying out point
exponentiation and n represents number of shares on
which the operation would be carried out for t-out-of-n
sharing scheme. Table 4 [14] compares the complexity of
all ECC-TC Split before and after encryption algorithms
by considering number of times point exponentiation (rG),
point addition (P+Q), and Lagrange operations are
required. It also lists the number of packets and the packet
size to be transmitted over the network for each algorithm.
w represents length in bits for the largest number used
which is p, so w = ┌log(p)┐[14]. n represents the number
of shares a message is split into. Of the above listed three
operations, theoretically point exponentiation i.e. rG takes
maximum time and resources while point addition takes
the least. From Table 3 and 4, DH, MV, and Ertaul have
been identified as best ECC-TC algorithms suitable for
MANETs. These algorithms are efficient in terms of
complexity for both share split before and after encryption
and have constant timings irrespective of n and t values.

Our goal is to implement ECC based DH, MV, and
Ertaul (most efficient algorithms) for share as well as
message splitting before and after encryption in simulated
MANET environment. Then we will compare their
performances based on timings of different operations that
are required for carrying out these encryptions. These
timings include timings for splitting the message,
converting message to point, and the actual encryption at
the sender. At the receiver, timings comprise of
combination timings to retrieve the original message from
partial messages using Shamir’s secret sharing based on
Lagrange, to convert point to message and the decryption
time.

For ECC-TC, key is not shared here because the public

as well as private keys are in form of points and we cannot
apply Lagrange on the points altogether to split message
or to combine it. Hence, either message is split before
encryption and then the partial messages are encrypted
into points or the message is encrypted into a point and
then the point co-ordinates are split. First, we will briefly
study the three ECC-TC algorithms in following sections.

Table 3: ECC secret sharing timings in milliseconds over prime fields

ECC
Share split before

encryption
Share split after

encryption

163-
bit
Sun

192-
bit
Sun

163-
bit

ARM

192-
bit

ARM

163-
bit
Sun

192-
bit
Sun

163-
bit

ARM

192-
bit

ARM
EG 68.7n 113.1n 18.3 26.1 68.7 113.1 18.3n 26.1n
MO 24.4n 34.8n 91.6n 150.8n 24.4 34.8 91.6 150.8
DH 6.1 8.7 22.9 37.7 6.1 8.7 22.9 37.7
MV 12.2 17.4 45.8 75.4 12.2 17.4 45.8 75.4

KMOV 12.2n 17.4n 45.8n 75.4n 12.2 17.4 45.8 75.4
Ertaul 68.7 113.1 18.3 26.1 68.7 113.1 18.3 26.1

D 18.3n 26.1n emytko 68.7n 113.1n 12.2 17.4 45.8 75.4
Sun: Ult r M M

C x p yp

encryption ption

ra Spa c II 450 Hz ARM: Strong ARM 200 Hz

Table 4: omple ity com arison of ECC-TC Encryption/Decr tion
algorithms

Share split Share split
before after

encryECC TC
Algorith
m g g

Pkt

e

Pkt

r
G

P+
Q

La r
G

P+
Q

La siz

ECCEG 3n 2n 1 3 2 2 5w n
MO 4n 0 1 4 0 6 3w 3n
DH 0 2n 1 0 2 2 3w n
MV 3 0 1 3 0 2 5w n
KMOV 2n 0 1 2 0 2 3w n
Ertaul 3 0 1 3 0 1 4w n
Demytk
o 2 0 1 2 0 1 3w n

Note: Lag= gra Tim s

3 ll n CC H)

La nge ing

.1 ECC fie e
Encryption/Decryption Algorithm

Dif -H ma (E D

ECCDH and its threshold implementation [14] is
suggested as follows: The order of a point G on an elliptic

e E (a, b) is q. P is a large prime. Thecurv p secret key K =
nAnBG is generated using DH algorithm.
Encryption algorithm:

• Alice finds the point PM corresponding to M, and
sends P + n n G to Bob. M A B

Decryption algorithm:
• Bob subtracts nAnBG from PM + nAnBG, and converts

P to the plaintext M. M

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 5

3.1.1 Share split before encryption
thod to split the

• the EC.

AnBG.

 PM = (x, y) on the

• computes PC = nAnBG + PM = (xC, yC).
split xC and

•

arately to get

• = PC - nAnBG.
t PM to the secret M.

3.2 enezes-Vanstone (MV) algorithm
encoding a

m number r < |H|, and calculates

G, xkx mod p, yky mod p) to Bob.

 rnBG = (xk, yk).
 and yk

-1yky mod

ob converts the point (x, y) to get the original plaintext

3.2.1 Share split before encryption

res of secret Mt, 1≤

 converts each share Mt into a point Pt (xt, yt).
ulates

, xkxt mod p, ykyt mod p) to Bob.

p and yk ykyt mod

ith at least t shares of PM, Bob recovers PM, and

.2.2 Share split after encryption
int PM(x, y).

calculates z = xkx

ares of zt, and wt respectively,

nds rG and n pieces of zt, and wt to Bob.
 get (z,

b calculates n

• Alice uses Shamir’s secret sharing me
secret M into n shares of secret M t, 1≤ t ≤ n.
 Alice converts each share Mt to a point Pt on
• Alice computes Pt + nAnBG and sends it to Bob.
• Bob recovers Pt by subtracting nAnBG from Pt + n
• With at least t share of PM, Bob is able to recover PM.
• Finally Bob will convert the point PM to the secret M.

3.1. Share split after encryption 2
• Alice converts the secret M to a point

EC.
 Alice
• Alice uses Shamir’s secret sharing method to

yC into n shares of xCt
 and yC t

 respectively, 1≤ t ≤ n.
 Alice sends n pieces of xC and y

t C to Bob.
 t

• Bob combines t pieces of xCt t
(x

 and yC sep
C, yC), i.e. PC.

 Bob computes PM

• Finally Bob will convert the poin

M
MV [17] is a solution to the problem of
message into a point on EC. It uses a point on an EC to
mask a point in the plane. It is fast and simple. Let H be a
cyclic subgroup of Ep(a, b) with the generator G. Bob has
a private key nB, and a public key nBG. The message M is
converted into a point PM = (x, y) in GF(p).
Encryption algorithm:
 Alice select a rando

rnBG = (xk, yk).
 Alice sends (r

Decryption algorithm:
 Bob calculates nBrG =
 Bob recovers x and y by xk

-1xkx mod p
p.
 B

M.

• Alice splits the message M into n sha
t ≤ n.
• Alice
• Alice select a random number r < |H|, and calc
rnBG = (xk, yk).
• Alice sends (rG
• Bob calculates nBrG = rnBG = (xk, yk).

-1• Bob recovers xt and yt by xk
-1xkxt mod

p.
• W
converts the PM to the secret M.

3
• Alice converts the message M into a po
• Alice select a random number r < |H|.
• Alice calculates rnBG = (xk, yk), and
mod p, and w = yky mod p.
• Alice splits z, w into n sh
1≤ t ≤ n.
• Alice se
• Bob combines t pieces of zt and wt separately to
w).
• Bo BrG = rnBG = (xk, yk).

 p and yk
-1w = yk

-

ob converts PM to the secret M.

 is the private key, and Y =

or yi) is a HASH function such as

rithm:
 value r from Zq.

*Y) xor M, and

 = (U, V), Bob computes x*U=

 V xor H(r*x*P) = H(r*Y) xor M xor

.3.1 Share Split Before Encryption
ecret Mt, 1≤ t ≤

lice selects a random value r from Zq, and computes U

ch share Mt, Alice computes Vt = H(r*Y) xor Mt.

x*r*P.
(r*Y)

b is able to recover M.

.3.2 Share Split After Encryption
q, computes U =

e computes V = H(r*Y) xor M, splits V into n shares

t Ct = (U, Vt) to Bob.
.

) = H(r*Y)

• Bob recovers PM by xk
-1z = xk

-1xkx mod
1y y mod p.
• Eventually B

k

3.3 Ertaul Crypto-system
P is the generator point while x
x*P is the public key.
H((xi, yi)) = Hash(xi x
MD5, SHA-1.
Encryption algo
• Alice selects a random
• Alice computes U = r*P and V = H(r
sends C = (U, V) to Bob.
Decryption algorithm:
• Given a ciphertext C
x*r*P = r*x*P.
• Bob computes
H(r*x*P) = M.

3
• Alice splits the secret M into n shares of s
n.
• A
= r*P.
• For ea
• Alice sends ciphertext Ct = (U, Vt) to Bob.
• Given a ciphertext Ct, Bob computes x*U=
• Bob computes H(r*x*P) and Vt xor H(r*x*P) = H
xor Mt xor H(r*x*P) = Mt.
• With at least k share of Mt, Bo

3
• Alice selects a random value r from Z
r*P.
• Alic
of secret Vt, 1≤ t ≤ n.
• Alice sends ciphertex
• Bob recovers V, and computes x*U= x*r*P
• Bob computes H(x*r*P) and V xor H(x*r*P
xor M xor H(x*r*P) = M.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 6

3.4 ECC-TC Implementation Model

Fig. 4. Class Structure of MANET implementation with ECC-TC

Figure 4 displays class hierarchy of ECC-TC

Fig. otocol for ECC based threshold encryption in Ad hoc

Assumptions during implementation are that in any
giimplementation using JAVA 1.4 in Unix environment on

SUN Sparc Ultra 5_10(360 MHz) machines. ECC-TC
algorithms are implemented in JAVA since it is widely
applicable in mobile devices with resource restraints [18].
A MANET with varying node density, n, is simulated with
a capability to send messages using earlier mentioned
ECC-TC algorithms. As seen in Figure 1 for RSA-TC
implementation, the basic MANET infrastructure is same
here except the additional classes: ECCPoint, ECC,
ECCDH, MV, and Ertaul. ECCPoint class represents a
point on elliptic curve and stores its co-ordinates. ECC
class implements basic elliptic curve point operations such
as point exponentiation and addition, message to point and

point to message conversion. As illustrated in Figure 4,
ECCDH class carries out ECCDH based threshold split
before or after encryption. Likewise, the implementation
can carry out Ertaul and MV based threshold encryption.

 5. Model pr

Node 1

S
e
n
d
er

S

R
e
c
e
i
v
e
r

R Node n

1

2

2

3

3

4

 Multi-hop involves more than 2 nodes on single disjoint route
s

i

1. For Split before encryption: Sender S generates partial message
using Shamir’s Lagrange interpolation from message M and then
encrypts these partial messages to points. For split after encryption,
sender s first encrypts the message to a point and then the encrypted
point is split into partial messages using Lagrange interpolation.
Partial messages are generated by either before or after message
encryption using one of the ECC algorithms.
2. S distributes the partial messages Cis along with corresponding x s
securely to all neighboring nodes on distinct disjoint routes.
3. Available nodes on these routes perform the task of forwarding
partial message packets till it reaches the receiver R. None of these
nodes is either shareholder or combiner in ECC-TC implementation.
4. When R receives t or more Cis and xis, using first t xi values, it
calculates the corresponding ciphertext C. In case of split before
encryption, these partial messages are first decrypted using ECC-TC
algorithm and then using Lagrange interpolation, the original message
is recovered. For split after encryption, partial messages are first
combined using Lagrange interpolation to recover original C and then
using ECC-TC algorithm for decryption, the original message M is
recovered.

network.

ven scenario, there is a sender S, a receiver R, and
multiple nodes on distinct routes that forward the message
from S to R. All the nodes are assigned unique ids. Sender
S and receiver R are already identified in the network. The
key or partial message combination procedure in TC is
impacted by the node availability and the connections in
the network. So in this model, sender splits the message
into number of partial messages while receiver does the
job of combining partial messages and retrieving original
message. Hence, no separate combiner defined in the
network. In addition to this, we consider t or more nodes
are always available, so receiver receives t or more partial
messages. Multiple disjoint routes already traced. Here we

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 7

are not dealing with routing issues, so we assume that the
multiple disjoint routes can be identified using any of the
available multi-path routing protocols. Additionally,
though with multiple partial messages traveling over
different routes, we are not working on the communication
overhead computations in this implementation. Instead of
using multiple random ‘r’ values for each partial message
in split before encryption scenario, a single random value r
is used. Thus, the rG or rKb multiplication timing is
reduced drastically by n-1 times for each message
exchange.

Figure 5 depicts the ECC-TC model where in sender S
g

implement

3.5.1 Determination of ECC parameters
p y accepted

Curve P-192
353866807638357894232076664160839087/00390324961279

fd 82ff1012

urve P-224
=

=

bd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5
506d031 218291fb

urve P-256
921035624876269744694940757353008614/

52999695/

9f7e90
114abc af317768 0104fa0d

7d1f2 e12c4247 f8bce6e563a440f2 77037d81 2deb33a0 f4a13945

342e2 fe1a7f9b 8ee7eb4a7c0f9e16 2bce3357 6b315ece cbb64068

Table 5: Maximum Message mits in ECC implementation

enerates partial messages using Shamir’s Lagrange
interpolation and ECC-TC algorithm. For split before
encryption, a message M first split into n partial messages
that are individually converted to ECC point and then
encrypted using one of the three ECC algorithms
discussed earlier. But in split after encryption, the message
M is first converted to ECC point and encrypted using
ECC-TC algorithm. Next, this encrypted information is
further split into partial encrypted messages using multiple
Lagrange interpolation. Sender thus transmits each
partially encrypted message on different route. The nodes
on these routes forward these messages to receiver after
adding a random delay to simulate propagation delay that
ensures that set of t xi values at the receiver is different
each time. When receiver R collects t or more partially
encrypted messages, then it recalculates the message M by
combining them. For split before encryption, first these
messages are individually decrypted, converted from ECC
point to Mis and then combined to get M, while in split
after encryption, these messages are first combined to
recover C and then ECC-TC decryption is carried out to
retrieve ECC point which is then converted to M.

3.5 Modules in ECC-TC Implementation
Important modules required to successfully
ECC-TC are as follows:

For im lementation of the ECC-TC, widel
NIST curves were selected for implementation for 192,
224, and 256 bits [17] as shown below. For each
algorithm, further respective parameters are determined
beforehand for the sender and receiver.

p = 62771017
r = 62771017353866807638357894231760590137671947/73182842284081
s = 3045ae6f c8422f64 ed579528 d38120ea e12196d5
c = 3099d2bb

cd5f b078b6ef 5f3d6fe2 c745de65 bfcb2538 542d
b = 64210519

9ab 72243049 feb8deec c146b9b1 e59c80e7 0fa7e
Gx = 188da80eb03090f6 7cbf20eb 43a18800 f4ff0a

Gy = 07192b95ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

C
p
26959946667150639794667015087019630673557916/2600263081435100662988
81
r
26959946667150639794667015087019625940457807/7144243917216827223680
61
s =
c = 5b056c7e 11dd68f40469ee7f 3c7a7d74 f7d12111 6
b = b4050a85 0c04b3abf5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4
Gx = b70e0cbd 6bb4bf7f321390b9 4a03c1d3 56c21122 343280d6 115c1d21
Gy = bd376388 b5f723fb4c22dfe6 cd4375a0 5a074764 44d58199 85007e34

C
p = 11579208
 3415290314195533631308867097853951
r = 115792089210356248762697446949407573
 5224135760342422259061068512044369
s = c49d3608 86e70493 6a6678e1 139d26b7 81
c = 7efba166 2985be94 03cb055c75d4f7e0 ce8d84a9 c5
b = 5ac635d8 aa3a93e7 b3ebbd55769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b
Gx = 6b1
d898c296
Gy = 4fe
37bf51f5

3.5.2 Transformation between Message and ECC

points

Li
Key Size Maximum Message Limit

1 667541457033502841776592 37537469520960937762496
993507829221

224 242105523519767084637018751061962369242952420
647905805550448659123

256 198820601855515832876389007208418356947653493
9011764732119112202020563046577

For conv ECC point,
method discussed by Kobiltz is used [13], [14] such that
(kappa*M)mod p < x <(kappa*(M+1))mod p, where (x, y)
is a point on elliptic curve. In our ECC TC
implementation, kappa is fixed to 2

ersion of message to and from

8. This is seen to
accommodate the possible conversion of the ASCII
characters represented as message M into ECC points such
that M< Maximum Message Limit value, which is fixed
for all ECC key sizes as shown in Table 5.

To retrieve a message from a ECC point (x, y),
M=x/kappa mod p

3.5.3 ECC point operations

 As scussed earlier, given EC

di C points, we can carry
out point addition or multiplication/exponentiation. These
operations are prerequisite for carrying out encryption
using ECCDH, MV, and Ertaul algorithms.

3.5.4 Share generation

First n, t) values are fixed

 to one of the following: (10,
{6

(
, 8, 10}), (15, {8, 11, 15}), or (20, {11, 15, 20}). Next,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 8

for calculating the shares and for combining partial
messages, Shamir’s Lagrange interpolation scheme is
implemented. For its polynomial of degree t-1, the
coefficients are randomly generated over the modulus p.
The co-efficient zero depends on the x and y values of
ECC point information that needs to be transmitted based
on ECC algorithm used. In ECC-TC implementation, the
partial shares of the ECC point information are generated
by the sender and forwarded via diverse paths to the
receiver. Currently, xi-values used for calculating the
shares are 1 to n, rather than randomly picking these
values.

3.5.6 Performance Results for ECC-TC algorithms

di

n time is the time to calculate rnBG,
rG

rt a
m

th

e time required to perform a
en

e is the time required to perform
a

 means the sum of all the
op

 the total encryption and total
de

Before discussing performance results, let us first
scuss various terms used in the graphs for the

performance results:
Point exponentiatio
, nAKB., or U i.e.(r*P). This is represented by rG or

nKB or U time in the following figures depending on
which one is required for a given ECC-TC algorithm.

Conversion time at the sender means time to conve
essage to a ECC point. At the receiver, conversion time

means time required to convert a ECC point to a message.
Lagrange time at the sender is the time required to split
e message into partial messages while at the receiver it is

the time required to combine t partial messages to retrieve
original message.

Encryption time is th
cryption operation specific to a ECC-TC algorithm. E.g.

in ECCDH, point addition encrypts the message ECC
point by using operation PM + nAnBG. So here the
encryption time equals to the time required to carry out
point addition. Similarly for MV, encryption time is the
time required to carry operations xkx mod p and yky mod p.
And for Ertaul, it is the time required to carry out XOR
operation in H(r*Y)/M.

Further, decryption tim
decryption operation specific to a ECC-TC algorithm.

E.g. in ECCDH, point addition decrypts a ECC point to a
by using operation PM + nAnBG. So here the encryption
time equals to the time required to carry out point addition.
Similarly for MV, encryption time is the time required to
carry operations xkx xk

-1xkx mod p and yk
-1yky mod p. And

for Ertaul, it is the time required to carry out XOR
operation in V/H(r*x*P).

Total encryption time
erations to encrypt a message in an ECC-TC algorithm,

and total decryption time means sum of all the operations
taken to decrypt a message.

Total timing is the sum of
cryption timings i.e. time required to encrypt a message

and to retrieve it back by decrypting it.

Y-axis in the graphs below represents timings in milli-
seconds while X-axis represents {(t, n), key size}. As
mentioned earlier, t and n are fixed to ({6,8,10}, 10), ({8,
11, 15}, 15), and ({11, 15, 20}, 20) while key sizes are
192, 224, and 254.

ECCDH-Split before encryption (Encryption timings)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

(6,
10

)(1
92

)

(8,
10

)(1
92

)

(10
,10

)(1
92

)

(8,
15

)(1
92

)

(10
,15

)(1
92

)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15
,20

)(1
92

)

(20
,20

)(1
92

)

(6,
10

)(2
24

)

(8,
10

)(2
24

)

(10
,10

)(2
24

)

(8,
15

)(2
24

)

(10
,15

)(2
24

)

(15
,15

)(2
24

)

(11
,20

)(2
24

)

(15
,20

)(2
24

)

(20
,20

)(2
24

)

(6,
10

)(2
54

)

(8,
10

)(2
54

)

(10
,10

)(2
54

)

(8,
15

)(2
54

)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11
,20

)(2
54

)

(15
,20

)(2
54

)

(20
,20

)(2
54

)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Encryption Time nKb Time Encryption Time
Conversion Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 6. Encryption timings for ECCDH-TC Split before encryption

ECCDH-Split before encryption (Decryption timings)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

(6,
10

)(1
92

)

(8,
10)(

19
2)

(10
,10

)(1
92)

(8,
15)(

19
2)

(10
,15

)(1
92)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15,2
0)(

192
)

(20,2
0)(

192
)

(6,10
)(2

24)

(8,10
)(2

24)

(10,1
0)(2

24
)

(8,15
)(2

24
)

(10,1
5)(2

24)

(15,1
5)(2

24)

(11,2
0)(2

24)

(15
,20

)(2
24)

(20
,20

)(2
24)

(6,
10)(

25
4)

(8,
10)(

25
4)

(10
,10

)(2
54)

(8,
15)(

25
4)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11,2
0)(

254
)

(15,2
0)(

254
)

(20,2
0)(

254
)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Decryption Time nKb Time Decryption Time

Conversion Time Lagrange Time

5

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 7. Decryption timings for ECCDH-TC Split before encryption

As observed from Figure 6 and 7, for ECCDH TC
schemes, encryption and decryption timings consist of
large naKb timings. From Figure 6 and 7 for split before
encryption, conversion timings contribute greatly and for
most instances more than Lagrange timings. naKb,
Lagrange and conversion timings increase as we increase
t, n or the key-size.

From Figure 8 and 9 for split after encryption, during
encryption as t and n increases Lagrange timings
contributes more than naKb that is constant for any given
key size irrespective of t and n values. For decryption,
Lagrange timings are small but increase with t, n, and key
sizes.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 9

ECCDH-Split after encryption (Encryption timings)

0

100

200

300

400

500

600

700

800

(6,
10

)(1
92

)

(8,
10

)(1
92

)

(10
,10

)(1
92

)

(8,
15

)(1
92

)

(10
,15

)(1
92

)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15
,20

)(1
92

)

(20
,20

)(1
92

)

(6,
10

)(2
24

)

(8,
10

)(2
24

)

(10
,10

)(2
24

)

(8,
15

)(2
24

)

(10
,15

)(2
24

)

(15
,15

)(2
24

)

(11
,20

)(2
24

)

(15
,20

)(2
24

)

(20
,20

)(2
24

)

(6,
10

)(2
54

)

(8,
10

)(2
54

)

(10
,10

)(2
54

)

(8,
15

)(2
54

)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11
,20

)(2
54

)

(15
,20

)(2
54

)

(20
,20

)(2
54

)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Encryption Time nKb Time Encryption Time

Conversion Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 8. Encryption timings for ECCDH-TC Split after encryption

ECCDH-Split after encryption (Decryption timings)

0

200

400

600

800

1000

1200

(6,
10

)(1
92)

(8,
10

)(1
92)

(10
,10

)(1
92

)

(8,
15

)(1
92)

(10
,15

)(1
92

)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15
,20

)(1
92

)

(20
,20

)(1
92

)

(6,
10

)(2
24

)

(8,
10

)(2
24

)

(10
,10

)(2
24

)

(8,
15

)(2
24)

(10
,15

)(2
24

)

(15
,15

)(2
24

)

(11
,20

)(2
24

)

(15
,20

)(2
24

)

(20
,20

)(2
24

)

(6,
10

)(2
54)

(8,
10

)(2
54)

(10
,10

)(2
54

)

(8,
15

)(2
54)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11
,20

)(2
54

)

(15
,20

)(2
54

)

(20
,20

)(2
54

)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Decryption Time rKb Time Decryption Time
Conversion Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 9. Decryption timings for ECCDH-TC Split after encryption

Figure 10 and 11 display encryption and decryption

timings for Ertaul-Split before encryption while Figure 12
and 13 display timings for Ertaul-Split after encryption.
For Ertaul-split before and after encryption, rKb and U
calculation timings cost the most for encryption, while
Lagrange contributes significantly to it for larger t and n
values for all key-sizes. Hashing and encryption timings
are negligible. There is no point conversion in Ertaul-TC
scheme, hence the encryption timings are almost similar
for both before and after encryption schemes.

Ert aul- Sp lit bef o re encrypt io n (Encryp t io n t imings)

0

2 0 0

4 0 0

6 0 0

8 0 0

10 0 0

12 0 0

(t , n) (K e y s iz e)

Tot al Encrypt ion Time rKb Time U Time
Encrypt ion Time Hash Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 10. Encryption timings Ertaul-TC Split before encryption

Er t a ul - S pl i t be f or e e nc r y pt i on (De c r y pt i on t i mi ngs)

0

100

200

300

400

500

600

700

800

(t , n) (K e y s iz e)

Tot al Encrypt ion Time rKb Time Decrypt ion Time
Hash Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 11. Decryption timings for Ertaul-TC Split before encryption

Ertaul-Split after encryption (Encryption timings)

0

200

400

600

800

1000

1200

(6,
10

)(1
92

)

(8,
10

)(1
92

)

(10
,10

)(1
92

)

(8,
15

)(1
92

)

(10
,15

)(1
92

)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15
,20

)(1
92

)

(20
,20

)(1
92

)

(6,
10

)(2
24

)

(8,
10

)(2
24

)

(10
,10

)(2
24

)

(8,
15

)(2
24

)

(10
,15

)(2
24

)

(15
,15

)(2
24

)

(11
,20

)(2
24

)

(15
,20

)(2
24

)

(20
,20

)(2
24

)

(6,
10

)(2
54

)

(8,
10

)(2
54

)

(10
,10

)(2
54

)

(8,
15

)(2
54

)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11
,20

)(2
54

)

(15
,20

)(2
54

)

(20
,20

)(2
54

)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Encryption Time rKb Time U Time
Encryption Time Hash Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 12. Encryption timings for Ertaul-TC Split after encryption

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 10

Er t a ul - S pl i t a f t e r e nc r y pt i on (D e c r y pt i on t i mi ngs)

0

100

200

300

400

500

600

700

800

900

(t , n) (K e y s iz e)

Tot al Encrypt ion Time rKb Time Decrypt ion Time
Hash Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 13. Decryption timings for Ertaul-TC Split after encryption

M V- S pl i t be f or e e nc r y pt i on (Enc r y pt i on t i mi ngs)

0 . 0 0

2 0 0 . 0 0

4 0 0 . 0 0

6 0 0 . 0 0

8 0 0 . 0 0

10 0 0 . 0 0

12 0 0 . 0 0

14 0 0 . 0 0

16 0 0 . 0 0

18 0 0 . 0 0

2 0 0 0 . 0 0

(t , n) (K e y s iz e)

Tot al Encrypt ion Time rG Time rKb Time
Encrypt ion Time Conversion Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 14. Encryption timings for MV-TC Split before encryption

M V- S pl i t be f or e e nc r y pt i on (De c r y pt i on t i mi ngs)

0 . 0 0

10 0 . 0 0

2 0 0 . 0 0

3 0 0 . 0 0

4 0 0 . 0 0

5 0 0 . 0 0

6 0 0 . 0 0

7 0 0 . 0 0

(t , n) (K e y s iz e)

Tot al Decrypt ion Time rKb Time Decrypt ion Time
Conversion Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 15. Decryption timings for MV-TC Split before encryption

From Figure 14 for MV split before encryption, rKb and
rG timings are similar for all t, n, and key size. Conversion
timings are contributing significantly for this type of
encryption and it increases with t, n, and key size.

As seen in Figure 15, decryption timings mainly consist

of rKb timings that vary with changing t, n, and key-sizes.
From Figure 14 and 15, overall encryption, decryption,
and Lagrange timings are negligible compared to other
timings for this TC scheme.

It is observed in Figure 16 for MV Split after encryption
graph that rG and rKb calculations are almost same and
contribute the most to the encryption timings. Next, share
splitting using Lagrange interpolation contributes
significantly as t, n, and keysizes increase. Total
encryption timings display a gradual increase as t, n, and
keysizes are increased.

From Figure 17, total decryption timings for MV-split
after encryption vary significantly and most of the timings
is contributed by rKb calculation. But as t value is
increased, the Lagrange timings increase exponentially by
contributing significantly at when t=n.

MV-Split after encryption (Encryption timings)

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

(6,
10

)(1
92

)

(8,
10

)(1
92

)

(10
,10

)(1
92

)

(8,
15

)(1
92

)

(10
,15

)(1
92

)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15
,20

)(1
92

)

(20
,20

)(1
92

)

(6,
10

)(2
24

)

(8,
10

)(2
24

)

(10
,10

)(2
24

)

(8,
15

)(2
24

)

(10
,15

)(2
24

)

(15
,15

)(2
24

)

(11
,20

)(2
24

)

(15
,20

)(2
24

)

(20
,20

)(2
24

)

(6,
10

)(2
54

)

(8,
10

)(2
54

)

(10
,10

)(2
54

)

(8,
15

)(2
54

)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11
,20

)(2
54

)

(15
,20

)(2
54

)

(20
,20

)(2
54

)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Encryption Time rG Time rKb Time
Encryption Time Conversion Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 16. Encryption timings for MV-TC Split after encryption

MV-Split after encryption (Decryption timings)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

(6,
10

)(1
92

)

(8,
10

)(1
92

)

(10
,10

)(1
92

)

(8,
15

)(1
92

)

(10
,15

)(1
92

)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15
,20

)(1
92

)

(20
,20

)(1
92

)

(6,
10

)(2
24

)

(8,
10

)(2
24

)

(10
,10

)(2
24

)

(8,
15

)(2
24

)

(10
,15

)(2
24

)

(15
,15

)(2
24

)

(11
,20

)(2
24

)

(15
,20

)(2
24

)

(20
,20

)(2
24

)

(6,
10

)(2
54

)

(8,
10

)(2
54

)

(10
,10

)(2
54

)

(8,
15

)(2
54

)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11
,20

)(2
54

)

(15
,20

)(2
54

)

(20
,20

)(2
54

)

(t, n)(Key size)

Ti
m

in
gs

(m
Se

cs
)

Total Decryption Time rKb Time Decryption Time
Conversion Time Lagrange Time

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 Fig. 17. Decryption timings for MV-TC Split after encryption

From Figure 16 and 17, overall conversion, encryption,
and decryption timings are negligible compared to other
timings for MV-split after encryption.

In Figures 18, 19, and 20, we compare total timings for
the three ECC-TC based algorithms.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 11

T ot al E ncr ypt i on T i mi ngs Compar i son f or E CC- T C

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(t , n) (K e y s i z e)

ECCDH-SBE ECCDH-SAE Ert aul-SBE
Ert aul-SAE MV-SBE MV-SAE

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 SBE = Share split Before Encryption, SAE = Share split After
Encryption
 Fig. 18. Total Encryption timings for ECC-TC algorithms

Considering total Encryption timings for all ECC-TC
algorithms, it is observed in Figure 18 that with increase in
key size and (t, n), the encryption timings increase
gradually for all algorithms. ECCDH is most efficient for
both split before and after encryptions and hence can be
used when sender has resource restraints. As against this,
MV seems most inefficient with wide difference in the
timings for split before and after encryption timings. For
Ertaul, the timings are very close for both split before and
after encryption. Thus, from Figure 18, ECC-DH is ideal
for scenarios where the sender has resource constraints.

Total Decryption Timings Comparison for ECC-TC

0

200

400

600

800

1000

1200

(6,
10

)(1
92

)

(8,
10)(

19
2)

(10
,10

)(1
92)

(8,
15)(

19
2)

(10
,15

)(1
92)

(15
,15

)(1
92

)

(11
,20

)(1
92

)

(15,2
0)(

192
)

(20,2
0)(

192
)

(6,10
)(2

24)

(8,10
)(2

24)

(10,1
0)(2

24
)

(8,15
)(2

24
)

(10,1
5)(2

24)

(15,1
5)(2

24)

(11,2
0)(2

24)

(15
,20

)(2
24)

(20
,20

)(2
24)

(6,
10)(

25
4)

(8,
10)(

25
4)

(10
,10

)(2
54)

(8,
15)(

25
4)

(10
,15

)(2
54

)

(15
,15

)(2
54

)

(11,2
0)(

254
)

(15,2
0)(

254
)

(20,2
0)(

254
)

(t, n)(Key size)

D
ec

ry
pt

io
n

Ti
m

in
gs

 (m
Se

cs
)

ECCDH-SBE ECCDH-SAE Ertaul-SBE
Ertaul-SAE MV-SBE MV-SAE

Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
 SBE = Share split Before Encryption, SAE = Share split After
Encryption
 Fig. 19. Total Decryption timings for ECC-TC algorithms

Figure 19 exemplifies that for decryption timings, MV
split before encryption seems to be efficient. MV-Split
after encryption is efficient at lower t and n values but as
we increase the t, n, and key size the decryption timings
increase exponentially. Ertaul decryption timings seem to
be stable for split before encryption as well as decryption

scenarios. As against the above algorithms, ECCDH's
decryption timings are worst with exponential rise as t, n,
key-sizes are increased. Thus, MV is ideal for scenarios
where the receiver has more power and CPU constraints
while ECCDH is not.

T ot al T i mi ngs (E ncr ypt i on + Decr ypt i on T i mi ngs) f or E CC- T C

600

900

1200

1500

1800

2100

2400

(t , n) (Key si z e)

ECCDH-SBE ECCDH-SAE Ert aul-SBE
Ert aul-SAE MV-SBE MV-SAE

 Processor: SUN Sparc Ultra 5_10 Timings for 200 runs
SBE = Share split Before Encryption, SAE = Share split After
Encryption

 Fig. 20. Total Timings for ECC-TC algorithms

From Figure 20, consider total timings to carry out
threshold cryptography i.e. encryption and decryption
timings combined. MV seems to be the worst algorithm as
the changes in the total timings are exponential and
variation increases at higher values of t, n, and key-sizes.
ECCDH is ideal for lower t and n values irrespective of
key-sizes but at higher t and n values, Ertaul split before
encryption is a better choice.

By and large, it appears that the ECC point
multiplication is the only operation that would cost
significantly when carrying out ECC encryption or
decryption. But from our results, we have proved that for a
given key-size, as the t and n values are increased, ECC
point multiplication timings i.e. rG or rKb or naKb timings
remain constant. On the other hand, Lagrange timings start
increasing and contribute significantly to encryption and
decryption timings for threshold cryptography involving
split after encryption as Lagrange is applied to multiple
values. Also, for larger n values, the conversion timings to
convert message to point also add significantly to the
encryption time for split before encryption. Comparing
results from split before and after encryptions, we have
observed that split before encryption is inefficient than
split after encryption schemes except for Ertaul where the
timings are based more on the t, n, and key-size values. In
Ertaul, the difference in the total timings for both schemes
is small as against ECCDH and MV where one can
observe vast difference in the timings. Given that the
timings in Ertaul scheme are constant for encryption and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 12

decryption and are close, it is ideal scheme to be
implemented in a MANET where both sender and receiver
have equal resources as well as power constraints.

For ECC-TC, more than one packet of size w is
transmitted from sender to receiver in MANETs to be able
to achieve threshold cryptography. In next section, we put
forth an alternative to Shamir’s secret sharing scheme
using Lagrange interpolation wherein up to 4w
information can be sent using just one split.

4. Alternative Secret Sharing Scheme for
Threshold Cryptography in MANETs

In ECC, after encrypting a message, multiple point
information is sent to receiver. For example, in ECC El
Gamal encryption, {C1 = rG, C2 =KbG + Pm} are
transmitted where C1=(x1, y1) and C2= (x2, y2). If threshold
cryptography using Shamir’s (t, n) secret sharing scheme
[5], [6], [7] is used, then either 4 different messages, each
representing one of the x or y values and of 3w packet size,
or a single message, with 5w packet size, would be
broadcasted over each of the n disjoint paths between the
sender and receiver.

In MANET, bandwidth is limited and so we propose
using Vandermonde matrix equations [21] with a slight
modification for sending messages. The x and y values
should be inserted into the polynomial of degree t-1 as
coefficients a0, ak-3, ak-2, and ak-1, where a0 = x1, at-3 = y2,
at-2 = x2, and at-1 = y2. If threshold t > 4, then remaining
coefficients of the polynomial are randomly generated. So
the polynomial would be:

f(x) = at-1xt-1 + at-2xt-2 + at-3xt-3 +…+ a1x + a0 mod p, if
t>4.

Thus, sender would calculate f(x) for different x-values
and distribute f(x) and corresponding x over n disjoint
routes. Given that at least t different messages are
received, rather than retrieving all the coefficients using
Vandermonde matrix, receiver R would retrieve the C1 and
C2 values as shown below.

R recalculates C1 (x1, y1) and C2 (x2, y2) as below. The
message is recovered as M = C2 – nbC1.

Let Li = ∏ j=1…t, j !=i 1 /(xj - xi), then
a0 = x1 = ∑ i=1…t (∏ j=1…t, j !=i xj) fi Li mod p,
at-3 = y1 = (-1)t-3 [[(x2x3 + x2x4 + …+ xt-1xt)f1 L1 mod p] +

[(x1x3 + x1x4 + …+ xt-1xt) f2 L2 mod p] + …
 [(x1x2 + x1x3 + …+ xt-2xt) ft-1 Lk-1 mod p] +

[(x1x2 + x1x3 + …+ xt-2xt-1) ft Lk mod p]] mod p
 at-2 = x2 = (-1)t-2[[(x2 + x3+...+ xt) f1L1 mod p]+

[(x1 + x3 +…+ xt) f2 L2 mod p] +...
 [(x1 + x2 +…+ xt-2 + xt) ft-1 Lt-1 mod p] +

[(x1 + x2+…+xt-1) ftLt mod p]] mod p
 at-1 = y2 = (-1) t-1[∑ i=1…t fi Li mod p] mod p

The advantages of this alternative method are:
Instead of nX packets, where X is the number of x and y

values of points to be transmitted, just n packets are
distributed, thus, reducing bandwidth and storage
consumption by 1/X for each message transmission. Also,
the retrieval of message is faster since the wait-time
between the messages is eliminated.

By adding this scheme once, instead of multiple
Lagrange, after or before encryption, the packet size for all
the ECC-based schemes can be reduced to be 2w while
keeping the number of packets sent between sender and
receiver nodes to n. In case of MO, the packet-size would
be 2w but the number of packets exchanged is 3n.

Based on computational complexity of retrieving the
coefficients as discussed above, the order of coefficient
selection, for securely sending multiple messages, should
be as at-1, at-2, at-3, and a0. The terms (fiLi mod p) are
common in all the above equations and required to retrieve
all the 4 coefficients. Further, if we observe closely, this
term is also present in Shamir’s scheme. These terms can
be calculated once and stored.

Next, to retrieve a0 in the above scheme or a secret f(0)
in Shamir’s scheme, the term (∏ j=1…t, j !=i xj) requires the
computations of order O(t2). Similarly, even at-3 requires
the computations of order O(t2). But, for ak-2 and ak-1, the
computations are negligible. In Shamir’s scheme, four
O(t2) computations would be required as against two O(t2)
computations in the above scheme. Thus, in MANET
where computing power, memory, and battery life of
devices is limited, this scheme would reduce the power
consumption to half for threshold implementation.

Lastly, since r, the random number in rG, can be reused
as r or its partial form is never exposed during
transmission by using this scheme.

The only constraint identified in this scheme is that t
and n must be greater than or equal to 4 (t, n ≥ 4) to
securely transmit at-1, at-2, at-3 and a0 at one time.

Considering the bandwidth restrictions in MANETs, an
alternative to Shamir’s secret sharing scheme using
Lagrange interpolation is suggested to reduce the packet
size for all the above ECC algorithms to constant 2w i.e.
partial share Ci and its corresponding xi value. Using this
method up to 4 secrets can be transmitted with constant
packet size of 2w without adding minimum complexity
irrespective of which algorithm is used. We have also
identified that this method is applicable only when n and t
≥ 4. Thus, using our ECC-TC implementation the
complexity for the algorithms reduces to as shown in
Table 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 13

Table 6: Complexity comparison of ECC-TC Encryption/Decryption
algorithms

Share split
before
encryption

Share split
after
encryption ECC TC

Algorith
m

r
G

P+
Q

La
g

r
G

P+
Q

La
g

Pkt
size

Pkt

DH 2 2n 1 0 2 1 2w n
MV 3 0 1 3 0 1 2w n
Ertaul 3 0 1 3 0 1 2w n

Note: n, t should be ≥ 4 for to achieve 2w packet size
Lag= Lagrange Timings

5. Conclusion
From earlier RSA-TC implementation, we have put forth
reasons that justify why it is unsuitable for implementation
in MANET.

Through implementation of three most efficient ECC-
TC based algorithms ECC-DH, MV, and Ertaul, we have
proved that for higher t and n, share generation and point
conversion adds largely to encryption and decryption
timings. We have suggested different scenarios where
each ECC-TC algorithm could provide security for
MANETs by comparing different timings. We have
proved earlier that ECC-DH split before encryption is
ideal for implementing at sender with resource constraints
as encryption timings are lowest. Further, MV split before
encryption is ideal for scenarios where receiver has
resource constraints as decryption timings as lowest. It is
confirmed that the encryption and decryption timings
differ significantly for ECC-DH and MV in both split
before and after encryption scenarios. From the results,
compared to ECC-DH and MV, Ertaul TC has moderate
encryption and decryption timings that are very close and
do not vary significantly with changes in key-size, t, and n
values for both split before and after encryption. By
comparing the implementation results for all techniques,
we have concluded in dynamic environment such as
MANET where t and n values would be adjusted
frequently, ECC-DH and MV TC will not prove effective
as timings will change significantly and may hinder
performance as nodes that may have resource constraints
have to act both as sender and receiver. Thus, Ertaul
would be better for MANETs compared to other two
algorithms.

In this paper, we have presented an efficient substitute
for Shamir’s secret sharing that provides for multiple
secret sharing scenarios such as ECC-TC. For n, t >=4,
this scheme allows sharing of up to 4 secrets but the
packet size is constant, 2w. It does not depend on any
variable i.e. n, t, or ECC-TC algorithm which means that
the communication overheads remain constant for all

algorithms. Thus, selection of an efficient ECC-TC
algorithm depends on the operations involved in it.

Applications of MANETs are on rise and hence it is
necessary to provide security to this highly vulnerable
wireless network. And by further exploring and
implementing ECC based threshold cryptography
algorithms, secure MANETs are feasible.

References
[1] A. Mishra and K. M. Nadkarni, “Security in wireless ad hoc

networks – A Survey”, in The Handbook of Ad Hoc Wireless
Networks, M. Ilyas, Ed. Boca Raton: CRC Press, 2002, pp. 30.1-
30.51.

[2] P. Papadimitratos and Z. Hass, “Securing Mobile Ad Hoc
Networks”, in The Handbook of Ad Hoc Wireless Networks, M.
Ilyas, Ed. Boca Raton: CRC Press, 2002, pp. 31.1-31.17.

[3] H. Yang, H. Luo, F. Ye, S. Lu, and U. Zhang, “Security in Mobile
Ad Hoc Networks: Challenges and Solutions”, IEEE Wireless
Communications, vol. 11, no. 1, Feb. 2004, pp. 38-47.

[4] W. A. Arbaugh, “Wireless Security is Different”, IEEE Computer,
vol. 36, no. 8, Aug. 2003, pp. 99-101.

[5] Y. G. Desmedt, “Threshold cryptography”, European Trans. on
Telecommunications, 5(4), pp. 449-457, July-August 1994.

[6] P. S. Gemmell, “An Introduction to Threshold Cryptography”,
Cryptobytes, 1997, pp. 7-12.

[7] Y. Desmedt and Y. Frankel, “Threshold cryptosystems”, in
Advances in Cryptology - Crypto '89, Proceedings, Lecture Notes in
Computer Science 435, G. Brassard, Ed., Santa Barbara: Springer-
Verlag,1990, pp. 307-315.

[8] Y. Desmedt, “Some Recent Research Aspects of Threshold
Cryptography”, Information Security, Proceedings (Lecture Notes
in Computer Science 1396), Springer-Verlag 1997, Tatsunokuchi,
Ishikawa, Japan, September 1997, pp. 158-173.

[9] J. Baek and Y. Zheng, Simple and Efficient Threshold
Cryptosystem from the Gap Diffie-Hellman Group. Available at
http://citeseer.nj.nec.com

[10] K. Lauter, “The advantages of Elliptic Curve Cryptography For
Wireless Security”, IEEE Wireless Communications, vol. 11, no. 1,
Feb. 2004, pp. 62-67.

[11] L. Ertaul and N. Chavan, “Security of Ad Hoc Networks and
Threshold Cryptography”, in MOBIWAC 2005.

[12] M. Narasimha, G. Tsudik, and J. Yi, On the Utility of Distributed
Cryptography in P2P and MANETs: the Case of Membership
Control. [Online]. Available: http://citeseer.ist.psu.edu/688081.html

[13] N. Koblitz, A Course in Number Theory and Cryptography
(Graduate Texts in Mathematics, No 114), Springer-Verlag, 1994.

[14] L. Ertaul and W. Lu, “ECC Based Threshold Cryptography for
Secure Data Forwarding and Secure Key Exchange in MANET (I),”
Networking 2005, LCNS 3462, University of Waterloo, Canada,
May 2005, pp. 102-113.

[15] T. El Gamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” IEEE Transactions on Information
Theory, vol. 31(4), July 1985, pp. 469-472.

[16] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of
Computation, vol. 48(177), pp. 203-209, 1987.

[17] “Recommended Elliptic Curves for Federal Government Use.”
[Online]. Available:
http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf

[18] K.Eodh, “Elliptic Curve Cryptography: Java Implementation,”
Proceedings of the 1st Annual Conference on Information Security
curriculum development, October 2004, pp. 88-93.

[19] L. Zhou, F. B. Schneider, and R. van Renesse, "COCA: A Secure
Distributed On-line Certification Authority", ACM Transactions on
Computer Systems, vol. 20, no. 4, November 2002, pp. 329-368.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007 14

[20] G. D. Crescenzo, R. Ge, and G. R. Arce, “Improved Topology
Assumptions For Threshold Cryptography In Mobile Ad Hoc
Networks,” Proceedings of the 3rd ACM workshop on Security of
Ad Hoc And Sensor Networks, ACM Press, 2005, pp. 53-62.

[21] W. Trappe, L. C. Washington, Introduction to Cryptography: with
Coding Theory, Prentice Hall, 2002.

Levent Ertaul received the B.Sc., M.Sc. and
Ph.D degrees from Hacettepe University,
Turkey, in 1984, 1987, and from Sussex
University, UK, in 1994, respectively. After
working as an assistant professor (from 1994) in
the Dept. of Electrical & Electronics
Engineering, Hacettepe University, he moved to

California State University, East Bay in 2002. He is currently a
full time Asst. professor at California State University Eastbay,
in the department of Math & Computer Science. He is actively
involved in security projects nationally and internationally. His
current research interests are Mobile Agents Security, Wireless
Security, Ad Hoc Security and Cryptography. He has numerous
publications in Security issues.

Nitu Chavan received the B.Sc. in Electronics and
Telecommunication Engineering and the M.B.A. in Computer
Management from Pune University in 1997 and 1999,
respectively. From 1999 till 2001, she worked on various
software applications including applications for PDAs.
Currently, she is working at IBM Inc. and pursuing M.Sc. in
Computer Science at California State University, East Bay.

