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Abstract- Data aggregation in wireless sensor 
networks (WSN) helps eliminate information 
redundancy and increase the lifetime of the network. 
When homomorphic encryption is used for data 
aggregation, end-to-end encryption is achieved and 
aggregation function like average or 
minimum/maximum can be computed on the encrypted 
data. Aggregation functions like minimum/maximum 
rely on comparison operation. But, it has been shown 
that any homomorphic encryption is insecure against 
ciphertext only attacks if they support comparison 
operation. The order preserving encryption scheme 
(OPES) has been suggested for WSNs, for secure 
comparison of encrypted data at the aggregator node in 
WSNs. But, the computational cost at the sensor nodes 
in WSNs by using OPES is huge. This paper provides 
an alternative for OPES when used to calculate 
aggregation function minimum/maximum. In this paper 
we briefly describe some homomorphic encryption 
schemes and show how the sensed data is encrypted by 
using these homomorphic encryption schemes. we show 
how aggregation function minimum/maximum can be 
computed at the aggregator node in WSNs by 
performing addition operation and not comparison 
operation on the data encrypted with homomorphic 
encryption schemes. We also show how our scheme 
helps eliminate the encryption cost at the sensor node in 
WSNs. 

Index Terms—Wireless sensor networks, data encryption, 
data aggregation, homomorphic encryption schemes. 
 

1 Introduction 
 

A WSN consists of less expensive and low power 
sensor nodes that are capable of computation, storage 
and communication. These sensor nodes have low 
computation power and storage space. The purpose of 
deploying a sensor node is to monitor an area of interest 
with respect to some physical quantity. Information 
gathered by the sensor nodes is reported to the base 
station [1]. 

    The sensor nodes have low computation power and 
low storage capacity. Each sensor node senses their 
environment and transmits the data to the central point. 
The data gathered by the sensor nodes in most scenarios 
like environmental data (eg, temperature) will 
eventually be computed to find the minimum, maximum 
or average. These computations could be carried out at a 
central point or by the network itself. The latter has the 
advantage of reducing the amount of data transmitted 
over wireless connections. Since the energy 
consumption increases linearly with the amount of 
transmitted data, an aggregation approach helps 
increase the overall lifetime of WSN [1, 2, 3, 4, 5]. 
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s1 to sn are the sensor nodes, A is the aggregator node and R is the 
sink node. s’n are the value sensed by the sensors. 
 
Figure 1: Representation of Sensor node, Aggregator
node and Sink node in WSN
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average, minimum/maximum or movement detection. 
The forwarding node just forwards the data. Sink node 
is assumed to be more powerful than the sensor nodes 
and the aggregator node. Aggregator node and the 
forwarding nodes belong to the backbone, whereas the 
sensor nodes persist in sleep mode until the sink node 
initiates a process that requires a subset of them to 
contribute.  

The concept of concealed data aggregation (CDA) is 
introduced in [3, 4], where the authors address the 
security and energy requirements for WSNs. In CDA 
the authors use Domingo-Ferrer's Privacy 
Homomorphism [6], which provides end-to-end 
encryption between the sensor and the sink node. The 
aggregators carry out the aggregation function on the 
encrypted data. Privacy Homomorphism is a 
homomorphic encryption scheme, which allows 
operation to be performed on the encrypted data 
(ciphertext) as if the operation is performed on the 
plaintext. Homomorphic encryption schemes may have 
the property of additive or multiplicative 
homomorphism. In additive homomorphism, decrypting 
the sum of two ciphertext is same as addition of two 
plaintext (x ,y) represented as x+y=Dk(Ek(x)+Ek(y)). In 
multiplicative homomorphism, decrypting the product 
of two ciphertext is same as multiplication of two 
plaintext. Multiplicative homomorphism is 
mathematically represented as  
x*y=Dk(Ek(x)*Ek(y)). The advantage of using 
homomorphic encryption is that the intermediate 
aggregator node need not decrypt and then encrypt to 
perform the aggregation operation. In paper [3, 4], the 
authors performed aggregation function average and 
movement detection using Domingo-Ferrer's privacy 
homomorphism [6]. The aggregation function 
minimum/maximum is a comparison-based function. In 
[7], Rivest has shown that a Privacy Homomorphism is 
insecure against ciphertext only attacks if it supports 
comparison operations. In [5] the authors apply OPES 
[8] for CDA, to perform secure ciphertext comparison 
required by the aggregation function 
minimum/maximum. In this paper we show that the 
aggregation operation minimum/maximum can be 
performed by computing addition operation and not 
comparison operation on the encrypted data at the 
aggregator node. This paper provides an alternative for 
OPES scheme when used to calculate the aggregation 
function minimum/maximum. 

The paper is organized as follows. In section 2, we 
briefly describe the overview of homomorphic 
encryption schemes. In section 3, we briefly describe 
the OPES scheme used for secure ciphertext 
comparison. In section 4, we propose a new scheme to 
find the minimum/maximum at the aggregator node. 
Finally, in section 5 conclusions are given. 

2 Encryption Schemes exhibiting the 
property of homomorphism 

 
In this section we give an overview of four different 

encryption schemes which exhibit the property of 
homomorphism. 
 
2.1 Encryption functions using Mod 

Operations 
 

In this section, we focus on encryption scheme using 
mod operations, which is cryptosystem using mod 
operation exhibiting the property of homomorphism. 

The cryptosystem using mod operation is introduced 
in [9]. This cryptosystem uses large number m, where 
m= p* q. Here p and q are large prime numbers, which 
are kept secret. The set of original plaintext messages is 
in Zp ={ x|x <= p }, Zm = { x|x <m } has the set of 
ciphertext messages and Qp = { a|a ∈ Zp } has the set of 
encryption clues. 

The encryption algorithm is performed by choosing a 
plaintext 'x' ∈ Zp and a random number 'a' in Qp such 
that x = a mod p. Here p is kept secret. The ciphertext y 
is calculated as y = Ep (x) = a mod m.  

In decryption algorithm the plaintext x is recovered 
as x= Dp(y) = y mod p, where p is the secret key. 

This cryptosystem has the property of additive, 
multiplicative and mixed multiplicative homomorphism. 
The proposed protocol, though exhibits the property of 
homomorphism is not very secure against known 
plaintext attacks, but secure against known ciphertext 
attacks [9]. 
 
2.2 Privacy Homomorphic Encryption 

Schemes 
 

In this section we look into Domingo-Ferrer’s three 
different privacy homomorphism. 

Domingo-Ferrer's New Privacy homomorphism is 
introduced in [10] which is a homomorphic encryption 
scheme not vulnerable to known ciphertext attacks. 

Let us look into the protocol in detail. In this protocol 
n and m are the public parameters. Here m= p * q, 
where p and q are large prime numbers. To increase 
security, m can be kept secret. The number 'n' represents 
the split of the plaintext. The secret keys are p, q, xp, xq. 
Here, xp ∈ Zp and xq ∈ Zq. 

Encryption operation is performed by selecting the 
plaintext a∈ Zm.  We then split a into secret numbers a1, 
a2 ... an, such that a = (a1 + a2 … +ai+...an ) mod m 
and ai∈Zm. 

Ek (a) = (a1 xp mod p, a1 xq mod q), (a2 x2
p mod p, a2 

x2
q mod q)... (an xn

p mod p, an xn
q mod q) 



 

Decryption operation is performed by computing 
scalar product of the ith pair [mod p, mod q] by [x-i

p mod 
p, x-i

q mod q] to get [ai mod p, ai mod q]. The pairs are 
then added up to get [a mod p, a mod q]. Finally, 
Chinese remainder theorem (CRT) [11] is performed to 
get a mod m. 

The privacy homomorphism has the property of 
additive and multiplicative homomorphism. This 
homomorphism scheme though secure against know 
ciphertext attacks is not very secure against known 
plaintext attacks [12]. 

Domingo-Ferrer's Privacy Homomorphism allowing 
field operation on encrypted data is introduced in [13]. 
In this encryption scheme p and p' are  large secret 
primes and let q = pp' is public. Qp is defined as  Qp = 
{a/b : a,b ∈ Zp} 

Encryption operation is performed by selecting a 
value x ∈ Zp, a random fraction a/b in Qp, such that x = 
ab-1 mod p. The ciphertext is computed as y = Ep(x) = 
ab-1 mod q. 

Decryption operation is performed by picking any 
fraction A/B ∈ Qp such that y = AB-1 mod q. The key p 
is used to recover the plaintext x as x = Dp(y) = AB-1 
mod p. 

This privacy homomorphism has the property of 
additive, multiplicative and mixed multiplicative 
homomorphism. The privacy homomorphism is secure 
against chosen ciphertext attacks but not very secure 
against known-plaintext attacks [13]. 

Domingo-Ferrer's Additive and Multiplicative 
Privacy homomorphism is introduced in [6]. In this 
protocol the public parameters are d>2 and m. m should 
have many small divisors and there should be many 
integers less than m that can be inverted modulo m. The 
secret parameters are r∈ Zm and m' such that r−1mod m 
exists and a small divisor m > 1 of m such that s := 
logm'm is an integer. 

Encryption operation is performed by randomly 
splitting a ∈ Zm' into secret a1,··· ,ad such that a =(a1 + 
a2 … +ai+...an ) mod m' and ai∈ Zm. Compute 

Ek(a) = (a1 r mod m, a2 r2 mod m, ... , ad rd mod m) 
Decryption operation is performed by computing the 

scalar product of the j-th coordinate by r−jmod m to 
retrieve aj mod m. The plaintext a is a obtained by 
computing, (a1+..+aj +...+ ad )mod m'. 

This privacy homomorphism has the additive, 
subtractive, multiplicative and division homomorphism. 
The privacy homomorphism is secure against chosen 
ciphertext attacks but not secure against chosen 
plaintext attacks as shown by Wagner [14]. 

In the next section we look into OPES scheme used 
to perform secure comparison over encrypted data. 

3 Adapting OPES scheme for 
Encrypted Comparison in 
Wireless Sensor Networks (WSNs) 

 
The idea of OPES [8] is to take as input a user 

provided target distribution T determined by the 
network designer and transform the plaintext value such 
that the transformed value follows the target 
distribution. In paper [5] the authors show how OPES 
can be adapted to the WSN. 

As given in [5, 8], OPES have the following stages: 
1. Model: The input distribution P and the target 

distribution T are modeled piecewise linear splines. 
2. Flatten: The input distribution P is transformed 

into flat distribution F such that values in F are 
uniformly distributed. 

3. Transform: The flat distribution F is transformed 
into cipher distribution C such that values in C are 
according to the target distribution T. 

Let us look into the details of these phases as 
described in [5]. In the Modeling phase the sorted 
points p1<p2<..p|p| (samples sensed by the sensor node 
known to the network designer) are split into number of 
bucket, each bucket has boundaries [pl,ph], pl being the 
least value and ph being the highest value. A given 
bucket [pl,ph] has h-l-1 sorted points. The bucket is then 
split at the point that has the largest deviation from it’s 
expected value. The splitting is then stopped when the 
number of points in the bucket is below some threshold. 
Using Minimum Description Length principle [15] the 
buckets can be minimized even while the values in the 
bucket preserve the uniform distribution. The bucket 
boundaries are uploaded onto each sensor. For m 
buckets the sensors stores m+1 bucket boundaries. 

In the Flattening phase a plaintext bucket B is 
mapped onto a bucket Bf such that the density of the 
flattened bucket is uniform. If a distribution over [0, 
ph] has a density function qp+r, where p∈[0,ph], then 
for any constant z>0, the mapping function M(p) will 
yield a uniform distribution. M(p) is calculated as, M(p) 
=z(qp2/2r+p). s=q/2r is called quadratic coefficient and 
during predeployment phase one coefficient for each 
bucket is uploaded to all sensor nodes. z = Kn/(sw2 + w) 
is a scale factor where w is the width of the bucket, n is 
the number of points in the bucket and K is the 
maximum of minimum of the predicted flattened bucket 
widths. (pmin ,pmax) represents the domain of the sensed 
valued in plaintext and (fmin ,fmax) is the domain of the 
sensed values. When sensor senses a plain text value the 
sensor node performs binary search over m+1 bucket 
boundaries. Then p is mapped on to flat value f using 
the equation, 
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where wi 
f  = Mi(wi ).  wi  is the length of the plaintext 

bucket Bi and  wi 
f is the length of the corresponding flat 

bucket. The sensor stores the bucket boundaries, 
quadratic coefficient and scale factors in the data 
structure kf, which is termed as encryption key used to 
flatten the sensed values. 

In the Transformation phase the uniform flattened 
value is mapped into target distribution. In other words, 
the target distribution is flattened and aligned with the 
flattened plain text distribution. The sink node models 
the target distribution and flattens it during the 
predistribution phase. The modeling of the target 
distribution yields a set of buckets, (B1

t, B2
t,..., Bk

t) and 
for each bucket there is a quadratic factor st and a scale 
factor zt given as, zt = Ktnt/( st (wt

2)+wt). The quadratic 
function and the scale factor is precomputed.  Let B’f be 
the bucket in the flattened target distribution with length 
w’f. To align the flattened plain text distribution and the 
flattened target distribution, a scaling factor L is 

computed as, ∑∑ ==
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the cipher bucket Bc corresponding to the target bucket 
Bt  is given as wi 

c = L wi 
t and the length of the flattened 

target bucket w’f is given as  w’f = L w’f.  Finally the 
mapping function Mc for mapping values from the 
bucket Bc to the flat bucket B’f is defined by the 
quadratic coefficient sc  = st/L and the scale factor zc = 
zt.  If [cmin, cmax] is the domain of the ciphertexts, then a 
flat value f from the bucket B’f is mapped into cipher c 
using the equation 
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The OPES scheme, when adapted for encrypted 
comparison in WSN is reasonably energy wise, as 
computationally intensive operation is performed at the 
sink node during predeployment stage. The sensor node 
performs minimal computation in real time. The sink 
node models the plaintext distribution, target 
distribution, and computes the scale factor and quadratic 
coefficient. Computation at the sensor nodes includes 
binary search of the sorted bucket boundaries, mapping 
plaintext value to flattened value and mapping flat value 
to cipher value [5]. This scheme is used to perform 
minimum/maximum aggregation function at the 
aggregator node. 

In the next section we show how minimum/maximum 
can be performed at the aggregator node using 
homomorphic encryption schemes described in section 
2. 

 

4 Calculation of Aggregation 
function Maximum/Minimum 

 
In this section we look at how to determine the 

aggregation function minimum/maximum by computing 
addition operation on the encrypted data at the 
aggregator node. The data is encrypted by the 
homomorphic encryption schemes mentioned in section 
2. 

4.1  Finding the maximum value at the 
aggregator node 

 
To calculate the maximum value we use the scheme 

proposed by the author in [16]. The protocol chooses a 
weight w such that (1<=w<=n) and chooses n such that 
it is large enough to represent the longest path. The 
weight w is encrypted as: 
e(w) =  (e1, e2,... en) 
=  …(1) 
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Here e(w) is the encryption of weight w, E(0) is the 
encryption of 0, E(z) is the encryption of z and z is a 
number not equal to 0.  

To use this protocol in WSN, we assume that the 
network designer chooses the value n, large enough to 
represent the maximum sensed value by the sensor 
nodes. The weight w is the data sensed by the sensor 
nodes. The network designer depending on the 
homomorphic encryption schemes chooses the value z. 
For cryptosystem using mod operation [9] and 
Domingo-Ferrer's Privacy Homomorphism allowing 
field operation on encrypted data [13] the value of z is 
chosen such that, z*s<p and z≠0. Here s is the number 
of sensor nodes in WSNs and s<p. For Domingo-
Ferrer's New Privacy homomorphism [10] the value of 
z is chosen such that z<q and z*(p-1) mod m ≠0 . The 
number of sensor nodes s in WSNs should be lesser 
than p. In Domingo-Ferrer's Additive and Multiplicative 
Privacy homomorphism [6] the value z is chosen such 
that, z*s<m’ and z≠0. s is again the number of sensor 
nodes in WSNs and should be lesser than m’. The value 
of z is chosen with such restriction so that they do not 
add up to a value 0 at the aggregator nodes in WSNs. 

 The sensor nodes encrypt the sensed value as show 
in equation (1) and each sensor node transmits n 
encrypted data to the aggregator node. 

The aggregator node calculates the maximum value 
by computing  

)1 )(,),...,(,),...,1(1,(∑ =
== si

i nxniEjxjiExiEM ..(2) 

on the encrypted data received by all the sensor nodes. 
Here s is the number of sensor nodes in the network, 
sending data to the aggregator node and Ei,j(xj) is the 



 

encryption of either z≠0 or 0. The aggregator node 
transmits the calculated maximum value M = 
E0(x),E1(x),…,En(x) to the sink node. 

The sink node decrypts the maximum value from en 
to e1 for i=n to 1 until D (E(xi))≠0  and i determines the 
maximum value sensed by the sensor nodes.  

Let us consider an example to understand this in 
more details. Assume that n=5 and there are 4 sensors 
(s1, s2, s3, s4) that monitor environmental data with 
readings (1, 3 ,4 ,2) respectively. 

The sensors encrypt the sensed data as 
s1 : e(1)=E1,1(z), E1,2(0), E1,3(0),E1,4(0), E1,5(0) 
s2 :e(3) = E2,1(z), E2,2(z), E2,3(z),E2,4(0), E2,5(0) 
s3 :e(4) = E3,1(z), E3,2(z), E3,3(z),E3,4(z), E3,5(0) 
s4 :e(2) = E4,1(z), E4,2(z), E4,3(0),E4,4(0), E4,5(0) 
z is any value not equal to 0. 
The sensor node then transmits these 4 encrypted data 

to the aggregator node.  
The aggregator node computes e(1)+e(3)+e(4)+e(2) 

to get E(z),E(z),E(z),E(z),E(0). This is the maximum 
value sensed by the sensor node. Aggregator node 
transmits the maximum value to the sink node. 

Sink node decrypts the received encrypted message 
E(z),E(z),E(z),E(z),E(0) from right to left for i=5 to 1. 
At i=4 the encrypted message decrypts to a value z not 
equal to 0. So the maximum value is 4. 

Let us look into a numerical example using 
Domingo-Ferrer’s Privacy Homomorphism [6]. Let 
d=2, m=28, r=3 and m’ = 14. Let (x1,x2,x3,x4,x5) = 
(1,2,3,0,0). 

Ek(x1) = Ek(1) = Ek(10,5) = (2,17)   
Ek(x2) = Ek(2) = Ek(11,5) = (5,17) 
Ek(x3) = Ek(3) = Ek(5,12) = (15,24) 
Ek(x4) = Ek(0) = Ek(4,-4) = (12,20) 
Ek(x5) = Ek(0) = Ek(2,-2) = (6,10) 
Adding with encryption of 0 can further hide 

encryption of x, but the result is still x. Ek(x5)+ 
Ek(x6)=(18,2). 

As before assume that n=5 and the 4 sensors (s1, s2, 
s3, s4

) that monitor environmental data senses data as (1 
,3, 4 2) respectively. The data is encrypted as in 
equation (1), with the values encrypted with Domingo-
Ferrer’s Privacy Homomorphism 

s1 : e(1)= Ek(3),Ek(0), Ek(0), Ek(0), Ek(0) 
            =(15,24),(12,20),(6,10),(12,20),(18,2) 
s2 :e(3) = Ek(1),Ek(3), Ek(2), Ek(0), Ek(0)  
            =(2,17),(15,24),(5,17),(12,20),(6,10) 
s3 :e(4) = Ek(2),Ek(1), Ek(3), Ek(1), Ek(0) 
       =(5,17),(2,17),(15,24),(2,17),(6,10) 
s4 :e(2) = Ek(3),Ek(1), Ek(0), Ek(0), Ek(0) 
         =(15,24),(2,17),(12,20),(6,10),(18,2) 
These encrypted values are sent to the aggregator 

node by the sensor node. 
The aggregator node calculates the maximum value 

by computing, 

M = s1+ s2+ s3+ s4 = (15+2+5+15 mod 28, 
24+17+17+24 mod 28), (12+15+2+2 mod 28, 
20+24+17+17 mod 28), (6+5+15+12 mod 28, 
10+17+24+20 mod 28), (12+12+2+6 mod 28, 
20+20+17+10 mod 28), (18+6+6+18 mod 28, 
2+10+10+2 mod 28) 

M = (9,26),(3,22),(10,15),(4,11),(20,24) 
This maximum value M is transmitted to the sink 

node. The sink node decrypts the maximum value M 
from right to left. At i=5 the value (20, 24) decrypts to 
0, at i=4 the value (4,11) decrypts to 1. Since at i=4 the 
encrypted value decrypts to a value z≠0, the maximum 
value is 4. 
 

4.2  Finding the minimum value at the 
aggregator node 

 
To calculate the minimum value we use the scheme 

proposed by the author in finding the minimum path 
[17], which modifies the proposed schemes in [16] 
which determines the maximum path. The protocol 
chooses a weight w such that (1<=w<=n) and chooses 
n such that it is large enough to represent the longest 
path. The weight w is encrypted as: 
e(w) =  (e1, e2,... en) 
= …(3) 
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Here e(w) is the encryption of weight w, E(0) is the 
encryption of 0, E(z) is the encryption of z and z is a 
number not equal to 0.  

To use this protocol in WSN the adaptation is same 
as in the earlier section. The network designer chooses 
the value n, large enough to represent the largest sensed 
data and the weight w is the data sensed by the sensor 
node. As in the earlier section the network designer 
depending on the homomorphic encryption schemes 
chooses the value z. For cryptosystem using mod 
operation [9] and Domingo-Ferrer's Privacy 
Homomorphism allowing field operation on encrypted 
data [13] the value of z is chosen such that, z*s<p and 
z≠0. Here s is the number of sensor nodes in WSNs and 
s<p. For Domingo-Ferrer's New Privacy 
homomorphism [10] the value of z is chosen such that 
z<q and z*(p-1) mod m ≠0. The number of sensor nodes 
s in WSNs should be lesser than p. In Domingo-Ferrer's 
Additive and Multiplicative Privacy homomorphism [6] 
the value z is chosen such that, z*s<m’ and z≠0. s is 
again the number of sensor nodes in WSNs and should 
be lesser than m’. The value of z is chosen with such 
restriction so that they do not add up to a value 0 at the 
aggregator nodes in WSNs. 

The sensor nodes encrypt the sensed value as show in 
equation (3), and transmit the encrypted data to the 
aggregator node. The aggregator node calculates the 



 

minimum value by adding up the encrypted data 
received from all the sensor nodes as 

∑ =
== si

i nxniEjxjiExiEM 1 ))(,),...,(,),...,1(1,( ..(4) 

Here s is the number of sensor nodes in the network, 
sending data to the aggregator node and Ei,j(xj) is the 
encryption of either z≠0 or 0.The aggregator node 
transmits the calculated minimum value M to the sink 
node.  

The sink node decrypts the minimum value from e1 to 
en for i=1 to n until D (E(xi)) not equal to 0 and i-1 
determines the minimum value sensed by the sensor 
node.  

As in the earlier section, let us consider an example 
to understand this in more details. Assume that n=5 and 
there are 4 sensors (s1, s2, s3, s4)  that monitor 
environmental data and they measure sensor readings 
(1,3,4,2) respectively. The sensor nodes encrypt the 
sensed data as 

s1 : e(1)=E1,1(0), E1,2(z), E1,3(z),E1,4(z), E1,5(z) 
s2 :e(3) = E2,1(0), E2,2(0), E2,3(0),E2,4(z), E2,5(z) 
s3 :e(4) = E3,1(0), E3,2(0), E3,3(0),E3,4(0), E3,5(z) 
s4 :e(2) = E4,1(0), E4,2(0), E4,3(z),E4,4(z), E4,5(z) 
z is any value not equal to 0. The sensor node then 

transmits these 4 encrypted data to the aggregator node.  
The aggregator node computes e(1)+e(3)+e(4)+e(2) 

to get E(0), E(z), E(z), E(z), E(z). This is the minimum 
value sensed by the sensor nodes. Aggregator node 
transmits the minimum value to the sink node. 

Sink node decrypts the received encrypted message 
E(0),E(z),E(z),E(z),E(z) from left to right for i=1 to 
n=5. At i=2 the encrypted message decrypts to a value z 
≠ 0. So the minimum value is i-1 = 1. 

Let us look into a numerical example as before using 
Domingo-Ferrer’s Privacy Homomorphism [6]. Let 
d=2, m=28, r=3 and m’ = 7. Let (x1,x2,x3,x4,x5) = 
(1,2,3,0,0). 

Ek(x1) = Ek(1) = Ek(10,5) = (2,17)   
Ek(x2) = Ek(2) = Ek(11,5) = (5,17) 
Ek(x3) = Ek(3) = Ek(5,12) = (15,24) 
Ek(x4) = Ek(0) = Ek(4,-4) = (12,20) 
Ek(x5) = Ek(0) = Ek(2,-2) = (6,10) 
Adding with encryption of 0 can further hide 

encryption of x, but the result is still x. Ek(x5)+ 
Ek(x6)=(18,2). 

As before assume that n=5 and the 4 sensors (s1, s2, 
s3, s4) that monitor environmental data senses data as 
(1, 3, 4, 2) respectively. The data is encrypted as in 
equation (1), with the values encrypted with Domingo-
Ferrer’s Privacy Homomorphism 

s1 : e(1)= Ek(0),Ek(3), Ek(1), Ek(2), Ek(3) 
 =(6,10),(15,24),(2,17),(5,17),(15,24) 

s2 :e(3) = Ek(0),Ek(0), Ek(0), Ek(1), Ek(3) 
 =(12,20),(6,10),(18,2),(2,17),(15,24) 

s3 :e(4) = Ek(0),Ek(0), Ek(0), Ek(0), Ek(1) 

    =(18,2),(12,20),(6,10),(12,20),(2,17) 
s4 :e(2) = Ek(0),Ek(0), Ek(3), Ek(1), Ek(2) 

 = (12, 20),(18,2),(15,24),(2,17),(5,17) 
These encrypted values are sent to the aggregator 

node by the sensor nodes. 
The aggregator node calculates the minimum value 

by computing, 
M = s1+ s2+ s3+ s4 = (6+12+18+12 mod 28, 

10+20+2+20 mod 28), (15+6+12+18 mod 28, 
24+10+20+2 mod 28), (2+18+6+15 mod 28, 
17+2+10+24 mod 28), (5+2+12+2 mod 28, 
17+17+20+17 mod 28), (15+15+2+5 mod 28, 
24+24+17+17 mod 28) 

M = (20, 24),(23,0),(13,25),(21,15),(9,26) 
This minimum value M is transmitted to the sink 

node. The sink node decrypts the minimum value M 
from left to right. At i=1 the value (20, 24) decrypts to 
0, at i=2 the value (23,0) decrypts to 3. Since at i=2 the 
encrypted value decrypts to a value z≠ 0, the minimum 
value is i-1=1. 

The network administrator can place the encrypted 
values E(z), E(0) at each sensor node during the 
predeployment stage of the sensor nodes. The network 
administrator can also determine the number of 
encrypted values to be stored at the senor nodes 
depending upon the storage limitation of the sensor 
nodes. The sensor node can randomize the values of 
E(z) and E(0), by computing addition operation with 
E(0). The sensor node has low computation power and 
encryption at the sensor node in WSNs is a very costly 
operation. By using these proposed schemes the sensor 
nodes need not encrypt any data and hence remove the 
computation cost of encryption all together. Sensor 
nodes need not store the encryption key and even if the 
node is tampered with, the key won’t be revealed. The 
sensor nodes after sensing the data transmit n encrypted 
values. The aggregator node performs 
minimum/maximum value by computing at most ns 
addition operations resulting in n encrypted values. 
Here n is the number of encrypted values sent by each 
sensor node and s is the number of sensor nodes. 

We have used privacy homomorphism as an example, 
but since they are vulnerable to known plaintext attacks 
it might be a problem. We can use any additive 
homomorphic encryption schemes, which is secure 
against known plaintext attacks. Okamota and 
Uchiyama’s new public-key cryptosystem[18], Paillier 
three new probabilistic encyption scheme[19], Elliptic 
curve ElGamal encryption scheme[20] are some of the 
additive homomorphic encryption scheme secure 
against known plaintext attacks. The encryption cost is 
not a problem as the encryption is done during the 
predeployment stage of the sensor nodes. 

 



 

5 Conclusion 
 

In this paper we have shown that the aggregator node 
can perform aggregation function maximum/minimum 
by computing addition operation and not comparison 
operation on the data encrypted using homomorphic 
encryption schemes. By pre-computing E(z), E(0) we 
have eliminated the computation cost for encryption at 
the sensor nodes and solved the major problem in 
WSNs. By using our scheme one can use any additive 
homomorphic encryption schemes, as encryption cost at 
the sensor node in WSNs is not a problem. Furthermore, 
by performing addition operation over encrypted data to 
calculate minimum/maximum we have eliminated the 
overhead of OPES required while calculating 
minimum/maximum. 
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