

Computing Aggregation Function
Minimum/Maximum using Homomorphic Encryption

Schemes in Wireless Sensor Networks (WSNs)
Levent Ertaul Vaidehi

Department of Mathematics & Computer Science Department of Mathematics & Computer Science
California State University, EastBay California State University, EastBay

Hayward, CA, USA. Hayward, CA, USA.
levent.ertaul@csueastbay.edu vaidehikedlaya@gmail.com

Abstract- Data aggregation in wireless sensor
networks (WSN) helps eliminate information
redundancy and increase the lifetime of the network.
When homomorphic encryption is used for data
aggregation, end-to-end encryption is achieved and
aggregation function like average or
minimum/maximum can be computed on the encrypted
data. Aggregation functions like minimum/maximum
rely on comparison operation. But, it has been shown
that any homomorphic encryption is insecure against
ciphertext only attacks if they support comparison
operation. The order preserving encryption scheme
(OPES) has been suggested for WSNs, for secure
comparison of encrypted data at the aggregator node in
WSNs. But, the computational cost at the sensor nodes
in WSNs by using OPES is huge. This paper provides
an alternative for OPES when used to calculate
aggregation function minimum/maximum. In this paper
we briefly describe some homomorphic encryption
schemes and show how the sensed data is encrypted by
using these homomorphic encryption schemes. we show
how aggregation function minimum/maximum can be
computed at the aggregator node in WSNs by
performing addition operation and not comparison
operation on the data encrypted with homomorphic
encryption schemes. We also show how our scheme
helps eliminate the encryption cost at the sensor node in
WSNs.

Index Terms—Wireless sensor networks, data encryption,
data aggregation, homomorphic encryption schemes.

1 Introduction

A WSN consists of less expensive and low power
sensor nodes that are capable of computation, storage
and communication. These sensor nodes have low
computation power and storage space. The purpose of
deploying a sensor node is to monitor an area of interest
with respect to some physical quantity. Information
gathered by the sensor nodes is reported to the base
station [1].

 The sensor nodes have low computation power and
low storage capacity. Each sensor node senses their
environment and transmits the data to the central point.
The data gathered by the sensor nodes in most scenarios
like environmental data (eg, temperature) will
eventually be computed to find the minimum, maximum
or average. These computations could be carried out at a
central point or by the network itself. The latter has the
advantage of reducing the amount of data transmitted
over wireless connections. Since the energy
consumption increases linearly with the amount of
transmitted data, an aggregation approach helps
increase the overall lifetime of WSN [1, 2, 3, 4, 5].

The authors in [2] have lo

sensor nodes, forwarding no
sink node. Let us look into
[2, 3, 4] which explains the
nodes to sink node. Sensor n
and send the data to the ag
node aggregates the data rece
The aggregation function m

s’n

.
s’3s’1 s’2

M=s’1+s’2+…+s’n
M
gically separated WS
des, aggregator nod
the Figure 1 introd
 flow of data from
odes sense the envir
gregator node. Agg
ived from the senor
ay be calculation
sn
…

s1
 s2
 s3
A

R

s1 to sn are the sensor nodes, A is the aggregator node and R is the
sink node. s’n are the value sensed by the sensors.

Figure 1: Representation of Sensor node, Aggregator
node and Sink node in WSN
N into
es and

uced in
 sensor
onment
regator
 nodes.
of the

average, minimum/maximum or movement detection.
The forwarding node just forwards the data. Sink node
is assumed to be more powerful than the sensor nodes
and the aggregator node. Aggregator node and the
forwarding nodes belong to the backbone, whereas the
sensor nodes persist in sleep mode until the sink node
initiates a process that requires a subset of them to
contribute.

The concept of concealed data aggregation (CDA) is
introduced in [3, 4], where the authors address the
security and energy requirements for WSNs. In CDA
the authors use Domingo-Ferrer's Privacy
Homomorphism [6], which provides end-to-end
encryption between the sensor and the sink node. The
aggregators carry out the aggregation function on the
encrypted data. Privacy Homomorphism is a
homomorphic encryption scheme, which allows
operation to be performed on the encrypted data
(ciphertext) as if the operation is performed on the
plaintext. Homomorphic encryption schemes may have
the property of additive or multiplicative
homomorphism. In additive homomorphism, decrypting
the sum of two ciphertext is same as addition of two
plaintext (x ,y) represented as x+y=Dk(Ek(x)+Ek(y)). In
multiplicative homomorphism, decrypting the product
of two ciphertext is same as multiplication of two
plaintext. Multiplicative homomorphism is
mathematically represented as
x*y=Dk(Ek(x)*Ek(y)). The advantage of using
homomorphic encryption is that the intermediate
aggregator node need not decrypt and then encrypt to
perform the aggregation operation. In paper [3, 4], the
authors performed aggregation function average and
movement detection using Domingo-Ferrer's privacy
homomorphism [6]. The aggregation function
minimum/maximum is a comparison-based function. In
[7], Rivest has shown that a Privacy Homomorphism is
insecure against ciphertext only attacks if it supports
comparison operations. In [5] the authors apply OPES
[8] for CDA, to perform secure ciphertext comparison
required by the aggregation function
minimum/maximum. In this paper we show that the
aggregation operation minimum/maximum can be
performed by computing addition operation and not
comparison operation on the encrypted data at the
aggregator node. This paper provides an alternative for
OPES scheme when used to calculate the aggregation
function minimum/maximum.

The paper is organized as follows. In section 2, we
briefly describe the overview of homomorphic
encryption schemes. In section 3, we briefly describe
the OPES scheme used for secure ciphertext
comparison. In section 4, we propose a new scheme to
find the minimum/maximum at the aggregator node.
Finally, in section 5 conclusions are given.

2 Encryption Schemes exhibiting the
property of homomorphism

In this section we give an overview of four different

encryption schemes which exhibit the property of
homomorphism.

2.1 Encryption functions using Mod

Operations

In this section, we focus on encryption scheme using
mod operations, which is cryptosystem using mod
operation exhibiting the property of homomorphism.

The cryptosystem using mod operation is introduced
in [9]. This cryptosystem uses large number m, where
m= p* q. Here p and q are large prime numbers, which
are kept secret. The set of original plaintext messages is
in Zp ={ x|x <= p }, Zm = { x|x <m } has the set of
ciphertext messages and Qp = { a|a ∈ Zp } has the set of
encryption clues.

The encryption algorithm is performed by choosing a
plaintext 'x' ∈ Zp and a random number 'a' in Qp such
that x = a mod p. Here p is kept secret. The ciphertext y
is calculated as y = Ep (x) = a mod m.

In decryption algorithm the plaintext x is recovered
as x= Dp(y) = y mod p, where p is the secret key.

This cryptosystem has the property of additive,
multiplicative and mixed multiplicative homomorphism.
The proposed protocol, though exhibits the property of
homomorphism is not very secure against known
plaintext attacks, but secure against known ciphertext
attacks [9].

2.2 Privacy Homomorphic Encryption

Schemes

In this section we look into Domingo-Ferrer’s three
different privacy homomorphism.

Domingo-Ferrer's New Privacy homomorphism is
introduced in [10] which is a homomorphic encryption
scheme not vulnerable to known ciphertext attacks.

Let us look into the protocol in detail. In this protocol
n and m are the public parameters. Here m= p * q,
where p and q are large prime numbers. To increase
security, m can be kept secret. The number 'n' represents
the split of the plaintext. The secret keys are p, q, xp, xq.
Here, xp ∈ Zp and xq ∈ Zq.

Encryption operation is performed by selecting the
plaintext a∈ Zm. We then split a into secret numbers a1,
a2 ... an, such that a = (a1 + a2 … +ai+...an) mod m
and ai∈Zm.

Ek (a) = (a1 xp mod p, a1 xq mod q), (a2 x2
p mod p, a2

x2
q mod q)... (an xn

p mod p, an xn
q mod q)

Decryption operation is performed by computing
scalar product of the ith pair [mod p, mod q] by [x-i

p mod
p, x-i

q mod q] to get [ai mod p, ai mod q]. The pairs are
then added up to get [a mod p, a mod q]. Finally,
Chinese remainder theorem (CRT) [11] is performed to
get a mod m.

The privacy homomorphism has the property of
additive and multiplicative homomorphism. This
homomorphism scheme though secure against know
ciphertext attacks is not very secure against known
plaintext attacks [12].

Domingo-Ferrer's Privacy Homomorphism allowing
field operation on encrypted data is introduced in [13].
In this encryption scheme p and p' are large secret
primes and let q = pp' is public. Qp is defined as Qp =
{a/b : a,b ∈ Zp}

Encryption operation is performed by selecting a
value x ∈ Zp, a random fraction a/b in Qp, such that x =
ab-1 mod p. The ciphertext is computed as y = Ep(x) =
ab-1 mod q.

Decryption operation is performed by picking any
fraction A/B ∈ Qp such that y = AB-1 mod q. The key p
is used to recover the plaintext x as x = Dp(y) = AB-1
mod p.

This privacy homomorphism has the property of
additive, multiplicative and mixed multiplicative
homomorphism. The privacy homomorphism is secure
against chosen ciphertext attacks but not very secure
against known-plaintext attacks [13].

Domingo-Ferrer's Additive and Multiplicative
Privacy homomorphism is introduced in [6]. In this
protocol the public parameters are d>2 and m. m should
have many small divisors and there should be many
integers less than m that can be inverted modulo m. The
secret parameters are r∈ Zm and m' such that r−1mod m
exists and a small divisor m > 1 of m such that s :=
logm'm is an integer.

Encryption operation is performed by randomly
splitting a ∈ Zm' into secret a1,··· ,ad such that a =(a1 +
a2 … +ai+...an) mod m' and ai∈ Zm. Compute

Ek(a) = (a1 r mod m, a2 r2 mod m, ... , ad rd mod m)
Decryption operation is performed by computing the

scalar product of the j-th coordinate by r−jmod m to
retrieve aj mod m. The plaintext a is a obtained by
computing, (a1+..+aj +...+ ad)mod m'.

This privacy homomorphism has the additive,
subtractive, multiplicative and division homomorphism.
The privacy homomorphism is secure against chosen
ciphertext attacks but not secure against chosen
plaintext attacks as shown by Wagner [14].

In the next section we look into OPES scheme used
to perform secure comparison over encrypted data.

3 Adapting OPES scheme for
Encrypted Comparison in
Wireless Sensor Networks (WSNs)

The idea of OPES [8] is to take as input a user

provided target distribution T determined by the
network designer and transform the plaintext value such
that the transformed value follows the target
distribution. In paper [5] the authors show how OPES
can be adapted to the WSN.

As given in [5, 8], OPES have the following stages:
1. Model: The input distribution P and the target

distribution T are modeled piecewise linear splines.
2. Flatten: The input distribution P is transformed

into flat distribution F such that values in F are
uniformly distributed.

3. Transform: The flat distribution F is transformed
into cipher distribution C such that values in C are
according to the target distribution T.

Let us look into the details of these phases as
described in [5]. In the Modeling phase the sorted
points p1<p2<..p|p| (samples sensed by the sensor node
known to the network designer) are split into number of
bucket, each bucket has boundaries [pl,ph], pl being the
least value and ph being the highest value. A given
bucket [pl,ph] has h-l-1 sorted points. The bucket is then
split at the point that has the largest deviation from it’s
expected value. The splitting is then stopped when the
number of points in the bucket is below some threshold.
Using Minimum Description Length principle [15] the
buckets can be minimized even while the values in the
bucket preserve the uniform distribution. The bucket
boundaries are uploaded onto each sensor. For m
buckets the sensors stores m+1 bucket boundaries.

In the Flattening phase a plaintext bucket B is
mapped onto a bucket Bf such that the density of the
flattened bucket is uniform. If a distribution over [0,
ph] has a density function qp+r, where p∈[0,ph], then
for any constant z>0, the mapping function M(p) will
yield a uniform distribution. M(p) is calculated as, M(p)
=z(qp2/2r+p). s=q/2r is called quadratic coefficient and
during predeployment phase one coefficient for each
bucket is uploaded to all sensor nodes. z = Kn/(sw2 + w)
is a scale factor where w is the width of the bucket, n is
the number of points in the bucket and K is the
maximum of minimum of the predicted flattened bucket
widths. (pmin ,pmax) represents the domain of the sensed
valued in plaintext and (fmin ,fmax) is the domain of the
sensed values. When sensor senses a plain text value the
sensor node performs binary search over m+1 bucket
boundaries. Then p is mapped on to flat value f using
the equation,

)(
1

1
min

1

1
min ∑∑

−

=

−

=

−−++=
i

j
ji

f
j

i

j
wppMwff ,

where wi
f = Mi(wi). wi is the length of the plaintext

bucket Bi and wi
f is the length of the corresponding flat

bucket. The sensor stores the bucket boundaries,
quadratic coefficient and scale factors in the data
structure kf, which is termed as encryption key used to
flatten the sensed values.

In the Transformation phase the uniform flattened
value is mapped into target distribution. In other words,
the target distribution is flattened and aligned with the
flattened plain text distribution. The sink node models
the target distribution and flattens it during the
predistribution phase. The modeling of the target
distribution yields a set of buckets, (B1

t, B2
t,..., Bk

t) and
for each bucket there is a quadratic factor st and a scale
factor zt given as, zt = Ktnt/(st (wt

2)+wt). The quadratic
function and the scale factor is precomputed. Let B’f be
the bucket in the flattened target distribution with length
w’f. To align the flattened plain text distribution and the
flattened target distribution, a scaling factor L is

computed as, ∑∑ ==
=

k

i
f

i
m

i
f

i wwL
1

'
1

. The length of

the cipher bucket Bc corresponding to the target bucket
Bt is given as wi

c = L wi
t and the length of the flattened

target bucket w’f is given as w’f = L w’f. Finally the
mapping function Mc for mapping values from the
bucket Bc to the flat bucket B’f is defined by the
quadratic coefficient sc = st/L and the scale factor zc =
zt. If [cmin, cmax] is the domain of the ciphertexts, then a
flat value f from the bucket B’f is mapped into cipher c
using the equation

)(
1

1

'
min

1
1

1
min ∑∑

−

=

−
−

=

−−++=
i

j

f
j

c
i

c
j

i

j

wffMwcc

The OPES scheme, when adapted for encrypted
comparison in WSN is reasonably energy wise, as
computationally intensive operation is performed at the
sink node during predeployment stage. The sensor node
performs minimal computation in real time. The sink
node models the plaintext distribution, target
distribution, and computes the scale factor and quadratic
coefficient. Computation at the sensor nodes includes
binary search of the sorted bucket boundaries, mapping
plaintext value to flattened value and mapping flat value
to cipher value [5]. This scheme is used to perform
minimum/maximum aggregation function at the
aggregator node.

In the next section we show how minimum/maximum
can be performed at the aggregator node using
homomorphic encryption schemes described in section
2.

4 Calculation of Aggregation
function Maximum/Minimum

In this section we look at how to determine the

aggregation function minimum/maximum by computing
addition operation on the encrypted data at the
aggregator node. The data is encrypted by the
homomorphic encryption schemes mentioned in section
2.

4.1 Finding the maximum value at the
aggregator node

To calculate the maximum value we use the scheme

proposed by the author in [16]. The protocol chooses a
weight w such that (1<=w<=n) and chooses n such that
it is large enough to represent the longest path. The
weight w is encrypted as:
e(w) = (e1, e2,... en)
= …(1)

4434421
w

zEzE),(),...,(
4434421

wn

EE
−

)0(),...,0(

Here e(w) is the encryption of weight w, E(0) is the
encryption of 0, E(z) is the encryption of z and z is a
number not equal to 0.

To use this protocol in WSN, we assume that the
network designer chooses the value n, large enough to
represent the maximum sensed value by the sensor
nodes. The weight w is the data sensed by the sensor
nodes. The network designer depending on the
homomorphic encryption schemes chooses the value z.
For cryptosystem using mod operation [9] and
Domingo-Ferrer's Privacy Homomorphism allowing
field operation on encrypted data [13] the value of z is
chosen such that, z*s<p and z≠0. Here s is the number
of sensor nodes in WSNs and s<p. For Domingo-
Ferrer's New Privacy homomorphism [10] the value of
z is chosen such that z<q and z*(p-1) mod m ≠0 . The
number of sensor nodes s in WSNs should be lesser
than p. In Domingo-Ferrer's Additive and Multiplicative
Privacy homomorphism [6] the value z is chosen such
that, z*s<m’ and z≠0. s is again the number of sensor
nodes in WSNs and should be lesser than m’. The value
of z is chosen with such restriction so that they do not
add up to a value 0 at the aggregator nodes in WSNs.

 The sensor nodes encrypt the sensed value as show
in equation (1) and each sensor node transmits n
encrypted data to the aggregator node.

The aggregator node calculates the maximum value
by computing

)1)(,),...,(,),...,1(1,(∑ =
== si

i nxniEjxjiExiEM ..(2)

on the encrypted data received by all the sensor nodes.
Here s is the number of sensor nodes in the network,
sending data to the aggregator node and Ei,j(xj) is the

encryption of either z≠0 or 0. The aggregator node
transmits the calculated maximum value M =
E0(x),E1(x),…,En(x) to the sink node.

The sink node decrypts the maximum value from en
to e1 for i=n to 1 until D (E(xi))≠0 and i determines the
maximum value sensed by the sensor nodes.

Let us consider an example to understand this in
more details. Assume that n=5 and there are 4 sensors
(s1, s2, s3, s4) that monitor environmental data with
readings (1, 3 ,4 ,2) respectively.

The sensors encrypt the sensed data as
s1 : e(1)=E1,1(z), E1,2(0), E1,3(0),E1,4(0), E1,5(0)
s2 :e(3) = E2,1(z), E2,2(z), E2,3(z),E2,4(0), E2,5(0)
s3 :e(4) = E3,1(z), E3,2(z), E3,3(z),E3,4(z), E3,5(0)
s4 :e(2) = E4,1(z), E4,2(z), E4,3(0),E4,4(0), E4,5(0)
z is any value not equal to 0.
The sensor node then transmits these 4 encrypted data

to the aggregator node.
The aggregator node computes e(1)+e(3)+e(4)+e(2)

to get E(z),E(z),E(z),E(z),E(0). This is the maximum
value sensed by the sensor node. Aggregator node
transmits the maximum value to the sink node.

Sink node decrypts the received encrypted message
E(z),E(z),E(z),E(z),E(0) from right to left for i=5 to 1.
At i=4 the encrypted message decrypts to a value z not
equal to 0. So the maximum value is 4.

Let us look into a numerical example using
Domingo-Ferrer’s Privacy Homomorphism [6]. Let
d=2, m=28, r=3 and m’ = 14. Let (x1,x2,x3,x4,x5) =
(1,2,3,0,0).

Ek(x1) = Ek(1) = Ek(10,5) = (2,17)
Ek(x2) = Ek(2) = Ek(11,5) = (5,17)
Ek(x3) = Ek(3) = Ek(5,12) = (15,24)
Ek(x4) = Ek(0) = Ek(4,-4) = (12,20)
Ek(x5) = Ek(0) = Ek(2,-2) = (6,10)
Adding with encryption of 0 can further hide

encryption of x, but the result is still x. Ek(x5)+
Ek(x6)=(18,2).

As before assume that n=5 and the 4 sensors (s1, s2,
s3, s4

) that monitor environmental data senses data as (1
,3, 4 2) respectively. The data is encrypted as in
equation (1), with the values encrypted with Domingo-
Ferrer’s Privacy Homomorphism

s1 : e(1)= Ek(3),Ek(0), Ek(0), Ek(0), Ek(0)
 =(15,24),(12,20),(6,10),(12,20),(18,2)
s2 :e(3) = Ek(1),Ek(3), Ek(2), Ek(0), Ek(0)
 =(2,17),(15,24),(5,17),(12,20),(6,10)
s3 :e(4) = Ek(2),Ek(1), Ek(3), Ek(1), Ek(0)
 =(5,17),(2,17),(15,24),(2,17),(6,10)
s4 :e(2) = Ek(3),Ek(1), Ek(0), Ek(0), Ek(0)
 =(15,24),(2,17),(12,20),(6,10),(18,2)
These encrypted values are sent to the aggregator

node by the sensor node.
The aggregator node calculates the maximum value

by computing,

M = s1+ s2+ s3+ s4 = (15+2+5+15 mod 28,
24+17+17+24 mod 28), (12+15+2+2 mod 28,
20+24+17+17 mod 28), (6+5+15+12 mod 28,
10+17+24+20 mod 28), (12+12+2+6 mod 28,
20+20+17+10 mod 28), (18+6+6+18 mod 28,
2+10+10+2 mod 28)

M = (9,26),(3,22),(10,15),(4,11),(20,24)
This maximum value M is transmitted to the sink

node. The sink node decrypts the maximum value M
from right to left. At i=5 the value (20, 24) decrypts to
0, at i=4 the value (4,11) decrypts to 1. Since at i=4 the
encrypted value decrypts to a value z≠0, the maximum
value is 4.

4.2 Finding the minimum value at the
aggregator node

To calculate the minimum value we use the scheme

proposed by the author in finding the minimum path
[17], which modifies the proposed schemes in [16]
which determines the maximum path. The protocol
chooses a weight w such that (1<=w<=n) and chooses
n such that it is large enough to represent the longest
path. The weight w is encrypted as:
e(w) = (e1, e2,... en)
= …(3)

4434421
w

EE),0(),...,0(
4434421

wn

zEzE
−

)(),...,(

Here e(w) is the encryption of weight w, E(0) is the
encryption of 0, E(z) is the encryption of z and z is a
number not equal to 0.

To use this protocol in WSN the adaptation is same
as in the earlier section. The network designer chooses
the value n, large enough to represent the largest sensed
data and the weight w is the data sensed by the sensor
node. As in the earlier section the network designer
depending on the homomorphic encryption schemes
chooses the value z. For cryptosystem using mod
operation [9] and Domingo-Ferrer's Privacy
Homomorphism allowing field operation on encrypted
data [13] the value of z is chosen such that, z*s<p and
z≠0. Here s is the number of sensor nodes in WSNs and
s<p. For Domingo-Ferrer's New Privacy
homomorphism [10] the value of z is chosen such that
z<q and z*(p-1) mod m ≠0. The number of sensor nodes
s in WSNs should be lesser than p. In Domingo-Ferrer's
Additive and Multiplicative Privacy homomorphism [6]
the value z is chosen such that, z*s<m’ and z≠0. s is
again the number of sensor nodes in WSNs and should
be lesser than m’. The value of z is chosen with such
restriction so that they do not add up to a value 0 at the
aggregator nodes in WSNs.

The sensor nodes encrypt the sensed value as show in
equation (3), and transmit the encrypted data to the
aggregator node. The aggregator node calculates the

minimum value by adding up the encrypted data
received from all the sensor nodes as

∑ =
== si

i nxniEjxjiExiEM 1))(,),...,(,),...,1(1,(..(4)

Here s is the number of sensor nodes in the network,
sending data to the aggregator node and Ei,j(xj) is the
encryption of either z≠0 or 0.The aggregator node
transmits the calculated minimum value M to the sink
node.

The sink node decrypts the minimum value from e1 to
en for i=1 to n until D (E(xi)) not equal to 0 and i-1
determines the minimum value sensed by the sensor
node.

As in the earlier section, let us consider an example
to understand this in more details. Assume that n=5 and
there are 4 sensors (s1, s2, s3, s4) that monitor
environmental data and they measure sensor readings
(1,3,4,2) respectively. The sensor nodes encrypt the
sensed data as

s1 : e(1)=E1,1(0), E1,2(z), E1,3(z),E1,4(z), E1,5(z)
s2 :e(3) = E2,1(0), E2,2(0), E2,3(0),E2,4(z), E2,5(z)
s3 :e(4) = E3,1(0), E3,2(0), E3,3(0),E3,4(0), E3,5(z)
s4 :e(2) = E4,1(0), E4,2(0), E4,3(z),E4,4(z), E4,5(z)
z is any value not equal to 0. The sensor node then

transmits these 4 encrypted data to the aggregator node.
The aggregator node computes e(1)+e(3)+e(4)+e(2)

to get E(0), E(z), E(z), E(z), E(z). This is the minimum
value sensed by the sensor nodes. Aggregator node
transmits the minimum value to the sink node.

Sink node decrypts the received encrypted message
E(0),E(z),E(z),E(z),E(z) from left to right for i=1 to
n=5. At i=2 the encrypted message decrypts to a value z
≠ 0. So the minimum value is i-1 = 1.

Let us look into a numerical example as before using
Domingo-Ferrer’s Privacy Homomorphism [6]. Let
d=2, m=28, r=3 and m’ = 7. Let (x1,x2,x3,x4,x5) =
(1,2,3,0,0).

Ek(x1) = Ek(1) = Ek(10,5) = (2,17)
Ek(x2) = Ek(2) = Ek(11,5) = (5,17)
Ek(x3) = Ek(3) = Ek(5,12) = (15,24)
Ek(x4) = Ek(0) = Ek(4,-4) = (12,20)
Ek(x5) = Ek(0) = Ek(2,-2) = (6,10)
Adding with encryption of 0 can further hide

encryption of x, but the result is still x. Ek(x5)+
Ek(x6)=(18,2).

As before assume that n=5 and the 4 sensors (s1, s2,
s3, s4) that monitor environmental data senses data as
(1, 3, 4, 2) respectively. The data is encrypted as in
equation (1), with the values encrypted with Domingo-
Ferrer’s Privacy Homomorphism

s1 : e(1)= Ek(0),Ek(3), Ek(1), Ek(2), Ek(3)
 =(6,10),(15,24),(2,17),(5,17),(15,24)

s2 :e(3) = Ek(0),Ek(0), Ek(0), Ek(1), Ek(3)
 =(12,20),(6,10),(18,2),(2,17),(15,24)

s3 :e(4) = Ek(0),Ek(0), Ek(0), Ek(0), Ek(1)

 =(18,2),(12,20),(6,10),(12,20),(2,17)
s4 :e(2) = Ek(0),Ek(0), Ek(3), Ek(1), Ek(2)

 = (12, 20),(18,2),(15,24),(2,17),(5,17)
These encrypted values are sent to the aggregator

node by the sensor nodes.
The aggregator node calculates the minimum value

by computing,
M = s1+ s2+ s3+ s4 = (6+12+18+12 mod 28,

10+20+2+20 mod 28), (15+6+12+18 mod 28,
24+10+20+2 mod 28), (2+18+6+15 mod 28,
17+2+10+24 mod 28), (5+2+12+2 mod 28,
17+17+20+17 mod 28), (15+15+2+5 mod 28,
24+24+17+17 mod 28)

M = (20, 24),(23,0),(13,25),(21,15),(9,26)
This minimum value M is transmitted to the sink

node. The sink node decrypts the minimum value M
from left to right. At i=1 the value (20, 24) decrypts to
0, at i=2 the value (23,0) decrypts to 3. Since at i=2 the
encrypted value decrypts to a value z≠ 0, the minimum
value is i-1=1.

The network administrator can place the encrypted
values E(z), E(0) at each sensor node during the
predeployment stage of the sensor nodes. The network
administrator can also determine the number of
encrypted values to be stored at the senor nodes
depending upon the storage limitation of the sensor
nodes. The sensor node can randomize the values of
E(z) and E(0), by computing addition operation with
E(0). The sensor node has low computation power and
encryption at the sensor node in WSNs is a very costly
operation. By using these proposed schemes the sensor
nodes need not encrypt any data and hence remove the
computation cost of encryption all together. Sensor
nodes need not store the encryption key and even if the
node is tampered with, the key won’t be revealed. The
sensor nodes after sensing the data transmit n encrypted
values. The aggregator node performs
minimum/maximum value by computing at most ns
addition operations resulting in n encrypted values.
Here n is the number of encrypted values sent by each
sensor node and s is the number of sensor nodes.

We have used privacy homomorphism as an example,
but since they are vulnerable to known plaintext attacks
it might be a problem. We can use any additive
homomorphic encryption schemes, which is secure
against known plaintext attacks. Okamota and
Uchiyama’s new public-key cryptosystem[18], Paillier
three new probabilistic encyption scheme[19], Elliptic
curve ElGamal encryption scheme[20] are some of the
additive homomorphic encryption scheme secure
against known plaintext attacks. The encryption cost is
not a problem as the encryption is done during the
predeployment stage of the sensor nodes.

5 Conclusion

In this paper we have shown that the aggregator node
can perform aggregation function maximum/minimum
by computing addition operation and not comparison
operation on the data encrypted using homomorphic
encryption schemes. By pre-computing E(z), E(0) we
have eliminated the computation cost for encryption at
the sensor nodes and solved the major problem in
WSNs. By using our scheme one can use any additive
homomorphic encryption schemes, as encryption cost at
the sensor node in WSNs is not a problem. Furthermore,
by performing addition operation over encrypted data to
calculate minimum/maximum we have eliminated the
overhead of OPES required while calculating
minimum/maximum.

6 REFERENCES

1. Yang Xiao. “Security in Sensor Networks”,

Auerbach Publications, 2007, pp. 275-290.
2. Dirk Westhoff, Joao Girao, Mithun Acharya.

“Concealed data aggregation for reverse multicast
traffic in sensor networks: Encryption, key
distribution and routing adaptation”. IEEE
Transactions on Mobile Computing,, October 2006.

3. J.Girao, D.Westhoff, and M.Schneider. Concealed
data aggregation in wireless sensor networks. ACM
WiSe04 – poster, in conjunction with ACM
MOBICOM 2004, October 2004.

4. J.Girao, D.Westhoff, and M.Schneider. CDA:
Concealed data aggregation for reverse multicast
traffic in wireless sensor networks. 40th
International conference on communications, IEEE
ICC 2005, May 2005.

5. Mithun Acharya, Joao Girao, and Dirk Westhoff.
“Secure comparison of encrypted data in wireless
sensor networks”. In 3rd Intl. Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks, Trentino, Italy, April 2005.
WiOpt2005

6. J. Domingo-Ferrer. “A Provably Secure Additive
and Multiplicative Privacy Homomorphism”.
Information Security Conference, LNCS 2433,
pages 471–483, January 2002.

7. R. L. Rivest, L. Adleman and M. L. Dertouzos,
“On data banks and privacy homomorphisms”, in
Foundations of Secure Computation, R. A.
DeMillo et al., Eds. New-York: Academic Press,
1978, pp. 169-179.

8. Rakesh Agrawal., Jerry Kiernan, Ramakrishnan
Srikant, Yirong Xu: “Order-Preserving Encryption
for Numeric Data”. SIGMOD Conference 2004:
563-574.

9. Hyungjick Lee, Jim Alves-Foss,Scott Harrison, “
The use of Encrypted Functions for Mobile Agent
Security”,Proceedings of the 37th Hawaii
International Conference on System Sciences –
2004.

10. Josep Domingo i Ferrer, “A new Privacy
Homomorphism and Applications”, Elsevier North-
Holland, Inc, 1996.

11. William Stallings “Cryptography and Network
Security”, Third Edition, Chinese Remainder
Theorem (CRT), pp. 245-47.

12. Jung Hee Cheon, Hyun Soon Nam,”A
Cryptanalysis of the Original Domingo-Ferrer's
Algebraic Privacy Homorphism”,
http://eprint.iacr.org/2003/221.pdf

13. J. Domingo-Ferrer and J. Herrera-Joancomarti. “A
privacy homomorphism allowing field operations
on encrypted data”. I Jornades de Matematica
Discreta i Algorismica, Universitat Politecnica de
Catalunya, March 1998.

14. D. Wagner, “Cryptanalysis of an algebraic privacy
homomorphism”, In proceedings of the 6th
information security conference(ISC03), Bristol,
UK, October 2003.

15. J.Rissanen. “Stochastic complexity in statistical
inquiry”. World Scientific Publication, 1989.

16. Makoto Yokoo, Koutarou Suzuki, “Secure Multi-
agent Dynamic Programming based on
Homomorphic Encryption and its Application to
Combinatorial Auctions”, Proceedings of the First
International joint Conference on Autonomous
Agents and Multiagent systems(AAMAS), 2002.

17. L.Ertaul, Vaidehi, “Finding Minimum Optimal Path
Securely Using Homomorphic Encryption Schemes
in Computer Networks”, The 2006 International
Conference on Security & Management, SAM'06,
June, Las Vegas.

18. T. Okamoto and S. Uchiyama. “A New Public-Key
Cryptosystem as Secure as Factoring”.
EUROCRYPT, pages 308–318, 1998.

19. P. Paillier. “Trapdooring Discrete Logarithms on
Elliptic Curves over Rings”. ASIACRYPT, pages
573–584, 2000.

20. Willian Stallings,”Cryptography and Network
Security, Principles and Practices.”Fourth Edition,
Prentice Hall 2006, pp.312.

