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Abstract – Security and privacy issues are considered as the 
biggest challenge for Internet of Things (IoT) in today’s world.
Unlike smart phones, tablets or desktop computers, IoT gadgets 
have either non or very little built-in security functionalities.
This is mostly due to cost pressure; device manufacturers prefer 
not to implement security countermeasures that might increase 
the cost with more hardware requirements or slow down their 
development cycles. With growing IoT attacks, this choice would 
not be an option. Hence, more and more IoT devices are likely 
to be equipped with stronger cryptographic primitives in the 
coming years. However, as quantum computing is approaching, 
today’s most popular cryptosystems would not withstand to 
these new machines. Fortunately, there are still algorithms
including Merkle Tree signature scheme remain secure to 
quantum computing attacks. In this study, we attempt to find 
out the performance analysis of Merkle Tree signature on a
Pyboard IoT device with STM32F405RG microcontroller. 
Analysis of this algorithm for message signing and verification 
is reported with respect to parameters like execution time,
memory consumption, CPU utilization and power consumption.

Keywords: IoT security, Lamport one-time signature, 
Merkle tree signature scheme, post-quantum cryptography,
Microcontroller. 

1. INTRODUCTION

Internet of Things (IoT) devices are small embedded systems 
integrated with objects that we use daily [1]. These devices 
often consist of sensors and other components which can be 
monitored and controlled over networks and the Internet. IoT 
devices are often used to create "smart" systems. For 
example, a healthcare monitoring  system equipped with 
some wireless medical sensors can continuously collect 
health information in a variety of scenarios. Such a sensor 
based IoT system may simply provide preventive healthcare 
or may be evolved so that it can alert the patients and their 
families in case of any potential health issues [2].

Security surely plays a significant role in such applications; it 
ensures the privacy and safety of the users and their sensitive 
data. In general, data security is achieved by encryption using 
mostly standard cryptographic algorithms. However, in the 
presence of quantum computers, there are known quantum 
methods that will be able to cryptanalyze the most commonly 
used public key-based key agreement and digital signature 

algorithms [3]. Quantum computers are systems making use 
of quantum mechanics in order to perform computations on 
data. Quantum computing is still in its infancy but there is big 
hype both in government and industry research (e.g. national 
institutes,  Microsoft, IBM, Google Research and D-wave [5]
[6]) to build real world quantum computers. 

One of the main differences between classical digital 
computers and quantum computers is that with quantum 
computers, the accuracy of the result can increase linearly
with the input size. In fact, this characteristic makes quantum 
computers much more powerful in solving very hard 
problems including the underlying problems (i.e. integer 
factorization and discrete logarithm) of most popular 
cryptosystems. Quantum computing represents a new 
technological leap in solving real world problems that are not 
practicable with ordinary computers but meanwhile, nobody 
would like to see the fall of our security infrastructures with 
the tremendous power of these machines. Therefore, there is 
a search of cryptographic algorithms, sometimes also called 
post-quantum cryptography (PQC) that will withstand against 
the attacks using these new machines [4].

A secure digital signature is the most essential component of 
an IT-security solution, and several schemes, such as the 
Digital Signature Algorithm DSA and the Elliptic Curve 
Digital Signature Algorithm ECDSA are already used in 
practice [7]. These digital signatures, however, could be 
broken in a quantum setting by Shor’s algorithm [8]. 
However, there are cryptosystems that rely on “other” 
problems remain secure to quantum attacks. For instance, 
Merkle tree signature scheme (MSS) [12] which is a hash-
based signature scheme is considered as quantum-resistant 
(secure even against theoretical quantum level attacks [9]
[10]) and studied as a strong candidate for PQC. One good 
thing about MSS is that if the underlying hash function (e.g. 
SHA-256 [11]) is broken or found to be no longer collision 
resistance, one can replace the broken hash by another 
collision resistant hash function

The aim of this study is to examine the performance of Merkle 
tree signature scheme on Pyboard IoT device. One of the 
biggest challenges is to implement MSS on the such a 
constrained hardware having very limited memory (192KB 
of RAM and 1MB of Flash) and CPU (168 Megahertz). In the 
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next section, Lamport one-time signature scheme [13] and 
MSS algorithm and its computational analysis are discussed. 
Section 3 presents the Pyboard devkit specification and 
implementation of MSS on Pyboard devkit. Section 4 reviews 
the performance and power consumption results obtained 
from MSS implementation. Lastly,  in Section 5, we present 
concluding thoughts on MSS implementation on Pyboard.

2. HASH-BASED SIGNATURE SCHEMES  

2.1. Lamport one-time signature scheme (LOTSS)  

LOTSS is a signature scheme in which the public key can 
only be used to sign a single message [14]. The security of 
the LOTSS is based on cryptographic hash functions. Any 
secure hash function can be used, which makes this signature 
scheme very flexible. If a hash function becomes insecure, it 
can easily be exchanged by another secure hash function. In
the following first the key generation, then the signing 
algorithm and finally the verification algorithm of LOTSS are 
described.

Key Generation:
For any given message, perform hash on message to 
produce fixed length hashed message.
Generate random number random numbers Xij with 

1 i  k and j = {0, 1}.

For each i and j compute Yij = Hash(Xij)
Yij are the public key also called verification keys
Xij values are the private key also called Signing 
keys

Signing a message:
Hashed message M is converted to bits (M = m1,m2,
...,mk with mi {0, 1}) 
For each bit in message select the corresponding 0 

or 1 from private key (Xij with 1 i  k and j = {0, 

1}).
Example: If message bit is 0 them sigi = Xi0

otherwise sigi = Xi1.
Signature is the concatenation of all sigi for i = {1, 
…, k} and k is the length of hashed message in bits
Final signature is sig = (sig1||sig2||...||sigk)

Signature Verification:
sig = (sig1||sig2||...||sigk) is the signature of message 
M= m1,m2, ...,mk with mi {0, 1}
Yij is the public key of corresponding private key 
used for signing.

Compute for each 1 i  k the hash value H(sigi)

If mi = 0 then H(sigi) must be H(sigi) = Yi0 otherwise 
H(sigi) must be H(sigi) = Yi1 to be a valid signature.

Although the potential development of quantum computers 
threatens the security of conventional cryptographic 
algorithm. LOTSS with large hash functions would still be 
secure [15]. LOTSS key can be used just to sign single 
message. However, combined with Merkle hash tree scheme, 
a single key could be used to sign multiple messages which is 
discussed in the next section.

2.2. Merkle tree signature scheme (MSS)  

MSS is hash-based signature scheme makes use of LOTSS to 
sign a message using single key-pair. Using a single key pair 
to sign multiple messages makes attacker easy to forge the 
signature. Merkle [16] proposed solution to this problem with 
the binary hash tree. In this study, we implement Merkle tree 
signature scheme using LOTSS to generate multiple key pairs 
for signing multiple message with one universally known 
public key (root of the binary tree). MSS is Binary tree 
structure shown in Figure 1 where each leaf nodes are hash 
value of LOTSS public key. Each inner node is hash of the 
concatenation of left and right nodes. The root node is used 
to authenticate all the leaf nodes i.e. all the LOTSS public 
key. 

Figure 1: MSS binary tree construction with 8 leaf

Figure 1 explanation is as follows; SK are signing/secret keys 
which are random numbers. LOTSS key generation is used in 
MSS to generate secrete keys with 2xN matrix where N is the 
output of hash in bits (e.g. for SHA-128, matrix is 2x128). Vi

in the figure is verification key (or public key) which is hash 
on 2xN secrete key  matrix. Results in one more 2xN 
verification key matrix. The input to the leaf node hash is 
concatenation of the elements in 2xN verification key matrix 
(column-wise concatenation). There are 2H key pairs, H being 
the height of the binary tree. Figure 2 explains the algorithm 
used to generate tree from leaf nodes. Stack is used to store 
binary tree nodes. key.

Figure 2: Algorithm to generate hash tree

Generated MSS key pair can sign/verify 2H documents, where 
H is the level of binary tree. Signer generates 2H one-time key 

pairs (Xj , Yj), 0 j < 2H. Xj is the signature key and Yj is the 
verification key The leaves of the MSS are the digests 

Hash(Yj), 0 j < 2H. The inner nodes of the Merkle tree is 
concatenation of left and right children. The MSS public key 
is the root of the Merkle tree. 
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The root of the tree represents the public key, the set of all 
LOTSS signing keys becomes the secret keys. For hash based 
LOTSS the secret keys are random bit strings. Hence, instead 
of storing all LOTSS secret keys, one can store a short seed 
and (re-)generate the LOTSS secret keys using a 
cryptographically secure pseudorandom generator [17]. To 
prevent reuse of LOTSS key pairs, they are used according to 
the order of the leaves, starting with the leftmost leaf. To do 
this, the scheme keeps as an internal state the index of the last 
used LOTSS key pair.

Signing message M using LOTSS discussed in Section 2 
results in sig’. Signing the message is done by randomly 
selecting one of the key pairs (Xj , Yj). Signature of the 
message is SIG = (sig’, pkLOTSS,i, Authi), the LOTSS signature 
sig’ on the message using the ith secret key(SK), the ith LOTSS 
public key is pkLOTSS,i ( represented with       in Figure 3), 
authentication path Authi (represented with   in Figure 
3) consists of neighbouring nodes on the path to the root of 
the MSS tree. Authentication path is used build the leave and 
reach the root of the tree to verify the public key.

Figure 3: Signature produced by MSS using Lamport one-
time signature scheme

To verify the signature SIG on message M, the verifier first 
validates the LOTSS signature on the message, with pkLOTSS,i

using LOTSS signature verification mechanism (discussed in 
Section 2). If this verification succeeds, the LOTSS public 
key is verified. Towards this end, the ith leaf is computed as 
the hash of pkLOTSS,i. Then, a root value is computed, using the 
nodes in Authi. If this root value matches the one given as 
public key, the signature is accepted, otherwise it is rejected. 

Recall that a binary tree of height h has 2h leaves. Hence, a 
MSS with a tree of height h can be used to sign N = 2h

messages. For runtimes, the determining parameter is N. Key 
generation requires about 2h hash function calls and is hence 
linear in N. Signing consists of one LOTSS signature and the 
authentication path computation. This can be done in time 
logarithmic in N using e.g. the Binary digital search (BDS) 
tree traversal algorithm from [18] to compute the 
authentication path. Verification time is also logarithmic in 
N. 

Now that we know MSS, in Section 3 we calculate
complexity for generating nodes, generating tree using
authentication path and binary tree traversal using BDS [19],

2.3. MSS algorithm complexity analysis  

The big advantage of the MSS is, that many signatures can be 
generated with using only one public key. However, this 
advantage comes with an increase of computation time and 
signature length. In the following we will examine the 
computation time of each part of the signature process. To 
generate the public key pk, 2n one-time signature keys must 
be generated. Then every node of the hash tree must be 

computed. The tree consists of 2n+1 1 nodes. One hash 

operation is needed to calculate a node, so that 2n+1  1 hash 

operations are needed to generate the public key. It is obvious, 
that the size of such a tree is limited. To compute 240 nodes 
is very costly, to compute 280 nodes is impossible. 

For sizes, the important parameter is the output length of the 
hash function n. The public key is a n bit hash value. The 
secret key consists of a n bit seed (assuming pseudorandom 
key generation; and a public state for the Binary digital search 
tree (BDS) algorithm in the order of n logN if BDS is used). 
The signature size of the classical MSS using LOTSS 2n2

+ nlog2N, i.e. quadratic in n, where the 2n2 is caused by the 
LOTSS and the nlog2N by the authentication path. Typical 
values for n and N are n = 256 and N = 220. For a more 
detailed overview, also describing tree traversal algorithms, 
see [20]. 

Analysis of MSS in this section explains signature increases 
linearly with time for different n value. MSS is implemented 
on PyBoard to analyse the performance in resource constraint 
environment discussed in the next section.

3. PyBOARD DEVKIT IMPLEMENTATION OF MSS

It is decided to test MSS scheme on a PyBoard development 
kit (devkit) shown in figure 4 with STM32F405RG
microcontroller belongs to a family of 32-bit RISC [21] 
MCUs operating at a frequency of up to 168 MHz with wo 
general-purpose 32-bit timers. a true random number 
generator (RNG) [22] [23].

Figure 4: A picture of Pyboard

Since the aim of this study is to implement MSS algorithm in 
IoT environments, PyBoard with STM32F405RG is 
considered as the target platform, which is specifically 
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designed for these environments [24] and supports the 
specifications mentioned in Table 1.

Table 1 – Pyboard devkit Specification

Device Feature Specification

CPU 168 MHz Cortex M4

Dynamic RAM 192KiB

Flash memory 1024KiB

Serial I/O Micro USB

Connection Serial Communication

The devkit features many I/O pinouts for component 
interfacing, however for this study these pins are not used. 
The PyBoard is built with a small microSD card slot and its 
firmware will automatically load the card as the root file 
system for the PyBoard [26]. Flash memory on PyBoard is 
1MB, which can store limited data. The python program 
developed for this study uses micro USB connection for 
printing console statements with reporting results and debug 
messages.

The PyBoard devkit was connected to ASUS Zenbook 
UX305 laptop running Microsoft Windows 10 Professional 
via Micro USB cable. To monitor and program the activity, 
micro python console pre-installed on the PyBoard was used. 
PyBoard supports its own version of python, which is called 
micro python [27].  PyBoard is connected to the laptop using 
serial communication mode. Successful connection takes to 
micro python v1.3.2 prompt. The program uploaded to the 
PyBoard devkit’s flash memory runs initialization code from 
boot.py to import basic libraries. Python scripts flashed on the 
PyBoard are Merkle_key_generation.py(17KB), 
Lamport.py(26KB), Signarture_verification.py(16KB). Total 
59 KB out of 1MB flash memory is used for Merkle tree 
signature scheme micro python scripts i.e. 965KB is available 
space. 

The MSS algorithm on the PyBoard was based on reference 
implementations from MediumCorp [28]. PyBoard supports 
micro python, hence python code was modified from python3 
to Micro Python. Performance of the algorithm is evaluated 
and modified based on libraries supported by PyBoard. 
Initially Key generation, generating tree were tested, 
alongside with signing message and verification of signature. 

MSS authentication is hash-based algorithm, hash used in this 
study is SHA [29], PyBoard supports just SHA-1 [30] without 
SD card. SHA-256 and SHA-512 [31] [32] can also be used 
if the corresponding micro python libraries copied to SD card. 
For this study due to memory constraints SHA-128 has been 
used for MSS, compromising on security to run the MSS 
algorithm on PyBoard. Evaluate the performance i.e CPU and 
memory utilization of PyBoard running MSS which is 
discussed in the next section.

Considering memory constraints on Pyboard suitable hash 
function is used to implement. Analysis of execution time for 
generating different key pairs, signing and verification of 
MSS is also evaluated in the next section.  

4. PERFORMANCE ANALYSIS  

Execution time for MSS key generation, signature and 
verification is tested on PyBoard and results are evaluated. 
Performance of the implementation was calculated using the 
micro python library utime [33]. Private keys are generated 
using random numbers. Public keys are generated using hash 
(SHA-128) of private keys. Table 2 results are evaluated 
using SHA128 and size of random number used for each 
private key is 6 KB.

Table 2: Key generation time

Key 
generation 

time
(in seconds)

Memory required
(Private + Public key)

8 - key pairs 18.31 48KB + 32KB = 80KB

16 - key pairs 35.56 95KB + 65KB = 160KB

32 - key pairs 70.69 189KB + 131KB = 320KB

64 - key pairs 140.83 378KB + 262 KB = 640KB

From Table 2 we can see that increasing the number of key 
pairs, increases key generation time which almost doubles in 
each step. Memory required to store these generated key pairs 
is also increasing rapidly. We stopped at 64-key pairs because 
available memory on board was 965KB as discussed in 
Section 3. Memory required for 128 key pairs is 1289KB 
which results in shortage of memory.

MSS signature generation includes generating signature, 
writing it to json file [34]. Json file format is used because 
signature includes 3 part: sig’, public key and path nodes, 
reading these part during verification is easy with json format. 
We use corresponding micro python library ujson [35] to read 
and write json file. In our study, key pair selected from 
different binary tree level 3, 4, 5 and 6 to sign the message is 
timed as shown in Figure 5. As we can see from the Figure 5 
for increase in number of key-pairs signing time increases in 
milliseconds. PyBoard devkit is capable of signing the 
message given the key pairs. 

Level
Signature generation

time (ms)
8- Key pairs 3 511.53

16- Key pairs 4 515.56

32- Key pairs 5 521.67

64- Key pairs 6 530.94

 
Figure 5: MSS Signature generation execution time
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To verify the signature which contains multiple sections i.e 
sign’, pk, Auth in json format is read and each section is 
extracted separately. Verification time includes above 
mentioned task along with the major part of verifying the 
signature and public key using path nodes. These tasks are 
timed and analysed using the graph mentioned in Figure 6. 
Verification of the message with different key pairs as shown 
differs in milliseconds which are suitable for PyBoard devkit. 

Level
Signature verification

time (ms)

8- Key pairs 3 146.21

16- Key pairs 4 151.31

32- Key pairs 5 165.36

64- Key pairs 6 170.11

Figure 6: MSS Signature verification execution time

As shown in Table 2, MSS key generation on Pyboard takes 
more time, hence key generation is not recommended on 
Pyboard. Analysing the graphs from Figures 5 and 6, we show 
that for different key-pairs of various levels, signing and 
verification can be done on the Pyboard devkit. We can see 
that it takes around few milliseconds for both.  

Since Pyboard supports MSS signing and verification. We 
discuss in detail about CPU and memory utilization of these 
two operations on Pyboard in the next section.  

4.1. CPU and memory utilization  

The required space for our authentication algorithm is 59KB 
out of 1MB user programmable space with available 965KB 
flash memory. Memory required for different hashing 
assuming the number of key-pairs as 8 is shown in Table 3. 
As we increase the number of key-pairs, signature size 
increases. Based on the IoT device flash memory appropriate 
hashing is selected. Since we implemented SHA-128 on
Pyboard, it requires 24KB space which provides enough 
space for an IoT application, limited RAM memory will limit 
the applications to develop on Pyboard. 

Table 3: Signature size for different SHA using key-pair = 8

Hashing (SHA) Signature Size

128 24KB
256 98KB
512 400KB

We calculate the RAM utilization in bytes and CPU 
Utilization in % for MSS signing and verification. Total 
available RAM 192KB and single core CPU with maximum 
CPU utilization of 100%. Calculating the RAM usage is done 
using micro python library [36]. Code sample shown below 
for MSS signature generation, likewise we can call 
verification function to obtain memory usage for verification. 
Signing and verification with keys from different key pairs 
are calculated and plotted a graph. 

In Figure 7, graph is plotted for RAM memory usage using 
key pairs 8, 16, 32 and 64. Noted memory usage few 
milliseconds before starting MSS signature. We can observe 
sudden raise from 15- 45ms in the curve which means that, at 
this point MSS signature has started. Signature includes sig’,
pk and Auth which requires more memory. 

Figure 7: RAM memory consumption for Key pairs 8, 16,
32 and 64.

Message in bytes are hashed (SHA-128) and converted to 
bits. This operation is performed during initial stage of 
signing. Message in bits is signed using LOTSS as discussed 
in Section 2, signature requires more memory. Hence in the 
Figure 7 curve reaches maximum available RAM memory at 
90 ms for 8,16 and 32 key pairs, but for 64-key pairs RAM 
memory usage reaches peak early at 30ms. Curve is almost 
flat once the peak RAM memory is reached indicating signing 
uses all the available RAM memory. To free the RAM
memory CPU writes and reads from flash memory. For 
increase in key pairs available RAM memory in bytes 
increases slightly. Curve drops at 465ms indicating 
completion of MSS signature and verification as there is drop 
in RAM memory usage.

In Figure 8, graph is plotted for CPU utilization using key 
pairs 8, 16, 32 and 64. CPU utilization is monitored few 
milliseconds before the MSS signing. Observe the CPU 
utilization slowly reaches a peak value (>95%) at 45ms which 
means initial stage it is selecting a single key pair to sign the 
document and hashing the message to sign (converting into 
bits). It shows sharp raise initially which means CPU started 
signing processes. When the signing starts CPU utilization is 
at peak 100 % at 90ms for 8,16,32, but for 64 key pair it 
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reaches peak early at 60ms. MSS signature process consumes 
all the available RAM memory space and needs more than 
available so it writes and reads from flash memory, hence 
CPU utilization for this rapid read and write is 100%. Once 
the authentication (signing and verification) is complete at 
465ms CPU utilization starts decreasing. We can observe 
same pattern for different key pairs. 

Figure 8: CPU usage for MSS authentication for key-pair 8, 
16, 32 and 64

From Figures 7 & 8, we can see that MSS running on PyBoard 
with STM32F405RG microcontroller with 192KB RAM 
consumes more memory and CPU execution time. At any 
given point MSS consumes all the memory and CPU. We 
cannot perform other operations when the PyBoard is 
performing signing and verification. Power consumed by 
PyBoard for MSS signing and verification is calculated based 
on PyBoard specification. 

4.2. Power consumption

The power consumption of the authentication algorithm 
running on PyBoard can be estimated by Equation 1 [37]. 

E= Vcc (1)

For Pyboard devkit version 1.1, the specification [38]
produce the formula with values mentioned in Equations 2
and 3. Using internal flash memory 60mA standby current 
with 3.3V. pyboard serial monitor provides the value of 
cycles when testing performance of signing and verification.

Vcc = 3.3V (2)

I = 0.06A (3)

-6 s

from Table 2. Table 4 lists the calculated power consumption 
for authentication using 128-bit block size. At 168MHz from 
flash without I/O, Energy is calculated by substituting values. 

Table 4: Calculated power consumption

Signing Verification

9.763 J 7.974 J 

5. CONCLUSION  

In this study, we have evaluated the performance of MSS on 
PyBoard with STM32F405RG microcontroller with respect 
to energy consumption, execution time, CPU usage and 
memory consumption which place significant role in 
implementing MSS for resource constrained environments. It 
is proven that key generation requires more memory than the 
available memory and takes more execution time on 
PyBoard, hence generation of key pairs is not recommended 
on PyBoard. 

MSS signature and verification can be handled on PyBoard
devkit based on the analysis of performance and power 
consumption. MSS signature and verification algorithm 
require more memory as the key-pairs and number of levels 
increases. MSS authentication mechanism consumes all the 
memory and CPU. We cannot perform other operations when 
the PyBoard is executing MSS. Hashing used in this study is 
SHA-128 supported by PyBoard without using SD card. 
Using SHA-128 we are compromising on security to make it 
implement on PyBoard devkit. The memory constraints of the 
PyBoard devkit limit the amount of data that can be buffered 
for processing. Considering of post-quantum authentication, 
MSS can be implemented on PyBoard applications with 
moderate processing time (5ms for signing and 1ms for 
verification) with peak memory and CPU utilization
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