
Post-Quantum Cryptography on IoT: Merkle’s
Tree Authentication

Gokay Saldamli1, Levent Ertaul2 and Bharani Kodirangaiah2

1San Jose State University, San Jose, CA, USA
2California State University, East Bay, Hayward, CA, USA

gokay.saldamli@sjsu.edu, levent.ertaul@csueastbay.edu, bkodirangaiah@horizon.csueastbay.edu

Abstract – Security and privacy issues are considered as the
biggest challenge for Internet of Things (IoT) in today’s world.
Unlike smart phones, tablets or desktop computers, IoT gadgets
have either non or very little built-in security functionalities.
This is mostly due to cost pressure; device manufacturers prefer
not to implement security countermeasures that might increase
the cost with more hardware requirements or slow down their
development cycles. With growing IoT attacks, this choice would
not be an option. Hence, more and more IoT devices are likely
to be equipped with stronger cryptographic primitives in the
coming years. However, as quantum computing is approaching,
today’s most popular cryptosystems would not withstand to
these new machines. Fortunately, there are still algorithms
including Merkle Tree signature scheme remain secure to
quantum computing attacks. In this study, we attempt to find
out the performance analysis of Merkle Tree signature on a
Pyboard IoT device with STM32F405RG microcontroller.
Analysis of this algorithm for message signing and verification
is reported with respect to parameters like execution time,
memory consumption, CPU utilization and power consumption.

Keywords: IoT security, Lamport one-time signature,
Merkle tree signature scheme, post-quantum cryptography,
Microcontroller.

1. INTRODUCTION

Internet of Things (IoT) devices are small embedded systems
integrated with objects that we use daily [1]. These devices
often consist of sensors and other components which can be
monitored and controlled over networks and the Internet. IoT
devices are often used to create "smart" systems. For
example, a healthcare monitoring system equipped with
some wireless medical sensors can continuously collect
health information in a variety of scenarios. Such a sensor
based IoT system may simply provide preventive healthcare
or may be evolved so that it can alert the patients and their
families in case of any potential health issues [2].

Security surely plays a significant role in such applications; it
ensures the privacy and safety of the users and their sensitive
data. In general, data security is achieved by encryption using
mostly standard cryptographic algorithms. However, in the
presence of quantum computers, there are known quantum
methods that will be able to cryptanalyze the most commonly
used public key-based key agreement and digital signature

algorithms [3]. Quantum computers are systems making use
of quantum mechanics in order to perform computations on
data. Quantum computing is still in its infancy but there is big
hype both in government and industry research (e.g. national
institutes, Microsoft, IBM, Google Research and D-wave [5]
[6]) to build real world quantum computers.

One of the main differences between classical digital
computers and quantum computers is that with quantum
computers, the accuracy of the result can increase linearly
with the input size. In fact, this characteristic makes quantum
computers much more powerful in solving very hard
problems including the underlying problems (i.e. integer
factorization and discrete logarithm) of most popular
cryptosystems. Quantum computing represents a new
technological leap in solving real world problems that are not
practicable with ordinary computers but meanwhile, nobody
would like to see the fall of our security infrastructures with
the tremendous power of these machines. Therefore, there is
a search of cryptographic algorithms, sometimes also called
post-quantum cryptography (PQC) that will withstand against
the attacks using these new machines [4].

A secure digital signature is the most essential component of
an IT-security solution, and several schemes, such as the
Digital Signature Algorithm DSA and the Elliptic Curve
Digital Signature Algorithm ECDSA are already used in
practice [7]. These digital signatures, however, could be
broken in a quantum setting by Shor’s algorithm [8].
However, there are cryptosystems that rely on “other”
problems remain secure to quantum attacks. For instance,
Merkle tree signature scheme (MSS) [12] which is a hash-
based signature scheme is considered as quantum-resistant
(secure even against theoretical quantum level attacks [9]
[10]) and studied as a strong candidate for PQC. One good
thing about MSS is that if the underlying hash function (e.g.
SHA-256 [11]) is broken or found to be no longer collision
resistance, one can replace the broken hash by another
collision resistant hash function

The aim of this study is to examine the performance of Merkle
tree signature scheme on Pyboard IoT device. One of the
biggest challenges is to implement MSS on the such a
constrained hardware having very limited memory (192KB
of RAM and 1MB of Flash) and CPU (168 Megahertz). In the

Int'l Conf. Wireless Networks | ICWN'18 | 35

ISBN: 1-60132-483-9, CSREA Press ©

next section, Lamport one-time signature scheme [13] and
MSS algorithm and its computational analysis are discussed.
Section 3 presents the Pyboard devkit specification and
implementation of MSS on Pyboard devkit. Section 4 reviews
the performance and power consumption results obtained
from MSS implementation. Lastly, in Section 5, we present
concluding thoughts on MSS implementation on Pyboard.

2. HASH-BASED SIGNATURE SCHEMES

2.1. Lamport one-time signature scheme (LOTSS)

LOTSS is a signature scheme in which the public key can
only be used to sign a single message [14]. The security of
the LOTSS is based on cryptographic hash functions. Any
secure hash function can be used, which makes this signature
scheme very flexible. If a hash function becomes insecure, it
can easily be exchanged by another secure hash function. In
the following first the key generation, then the signing
algorithm and finally the verification algorithm of LOTSS are
described.

Key Generation:
For any given message, perform hash on message to
produce fixed length hashed message.
Generate random number random numbers Xij with

1 i k and j = {0, 1}.

For each i and j compute Yij = Hash(Xij)
Yij are the public key also called verification keys
Xij values are the private key also called Signing
keys

Signing a message:
Hashed message M is converted to bits (M = m1,m2,
...,mk with mi {0, 1})
For each bit in message select the corresponding 0

or 1 from private key (Xij with 1 i k and j = {0,

1}).
Example: If message bit is 0 them sigi = Xi0

otherwise sigi = Xi1.
Signature is the concatenation of all sigi for i = {1,
…, k} and k is the length of hashed message in bits
Final signature is sig = (sig1||sig2||...||sigk)

Signature Verification:
sig = (sig1||sig2||...||sigk) is the signature of message
M= m1,m2, ...,mk with mi {0, 1}
Yij is the public key of corresponding private key
used for signing.

Compute for each 1 i k the hash value H(sigi)

If mi = 0 then H(sigi) must be H(sigi) = Yi0 otherwise
H(sigi) must be H(sigi) = Yi1 to be a valid signature.

Although the potential development of quantum computers
threatens the security of conventional cryptographic
algorithm. LOTSS with large hash functions would still be
secure [15]. LOTSS key can be used just to sign single
message. However, combined with Merkle hash tree scheme,
a single key could be used to sign multiple messages which is
discussed in the next section.

2.2. Merkle tree signature scheme (MSS)

MSS is hash-based signature scheme makes use of LOTSS to
sign a message using single key-pair. Using a single key pair
to sign multiple messages makes attacker easy to forge the
signature. Merkle [16] proposed solution to this problem with
the binary hash tree. In this study, we implement Merkle tree
signature scheme using LOTSS to generate multiple key pairs
for signing multiple message with one universally known
public key (root of the binary tree). MSS is Binary tree
structure shown in Figure 1 where each leaf nodes are hash
value of LOTSS public key. Each inner node is hash of the
concatenation of left and right nodes. The root node is used
to authenticate all the leaf nodes i.e. all the LOTSS public
key.

Figure 1: MSS binary tree construction with 8 leaf

Figure 1 explanation is as follows; SK are signing/secret keys
which are random numbers. LOTSS key generation is used in
MSS to generate secrete keys with 2xN matrix where N is the
output of hash in bits (e.g. for SHA-128, matrix is 2x128). Vi

in the figure is verification key (or public key) which is hash
on 2xN secrete key matrix. Results in one more 2xN
verification key matrix. The input to the leaf node hash is
concatenation of the elements in 2xN verification key matrix
(column-wise concatenation). There are 2H key pairs, H being
the height of the binary tree. Figure 2 explains the algorithm
used to generate tree from leaf nodes. Stack is used to store
binary tree nodes. key.

Figure 2: Algorithm to generate hash tree

Generated MSS key pair can sign/verify 2H documents, where
H is the level of binary tree. Signer generates 2H one-time key

pairs (Xj , Yj), 0 j < 2H. Xj is the signature key and Yj is the
verification key The leaves of the MSS are the digests

Hash(Yj), 0 j < 2H. The inner nodes of the Merkle tree is
concatenation of left and right children. The MSS public key
is the root of the Merkle tree.

36 Int'l Conf. Wireless Networks | ICWN'18 |

ISBN: 1-60132-483-9, CSREA Press ©

The root of the tree represents the public key, the set of all
LOTSS signing keys becomes the secret keys. For hash based
LOTSS the secret keys are random bit strings. Hence, instead
of storing all LOTSS secret keys, one can store a short seed
and (re-)generate the LOTSS secret keys using a
cryptographically secure pseudorandom generator [17]. To
prevent reuse of LOTSS key pairs, they are used according to
the order of the leaves, starting with the leftmost leaf. To do
this, the scheme keeps as an internal state the index of the last
used LOTSS key pair.

Signing message M using LOTSS discussed in Section 2
results in sig’. Signing the message is done by randomly
selecting one of the key pairs (Xj , Yj). Signature of the
message is SIG = (sig’, pkLOTSS,i, Authi), the LOTSS signature
sig’ on the message using the ith secret key(SK), the ith LOTSS
public key is pkLOTSS,i (represented with in Figure 3),
authentication path Authi (represented with in Figure
3) consists of neighbouring nodes on the path to the root of
the MSS tree. Authentication path is used build the leave and
reach the root of the tree to verify the public key.

Figure 3: Signature produced by MSS using Lamport one-
time signature scheme

To verify the signature SIG on message M, the verifier first
validates the LOTSS signature on the message, with pkLOTSS,i

using LOTSS signature verification mechanism (discussed in
Section 2). If this verification succeeds, the LOTSS public
key is verified. Towards this end, the ith leaf is computed as
the hash of pkLOTSS,i. Then, a root value is computed, using the
nodes in Authi. If this root value matches the one given as
public key, the signature is accepted, otherwise it is rejected.

Recall that a binary tree of height h has 2h leaves. Hence, a
MSS with a tree of height h can be used to sign N = 2h

messages. For runtimes, the determining parameter is N. Key
generation requires about 2h hash function calls and is hence
linear in N. Signing consists of one LOTSS signature and the
authentication path computation. This can be done in time
logarithmic in N using e.g. the Binary digital search (BDS)
tree traversal algorithm from [18] to compute the
authentication path. Verification time is also logarithmic in
N.

Now that we know MSS, in Section 3 we calculate
complexity for generating nodes, generating tree using
authentication path and binary tree traversal using BDS [19],

2.3. MSS algorithm complexity analysis

The big advantage of the MSS is, that many signatures can be
generated with using only one public key. However, this
advantage comes with an increase of computation time and
signature length. In the following we will examine the
computation time of each part of the signature process. To
generate the public key pk, 2n one-time signature keys must
be generated. Then every node of the hash tree must be

computed. The tree consists of 2n+1 1 nodes. One hash

operation is needed to calculate a node, so that 2n+1 1 hash

operations are needed to generate the public key. It is obvious,
that the size of such a tree is limited. To compute 240 nodes
is very costly, to compute 280 nodes is impossible.

For sizes, the important parameter is the output length of the
hash function n. The public key is a n bit hash value. The
secret key consists of a n bit seed (assuming pseudorandom
key generation; and a public state for the Binary digital search
tree (BDS) algorithm in the order of n logN if BDS is used).
The signature size of the classical MSS using LOTSS 2n2

+ nlog2N, i.e. quadratic in n, where the 2n2 is caused by the
LOTSS and the nlog2N by the authentication path. Typical
values for n and N are n = 256 and N = 220. For a more
detailed overview, also describing tree traversal algorithms,
see [20].

Analysis of MSS in this section explains signature increases
linearly with time for different n value. MSS is implemented
on PyBoard to analyse the performance in resource constraint
environment discussed in the next section.

3. PyBOARD DEVKIT IMPLEMENTATION OF MSS

It is decided to test MSS scheme on a PyBoard development
kit (devkit) shown in figure 4 with STM32F405RG
microcontroller belongs to a family of 32-bit RISC [21]
MCUs operating at a frequency of up to 168 MHz with wo
general-purpose 32-bit timers. a true random number
generator (RNG) [22] [23].

Figure 4: A picture of Pyboard

Since the aim of this study is to implement MSS algorithm in
IoT environments, PyBoard with STM32F405RG is
considered as the target platform, which is specifically

Int'l Conf. Wireless Networks | ICWN'18 | 37

ISBN: 1-60132-483-9, CSREA Press ©

designed for these environments [24] and supports the
specifications mentioned in Table 1.

Table 1 – Pyboard devkit Specification

Device Feature Specification

CPU 168 MHz Cortex M4

Dynamic RAM 192KiB

Flash memory 1024KiB

Serial I/O Micro USB

Connection Serial Communication

The devkit features many I/O pinouts for component
interfacing, however for this study these pins are not used.
The PyBoard is built with a small microSD card slot and its
firmware will automatically load the card as the root file
system for the PyBoard [26]. Flash memory on PyBoard is
1MB, which can store limited data. The python program
developed for this study uses micro USB connection for
printing console statements with reporting results and debug
messages.

The PyBoard devkit was connected to ASUS Zenbook
UX305 laptop running Microsoft Windows 10 Professional
via Micro USB cable. To monitor and program the activity,
micro python console pre-installed on the PyBoard was used.
PyBoard supports its own version of python, which is called
micro python [27]. PyBoard is connected to the laptop using
serial communication mode. Successful connection takes to
micro python v1.3.2 prompt. The program uploaded to the
PyBoard devkit’s flash memory runs initialization code from
boot.py to import basic libraries. Python scripts flashed on the
PyBoard are Merkle_key_generation.py(17KB),
Lamport.py(26KB), Signarture_verification.py(16KB). Total
59 KB out of 1MB flash memory is used for Merkle tree
signature scheme micro python scripts i.e. 965KB is available
space.

The MSS algorithm on the PyBoard was based on reference
implementations from MediumCorp [28]. PyBoard supports
micro python, hence python code was modified from python3
to Micro Python. Performance of the algorithm is evaluated
and modified based on libraries supported by PyBoard.
Initially Key generation, generating tree were tested,
alongside with signing message and verification of signature.

MSS authentication is hash-based algorithm, hash used in this
study is SHA [29], PyBoard supports just SHA-1 [30] without
SD card. SHA-256 and SHA-512 [31] [32] can also be used
if the corresponding micro python libraries copied to SD card.
For this study due to memory constraints SHA-128 has been
used for MSS, compromising on security to run the MSS
algorithm on PyBoard. Evaluate the performance i.e CPU and
memory utilization of PyBoard running MSS which is
discussed in the next section.

Considering memory constraints on Pyboard suitable hash
function is used to implement. Analysis of execution time for
generating different key pairs, signing and verification of
MSS is also evaluated in the next section.

4. PERFORMANCE ANALYSIS

Execution time for MSS key generation, signature and
verification is tested on PyBoard and results are evaluated.
Performance of the implementation was calculated using the
micro python library utime [33]. Private keys are generated
using random numbers. Public keys are generated using hash
(SHA-128) of private keys. Table 2 results are evaluated
using SHA128 and size of random number used for each
private key is 6 KB.

Table 2: Key generation time

Key
generation

time
(in seconds)

Memory required
(Private + Public key)

8 - key pairs 18.31 48KB + 32KB = 80KB

16 - key pairs 35.56 95KB + 65KB = 160KB

32 - key pairs 70.69 189KB + 131KB = 320KB

64 - key pairs 140.83 378KB + 262 KB = 640KB

From Table 2 we can see that increasing the number of key
pairs, increases key generation time which almost doubles in
each step. Memory required to store these generated key pairs
is also increasing rapidly. We stopped at 64-key pairs because
available memory on board was 965KB as discussed in
Section 3. Memory required for 128 key pairs is 1289KB
which results in shortage of memory.

MSS signature generation includes generating signature,
writing it to json file [34]. Json file format is used because
signature includes 3 part: sig’, public key and path nodes,
reading these part during verification is easy with json format.
We use corresponding micro python library ujson [35] to read
and write json file. In our study, key pair selected from
different binary tree level 3, 4, 5 and 6 to sign the message is
timed as shown in Figure 5. As we can see from the Figure 5
for increase in number of key-pairs signing time increases in
milliseconds. PyBoard devkit is capable of signing the
message given the key pairs.

Level
Signature generation

time (ms)
8- Key pairs 3 511.53

16- Key pairs 4 515.56

32- Key pairs 5 521.67

64- Key pairs 6 530.94

Figure 5: MSS Signature generation execution time

510
515
520
525
530
535

8 16 32 64

Ti
m

e
in

 m
ili

se
co

nd
s

Number of leaf node(Key pairs)

Execution time of Merkle Signature
Generation

38 Int'l Conf. Wireless Networks | ICWN'18 |

ISBN: 1-60132-483-9, CSREA Press ©

To verify the signature which contains multiple sections i.e
sign’, pk, Auth in json format is read and each section is
extracted separately. Verification time includes above
mentioned task along with the major part of verifying the
signature and public key using path nodes. These tasks are
timed and analysed using the graph mentioned in Figure 6.
Verification of the message with different key pairs as shown
differs in milliseconds which are suitable for PyBoard devkit.

Level
Signature verification

time (ms)

8- Key pairs 3 146.21

16- Key pairs 4 151.31

32- Key pairs 5 165.36

64- Key pairs 6 170.11

Figure 6: MSS Signature verification execution time

As shown in Table 2, MSS key generation on Pyboard takes
more time, hence key generation is not recommended on
Pyboard. Analysing the graphs from Figures 5 and 6, we show
that for different key-pairs of various levels, signing and
verification can be done on the Pyboard devkit. We can see
that it takes around few milliseconds for both.

Since Pyboard supports MSS signing and verification. We
discuss in detail about CPU and memory utilization of these
two operations on Pyboard in the next section.

4.1. CPU and memory utilization

The required space for our authentication algorithm is 59KB
out of 1MB user programmable space with available 965KB
flash memory. Memory required for different hashing
assuming the number of key-pairs as 8 is shown in Table 3.
As we increase the number of key-pairs, signature size
increases. Based on the IoT device flash memory appropriate
hashing is selected. Since we implemented SHA-128 on
Pyboard, it requires 24KB space which provides enough
space for an IoT application, limited RAM memory will limit
the applications to develop on Pyboard.

Table 3: Signature size for different SHA using key-pair = 8

Hashing (SHA) Signature Size

128 24KB
256 98KB
512 400KB

We calculate the RAM utilization in bytes and CPU
Utilization in % for MSS signing and verification. Total
available RAM 192KB and single core CPU with maximum
CPU utilization of 100%. Calculating the RAM usage is done
using micro python library [36]. Code sample shown below
for MSS signature generation, likewise we can call
verification function to obtain memory usage for verification.
Signing and verification with keys from different key pairs
are calculated and plotted a graph.

In Figure 7, graph is plotted for RAM memory usage using
key pairs 8, 16, 32 and 64. Noted memory usage few
milliseconds before starting MSS signature. We can observe
sudden raise from 15- 45ms in the curve which means that, at
this point MSS signature has started. Signature includes sig’,
pk and Auth which requires more memory.

Figure 7: RAM memory consumption for Key pairs 8, 16,
32 and 64.

Message in bytes are hashed (SHA-128) and converted to
bits. This operation is performed during initial stage of
signing. Message in bits is signed using LOTSS as discussed
in Section 2, signature requires more memory. Hence in the
Figure 7 curve reaches maximum available RAM memory at
90 ms for 8,16 and 32 key pairs, but for 64-key pairs RAM
memory usage reaches peak early at 30ms. Curve is almost
flat once the peak RAM memory is reached indicating signing
uses all the available RAM memory. To free the RAM
memory CPU writes and reads from flash memory. For
increase in key pairs available RAM memory in bytes
increases slightly. Curve drops at 465ms indicating
completion of MSS signature and verification as there is drop
in RAM memory usage.

In Figure 8, graph is plotted for CPU utilization using key
pairs 8, 16, 32 and 64. CPU utilization is monitored few
milliseconds before the MSS signing. Observe the CPU
utilization slowly reaches a peak value (>95%) at 45ms which
means initial stage it is selecting a single key pair to sign the
document and hashing the message to sign (converting into
bits). It shows sharp raise initially which means CPU started
signing processes. When the signing starts CPU utilization is
at peak 100 % at 90ms for 8,16,32, but for 64 key pair it

145
149
153
157
161
165
169

8 16 32 64
Number of leaf nodes(Key pairs)

Execution time of Merkle Signature Verification

Int'l Conf. Wireless Networks | ICWN'18 | 39

ISBN: 1-60132-483-9, CSREA Press ©

reaches peak early at 60ms. MSS signature process consumes
all the available RAM memory space and needs more than
available so it writes and reads from flash memory, hence
CPU utilization for this rapid read and write is 100%. Once
the authentication (signing and verification) is complete at
465ms CPU utilization starts decreasing. We can observe
same pattern for different key pairs.

Figure 8: CPU usage for MSS authentication for key-pair 8,
16, 32 and 64

From Figures 7 & 8, we can see that MSS running on PyBoard
with STM32F405RG microcontroller with 192KB RAM
consumes more memory and CPU execution time. At any
given point MSS consumes all the memory and CPU. We
cannot perform other operations when the PyBoard is
performing signing and verification. Power consumed by
PyBoard for MSS signing and verification is calculated based
on PyBoard specification.

4.2. Power consumption

The power consumption of the authentication algorithm
running on PyBoard can be estimated by Equation 1 [37].

E= Vcc (1)

For Pyboard devkit version 1.1, the specification [38]
produce the formula with values mentioned in Equations 2
and 3. Using internal flash memory 60mA standby current
with 3.3V. pyboard serial monitor provides the value of
cycles when testing performance of signing and verification.

Vcc = 3.3V (2)

I = 0.06A (3)

-6 s

from Table 2. Table 4 lists the calculated power consumption
for authentication using 128-bit block size. At 168MHz from
flash without I/O, Energy is calculated by substituting values.

Table 4: Calculated power consumption

Signing Verification

9.763 J 7.974 J

5. CONCLUSION

In this study, we have evaluated the performance of MSS on
PyBoard with STM32F405RG microcontroller with respect
to energy consumption, execution time, CPU usage and
memory consumption which place significant role in
implementing MSS for resource constrained environments. It
is proven that key generation requires more memory than the
available memory and takes more execution time on
PyBoard, hence generation of key pairs is not recommended
on PyBoard.

MSS signature and verification can be handled on PyBoard
devkit based on the analysis of performance and power
consumption. MSS signature and verification algorithm
require more memory as the key-pairs and number of levels
increases. MSS authentication mechanism consumes all the
memory and CPU. We cannot perform other operations when
the PyBoard is executing MSS. Hashing used in this study is
SHA-128 supported by PyBoard without using SD card.
Using SHA-128 we are compromising on security to make it
implement on PyBoard devkit. The memory constraints of the
PyBoard devkit limit the amount of data that can be buffered
for processing. Considering of post-quantum authentication,
MSS can be implemented on PyBoard applications with
moderate processing time (5ms for signing and 1ms for
verification) with peak memory and CPU utilization

REFERENCES

[1] H. Petersen, E. Baccelli, and M. Wählisch. “Interoperable
Services on Constrained Devices in the Internet of Things”.
In W3C, editor, W3C Workshop on the Web of Things,
Berlin, Germany, June 2014.

[2] Yang, Z. Zhou, Q. Lei, L. Zheng, K. Xiang, “An IoT-cloud
BasedWearable ECG Monitoring System for Smart
Healthcare”. J. Med. Syst. 2016, 40, 286.

[3] Lin, J. Ding, X. Xie, Xiaodong . "A Simple Provably
Secure Key Exchange Scheme Based on the Learning with
Errors Problem" in University of Cincinnati Chinese
Academy of Sciences Rutgers University. 01 Jan 2012

[4] Alkim, E. Ducas, L. Pöppelmann, T. Schwabe, Peter.
"Post-quantum key exchange - a new hope" (PDF).
Cryptology ePrint Archive, Report 2015/1092. Retrieved 1
September 2017.

[5] “IBM Raises the Bar with a 50-Qubit Quantum
Computer” IBM releases. Web. https://www-
03.ibm.com/press/us/en/pressrelease/53374.wss#release,
November 2017.

[6] Imanuel, “Computing: The quantum company”. 2018;
Available from:
https://www.predictiveanalyticstoday.com/what-is-quantum-
computing/#quantumcomputingmodels

[7] Daniel R. L. Brown “Designs, Codes and Cryptography:
Generic Groups, Collision Resistance, and ECDSA” by
Certicom Research, Canada, 119–152, Accepted: 24 June
2003

40 Int'l Conf. Wireless Networks | ICWN'18 |

ISBN: 1-60132-483-9, CSREA Press ©

[8] R. Wolf, CWI and University of Amsterdam “Quantum
Computation and Shor's Factoring Algorithm” , January 12,
1999, 9 page postscript document

[10] R. C. Merkle. “A certified digital signature. In
Proceedings on Advances in cryptology”, CRYPTO '89,
pages 218 - 238, Springer-Verlag New York, Inc, NY, USA,
1989.

[11] "Secure Hash 256-bit". NIST. Retrieved 2010-11-25.

[12] Merkle, Ralph C.: “Secrecy, Authentication, And Public
Key Systems”. Ph.D. thesis, Stanford University, 1979

[13] L. Lamport. “Password authentication with insecure
Communication”. in Communication of the ACM 24(11):770
- 772, Nov. 1981.

[14] L. Lamport. “Constructing digital signatures from a
one-way function”. Technical Report SRI-CSL-98, SRI
International Computer Science Laboratory, 1979.

[15] P. Ray; Cooper (2009). "Quantum Resistant Hash-Based
Cryptography: A Survey". NIST. Retrieved 23 Apr 2015

[16] R. Merkle. “A certified digital signature”. In Gilles
Brassard, editor, Crypto’89, volume 435 of Lecture Notes in
Computer Science, pages 218–238. Springer Berlin /
Heidelberg, 1990. 1, 2

[17] B. Elaine, B. William, P. William, S. Miles (July 2012).
"Recommendation for Key Management" (PDF). NIST
Special Publication 800-57. NIST. Retrieved 19 August 2013.

[18] J. Buchmann, E. Dahmen, and M. Schneider. “Merkle
tree traversal revisited”. In Johannes Buchmann and Jintai
Ding, editors, Post-Quantum Cryptography, volume 5299 of
Lecture Notes in Computer Science, pages 63–78. Springer
Berlin / Heidelberg, 2008. 1, 2, 6, 7

[19] Jarc, Duane J. "Binary Tree Traversals". Interactive Data
Structure Visualizations. University of Maryland. 3
December 2005

[20] J. Buchmann, E. Dahmen, and M. Szydlo. “Merkle
signature computation analysis”. In Daniel J. Bernstein,
Johannes Buchmann, and Erik Dahmen, editors, Post-
Quantum Cryptography, pages 90–93. Springer Berlin
Heidelberg, 2009. 1, 2

[21] W. Andrew, L. Yunsup, P. David A. Krste. "The RISC-
V Instruction Set Manual, Volume I: Base User-Level ISA
version 2 (Technical Report EECS-2014-54)". University of
California, Berkeley. Retrieved 26 December 2014.

[22] "STM32F405RG." STM32F405RG - STM32 Dynamic
Efficiency MCU, ARM Cortex-M4 core with DSP and FPU,
up to 512 Kbytes Flash, 84 MHz CPU, Art Accelerator -
STMicroelectronics.N.p.,n.d.Web.

[23] "ARM Information Center." ARM Information Center.
N.p.,n.d.Web.
http://infocenter.arm.com/help/index.jsp?topic=%2Fcom.ar
m.doc.ddi0337h%2FBIIFBHIF.html.

[24] “STM32 – 32-bit ARM CORTEX MCU”
STMicroelectronics. N.p.,n.d. Web.
http://www.st.com/en/microcontrollers/stm32-32-bit-

armcortex-mcus.html?querycriteria=productId=SC1169”

[26] “Mount SD card” [Online]. Available:
https://docs.micropython.org/en/latest/pyboard/pyboard/gen
eral.html

[27] "Micro python," [Online]. Available:
http://docs.micropython.org/en/latest/pyboard/

[28] “Repository” [Online]. Available:
https://medium.com/@evankozliner/merkle-tree-
introduction-4c44250e2da7

[29] “Hashing algorithm” [Online], Available:
http://docs.micropython.org/en/v1.9.3/wipy/library/uhashlib.
html

[30] D.Cannière, Christophe; R. Christian. "Finding SHA-1
Characteristics: General Results and Applications". 15
November 2006

[31] D. Khovratovich, C. Rechberger & A. Savelieva (2011).
"Bicliques for Preimages: Skein-512 and the SHA-2 family"
(PDF). IACR Cryptology ePrint Archive. 2011:286.

[32] FIPS PUB 180-1, “Secure Hash Standard, SHA-512”.
Available at www.itl.nist.gov/fipspubs/fip180-1.htm.

[33] “utime for timing code” [Online]. Available:
https://docs.micropython.org/en/latest/pyboard/libra
ry/utime.html

[34] "draft-wright-json-schema-01 - JSON Schema: A Media
Type for Describing JSON Documents". json-schema.org/.
Retrieved 23 July 2017.

[35] “json file” [Online]. Available:
https://docs.micropython.org/en/latest/pyboard/library/ujson.
html

[36] “RAM memory usage” [Online]. Available:
https://forum.micropython.org/viewtopic.php?t=1747

[37] H. A. Kader ,D. Salaman, and M. Hadhoud, "Studying
the Effects of Post-Quantum Algorithms," International Arab
Journal of e-Technology, vol. 2, no. 1, 2011.

[38] “Pyboard voltage” [Online] Available:
https://forum.micropython.org/viewtopic.php?t=229

Int'l Conf. Wireless Networks | ICWN'18 | 41

ISBN: 1-60132-483-9, CSREA Press ©

