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Abstract – IoT security is becoming more and more 
important as the world relies on computer-based devices. 
One of the most considerable challenges in today’s world 
is having security and privacy for the Internet of Things 
(IoT). As of today, there are approximately eight billion 
IoT devices connected and by the early 2020’s it is 
estimated that there will be 3 to 4 times more IoT devices 
connected, in which, 25% of cyber-attacks will be 
targeting IoT devices. Manufacturers are racing to keep 
up with demands, unfortunately, these devices are 
equipped with poor security protections creating 
vulnerabilities. As the power of processors grow and 
computers become more powerful and efficient the 
improper security that IoT devices come with will not 
withstand cyber-attacks. This paper introduces Alike 
algorithm as a solution to provide lightweight security for 
IoT devices. In this paper, we will examine the 
performance analysis of Alike algorithm on a raspberry 
pi zero. This analysis includes the execution time, memory 
consumption, CPU utilization, and power utilization.  
  
Keywords: Authenticated lightweight key exchange (Alike), 
IoT security 
  
1.     INTRODUCTION 

The Internet of Things (IoT) devices are currently growing 
and becoming widespread. An IoT device is a small 
embedded system that is integrating into our daily lives 
[1][2]. For example, smart TV’s, smart appliances, wearables, 
smart speakers, etc. are becoming more ubiquitous. These 
developments are going to have a huge influence on our 
future and profoundly revamp our environment. Our 
environment will be heavily influenced by the new cyber-
physical world that will result from automated interaction 
from these devices without human cooperation [3][4]. As we 
rely on computer-based devices the demand for security and 
privacy will increase. One of the major mechanisms that is 
used  to solve this issue is cryptography.  
  
The process of converting (encrypting) ordinary messages 
into indecipherable text and vice versa has been coined 
cryptography [5]. It is a method of transmitting and storing 
data in a manner that only the intended recipient or recipients 
can read and process. In cryptography, key exchange is a 
process by which cryptographic keys are securely exchanged 
between two parties and those keys are utilized as a part for 
some cryptographic algorithm [5][6]. For IoT devices, this 
has become a major issue because of the inadequate security 
these devices are equipped with. There are chiefly two 
different types of encryption methods: symmetric or 

asymmetric encryption. Symmetric encryption, also known 
as secret-key algorithms, commonly require a key to be 
shared and simultaneously be kept secret within a restricted 
group [7][8]. Asymmetric encryption, in rudimentary terms, 
is when the transmitter and receiver hold different keys where 
at least one is computationally unattainable to derive from the 
other [9]. Yet, symmetric encryption is widely used today for 
the reason that they can achieve high-speed or low-cost 
encryption [7]. Alike algorithm utilizes both: AES 
(symmetric) and RSA (asymmetric) [10]. 
  
In addition, there are other popular key exchange algorithms 
such as Diffie-Hellman and Elliptic Curve Diffie-Hellman 
(EC Diffie-Hellman). Though these key exchanges are 
available, none are lightweight. The necessity of finding a 
lightweight reliable key exchange algorithm for IoT devices 
is becoming pervasive especially in the United States.  
  
Recently, the California Legislative branch proposed Senate 
Bill No. 327. The Bill states, “This bill, beginning on January 
1, 2020, would require a manufacturer of a connected device, 
as those terms are defined, to equip the device with a 
reasonable security feature or features that are appropriate to 
the nature and function of the device, appropriate to the 
information it may collect, contain, or transmit, and designed 
to protect the device and any information contained therein 
from unauthorized access, destruction, use, modification, or 
disclosure, as specified,” [11]. IoT security is becoming 
important in that many cryptography algorithms need to work 
with the constraints such as, memory and CPU limitations, 
that IoT devices have. Therefore, there is a search in 
cryptographic algorithms to find an algorithm that is viable in 
these constraints. For example, one these algorithms 
proposed by NIST (National Institute of Standards and 
Technology) is Alike algorithm [12].  
  
In this paper, we are implementing and analyzing the 
performance of Alike algorithm, which will be explained in 
the next section, in an IoT environment. Furthermore, in 
Section 3 we will discuss the implementation of Alike 
algorithm in a Raspberry Pi Zero. Section 4 deliberates about 
the performance and power consumption of Alike algorithm 
on the Raspberry Pi Zero. Lastly, section 5, we present 
concluding thoughts on Alike algorithm on the Raspberry Pi 
Zero. 
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2.  AUTHENTICATED LIGHTWEIGHT KEY 

EXCHANGE (ALIKE) ALGORITHM 

Alike algorithm is a lightweight key exchange algorithm that 
applies RSA with the use of AES encryption [12][13]. 
Lightweight cryptography is an encryption method that 
features a small footprint and/or low computational 
complexity [14]. NIST proposed a six-part standard that 
specifies lightweight cryptographic algorithms for 
confidentiality, authentication, identification, non-
repudiation, and key exchange to which Alike is the solution 
[12].  

The primitives in the algorithm are: a block-cipher, E, where 
E is {0,1}  {0,1}   {0,1} ,  = 128 bits for AES and a 
public key encryption scheme  = RSA.  
 
As shown in Figure 1, first, the algorithm generates a private 
key, sk, and a public key, pk, in the IoT device utilizing RSA 
key generation algorithm. Afterwards, a number k is chosen 
as a primitive, between the bit size of 0 and -1 - or any 
number that will not make the difference and append 0’s to 
the beginning (0||k), totaling a size of 128 bits. Then encrypt 
a string of zeros with the result using 128-bit AES and obtain 
a value y which will be sent to the computer with the public 
key, pk. 

The computer receives and saves y. A random number r is 
chosen between the bit size of 0 and  - 1. First, append ones 
to r, totaling the size of 1||r to 128 bits, and then use it as key 
in 128-bit AES, to encrypt string of zeros (h = E1||r(0)). 
Encrypt the result with the public RSA key that was received 
with y from the IoT device pk(r) = (r||h)e mod n = c. Note 
that r||h has a size of 256 bit. This is important for future AES 
encryption. The result, c, is then sent back to the IoT device. 
 
Originally when the IoT device received c, to recover r||h the 
algorithm utilized the prime number p from the RSA 
algorithm but instead it was decided to use n. The modulo p 
would recover the original r disregarding the appended 1’s 
that the h affixed. Unfortunately, due to the large ratio 
between p and q, the algorithm became computationally 
challenging and inefficient. Therefore, it was decided to use 
n to find the r||h. Once obtained compute res by encrypting 
recovered r||h with 256-bit AES (E0||r(k)). Then send res to 
the computer. 

The computer recovers k by decrypting the res using 256-bit 
AES with key being r||h (k = E-1

r||h(res)). Once k is recovered, 
encrypt 0||k with 128-bit AES, and key being a zero 128-bit 
string (E0||k(0) = y) to verify the original y. Once verified, k 
XOR r to achieve key K. See figure 1. 

 

 

 

 
Figure 1: Alike algorithm. The boxes on the right hand 
side is the computer, the boxes on the left hand side is the 
IoT device. 

The next section will discuss Alike algorithm implementation 
on Raspberry Pi Zero to analyze the performance in a 
resource constraint environment. 
 

3. RASPBERRY PI ZERO IMPLEMENTATION OF 

ALIKE  

It is decided to implement Alike algorithm on a Raspberry Pi 
Zero development kit (devkit) shown in figure 2. The 
Raspberry Pi Zero Wireless comes with 802.11n Wireless 
LAN, Bluetooth, and BCM2835 [15]. This contains an 
ARM1176JZFS with floating point, running at 1 GHz, and a 
video core 4 GPU. [16] We burned the Raspbian image to the 
SD card, enabled ssh, and added network info [17][18]. 
 

 
 
Figure 2: A picture of Raspberry Pi Zero  

Raspberry pi Zero with ARM1176JZFS is considered the 
target platform, which is specifically designed for these 
environments and supports the specifications mentioned in 
Table 1.   
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Table 1 – Raspberry Pi Zero devkit Specification  
 

 
 

The Raspberry Pi Zero features many I/O pinouts for 
component interfacing, however for this study these pins are 
not used. The Raspberry Pi Zero is assembled with a small 
microSD card slot. The python program developed for this 
study uses direct output transmitted over SSH with reporting 
results and debug messages [21]. The Raspberry Pi Zero 
Wireless was connected via Wi-Fi to a 2015 MacBook pro 
with Retina Display laptop running MacOS X Mojave. RSA 
algorithm is considered a secure algorithm due to its 
factorization properties [19]. Hence, we believe the security 
of the algorithm is still formidable.   

The Alike algorithm was implemented utilizing the latest 
edition of Python 3.7.2 with the Raspbian operating system 
installed on the Raspberry Pi Zero Wireless [18][20]. 
Raspberry Pi was run headless (a.i. without a monitor) and 
was fully configured and controlled via SSH. File transfer 
(code has been initially written and tested on the 
aforementioned Mac OS machine) was accomplished via the 
use of sftp utility [21]. In order to get the most adequate 
results, Raspberry Pi’s uptime was kept as low as possible and 
it was rebooted after every 5 runs of the program.  
 
As shown in figures 3 and 5, the RSA and AES encryption 
we employed were elicited from the PyCrypto library, which 
was the only non-standard library we selected [22]. Random 
values came from Python’s standard library - random 
module. The AES algorithm is administered in ECB mode 
[22]. To apply RSA, we were required to adjust the size of the 
message to fit under PyCrypto’s standards, which enforced us 
to apply a padding algorithm [23]. Specifying byte order was 
important because different systems have different ways of 
reading payloads and we want to make sure our code is 
reusable on different types of computers. 

 
 

Figure 3:  AES implementation 

We used relatively small size r (16 bit) and k (32 bit) but their 
size should not affect the performance of the program. As you 
can see from the figure 4, generating zeroes was done with 
plain bytes method, included in Python’s standard library. 
 

 
 

Figure 4: Test case constants 

 
Generating ones, however, required a little trick - byte array 
method with ‘\xFF’. See figure 5. 
 

 
 

Figure 5: 0||r generation and RSA encryption 
 
 

4. ALIKE ALGORITHM PERFORMANCE 

ANALYSIS  

Execution time for Alike algorithm is tested on Raspberry Pi 
Zero and results are assessed. Performance of the 
implementation was calculated using line_profiler and 
memory_profiler in python [24][25]. Private and public keys 
are generated using pythons RSA algorithm with exception 
for 256 and 512-bit keys. Key size under 1024 bits is 
considered unsafe by PyCrypto developers, so an additional 
Ruby script was introduced in order to generate small RSA 
keypairs [26][27]. Results are evaluated below. 
 

Table 2: Total Execution time 
 

RSA (bits) Time (secs) Clock 
(peak %) 

RAM (MB) 

256 0.025598 62.26 1.0656 

512 0.0306904 68.98 1.0948 

1024 0.245425 76.02 1.1034 

2048 0.3790166 86.68 1.165 

4096 0.9041591 93.8 1.1356 
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From Table 2 we can see that, as the RSA key size increases, 
the execution time increases exponentially. Since 
memory_profiler takes both base Python and executable code 
in account, we used an empty “Hello World” program to 
determine the baseline memory consumption. In an average 
of 5 trials it turned out to be 25.617 MB on our Raspberry Pi 
Zero Wireless. Then, we subtracted the averaged baseline 
value from values we have got with memory_profiler. 
 
We have also used line_profiler to measure peak CPU usage. 
As it turns out RSA decryption is the “heaviest” process in 
code due to arithmetic involved. Increasing the RSA key size 
increases the execution and memory/CPU usage accordingly. 
Interestingly, increasing RSA from 2048 to 4098 almost 
triples the execution time. 
 
   

 
 

Figure 6: Peak CPU load.  
 

As we can see in figure 6, peak CPU usage grows 
proportionally to the key size used. 
 
  

 
 

Figure 7: Execution Time. 
 

Figure 7 suggests that execution time exponentially increases 
when larger key sizes are introduced: with 256 and 512-bit 

key execution time is less than 0.031 seconds. When 1024-bit 
encryption only takes around 0.25 seconds to process, 4096-
bit encryption takes 0.9 seconds. 
 
 

 
 

Figure 8: RAM usage in megabytes. 
 

From figure 8, the use of memory varies within 50 kilobytes 
with 2048-bit encryption surprisingly using the most - 1.165 
MB - which is not critical. We suspect that the reason behind 
2048-bit encryption being the heaviest on RAM is that despite 
the key being bigger, the primes randomly generated were 
smaller. Additionally, it’s possible that the values we are 
using in  in the encryption for 4096 is significantly smaller 
than the  being used in 2048 since its being randomly 
generated. Hence, that is why we conjecture that 2048 utilizes 
a considerable amount of RAM.  
 
In order to estimate power consumption, we will use a simple 
formula that takes voltage (5.1V), current (1A) and amount 
of clock cycles and returns joules. The voltage and amperage 
were taken from the power adapter that came with Raspberry 
Pi, and clock cycles are calculated by multiplying execution 
time by processors clock rate, which in case of our Raspberry 
Pi Zero Wireless is 1GHz.  
  =    (1) 
 

Table 3: Average clock cycle count by RSA size 
 

RSA (bits) Clock cycles 

256 25,598,000 

512 30,690,400 

1024 245,424,509 

2048 379,016,638 

4096 904,159,069 
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Using the given equations (1) we estimate the power of Alike 
algorithm on Raspberry Pi [28].  =  3.3   =  0.12  =  0.12 3.3 = 0.396           (1) 

Multiplying the following power consumption with the 
execution time, average power consumption can be 
calculated.    = 0.396       4096  : 0.3580452  

Knowing that an average AA battery yields around 12960 
Joules [29], this algorithm will consume 1425.6 joules per 
hour. We can conclude that an average AA battery will only 
last about 9 hours, which is quite insufficient for an IoT 
device assuming that Alike algorithm is running 
continuously. On the contrary, Alike algorithm will not be 
running continuously so the power consumption could be 
fine.  
 
5. CONCLUSION 

In this study we have evaluated the performance of Alike 
algorithm on a Raspberry pi Zero with ARM1176JZFS 
processor with respect to execution time, CPU usage, 
memory and power consumption. These factors play a 
significant role in implementing Alike algorithm because of 
the constrained resources in IoT devices. Evidently, RSA key 
generation requires more memory and time due to the 
mathematical complexity. Fortunately, key generation is 
done once on the computer end of this algorithm, hence IoT 
devices shouldn’t not have an issue with memory 
consumption. Considering for IoT devices Alike algorithm 
can be implemented on Raspberry Pi Zero applications with 
moderate processing time with peak memory and CPU 
utilization. 
 
Favorably, Raspberry Pi Zero has sufficient amount of 
memory and CPU that Alike algorithm is viable. In the case 
of IoT devices we conclude that our implementation of Alike 
algorithm will most likely be staggering for the IoT device if 
applying RSA keys greater than or equal to 1024. In addition, 
the power the algorithm utilizes is ideal for IoT devices. From 
our analysis, if we were to run Alike algorithm continuously 
the algorithm will drain a AA battery very quickly but, 
fortunately, Alike will not be running continuously. The 256 
and 512 RSA key size will make Alike algorithm lightweight 
and feasible.  
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