
IoT Security: Authenticated Lightweight Key
Exchange (ALIKE)

Levent Ertaul, Peter Chudinov, and Brian Morales
California State University, East Bay, Hayward, CA, USA

levent.ertaul@csueastbay.edu, pchudinov@horizon.csueastbay.edu, bmorales25@horizon.csueastbay.edu

Abstract – IoT security is becoming more and more
important as the world relies on computer-based devices.
One of the most considerable challenges in today’s world
is having security and privacy for the Internet of Things
(IoT). As of today, there are approximately eight billion
IoT devices connected and by the early 2020’s it is
estimated that there will be 3 to 4 times more IoT devices
connected, in which, 25% of cyber-attacks will be
targeting IoT devices. Manufacturers are racing to keep
up with demands, unfortunately, these devices are
equipped with poor security protections creating
vulnerabilities. As the power of processors grow and
computers become more powerful and efficient the
improper security that IoT devices come with will not
withstand cyber-attacks. This paper introduces Alike
algorithm as a solution to provide lightweight security for
IoT devices. In this paper, we will examine the
performance analysis of Alike algorithm on a raspberry
pi zero. This analysis includes the execution time, memory
consumption, CPU utilization, and power utilization.

Keywords: Authenticated lightweight key exchange (Alike),
IoT security

1. INTRODUCTION

The Internet of Things (IoT) devices are currently growing
and becoming widespread. An IoT device is a small
embedded system that is integrating into our daily lives
[1][2]. For example, smart TV’s, smart appliances, wearables,
smart speakers, etc. are becoming more ubiquitous. These
developments are going to have a huge influence on our
future and profoundly revamp our environment. Our
environment will be heavily influenced by the new cyber-
physical world that will result from automated interaction
from these devices without human cooperation [3][4]. As we
rely on computer-based devices the demand for security and
privacy will increase. One of the major mechanisms that is
used to solve this issue is cryptography.

The process of converting (encrypting) ordinary messages
into indecipherable text and vice versa has been coined
cryptography [5]. It is a method of transmitting and storing
data in a manner that only the intended recipient or recipients
can read and process. In cryptography, key exchange is a
process by which cryptographic keys are securely exchanged
between two parties and those keys are utilized as a part for
some cryptographic algorithm [5][6]. For IoT devices, this
has become a major issue because of the inadequate security
these devices are equipped with. There are chiefly two
different types of encryption methods: symmetric or

asymmetric encryption. Symmetric encryption, also known
as secret-key algorithms, commonly require a key to be
shared and simultaneously be kept secret within a restricted
group [7][8]. Asymmetric encryption, in rudimentary terms,
is when the transmitter and receiver hold different keys where
at least one is computationally unattainable to derive from the
other [9]. Yet, symmetric encryption is widely used today for
the reason that they can achieve high-speed or low-cost
encryption [7]. Alike algorithm utilizes both: AES
(symmetric) and RSA (asymmetric) [10].

In addition, there are other popular key exchange algorithms
such as Diffie-Hellman and Elliptic Curve Diffie-Hellman
(EC Diffie-Hellman). Though these key exchanges are
available, none are lightweight. The necessity of finding a
lightweight reliable key exchange algorithm for IoT devices
is becoming pervasive especially in the United States.

Recently, the California Legislative branch proposed Senate
Bill No. 327. The Bill states, “This bill, beginning on January
1, 2020, would require a manufacturer of a connected device,
as those terms are defined, to equip the device with a
reasonable security feature or features that are appropriate to
the nature and function of the device, appropriate to the
information it may collect, contain, or transmit, and designed
to protect the device and any information contained therein
from unauthorized access, destruction, use, modification, or
disclosure, as specified,” [11]. IoT security is becoming
important in that many cryptography algorithms need to work
with the constraints such as, memory and CPU limitations,
that IoT devices have. Therefore, there is a search in
cryptographic algorithms to find an algorithm that is viable in
these constraints. For example, one these algorithms
proposed by NIST (National Institute of Standards and
Technology) is Alike algorithm [12].

In this paper, we are implementing and analyzing the
performance of Alike algorithm, which will be explained in
the next section, in an IoT environment. Furthermore, in
Section 3 we will discuss the implementation of Alike
algorithm in a Raspberry Pi Zero. Section 4 deliberates about
the performance and power consumption of Alike algorithm
on the Raspberry Pi Zero. Lastly, section 5, we present
concluding thoughts on Alike algorithm on the Raspberry Pi
Zero.

Int'l Conf. Wireless Networks | ICWN'19 | 45

ISBN: 1-60132-504-5, CSREA Press ©

2. AUTHENTICATED LIGHTWEIGHT KEY

EXCHANGE (ALIKE) ALGORITHM

Alike algorithm is a lightweight key exchange algorithm that
applies RSA with the use of AES encryption [12][13].
Lightweight cryptography is an encryption method that
features a small footprint and/or low computational
complexity [14]. NIST proposed a six-part standard that
specifies lightweight cryptographic algorithms for
confidentiality, authentication, identification, non-
repudiation, and key exchange to which Alike is the solution
[12].

The primitives in the algorithm are: a block-cipher, E, where
E is {0,1} {0,1} {0,1} , = 128 bits for AES and a
public key encryption scheme = RSA.

As shown in Figure 1, first, the algorithm generates a private
key, sk, and a public key, pk, in the IoT device utilizing RSA
key generation algorithm. Afterwards, a number k is chosen
as a primitive, between the bit size of 0 and -1 - or any
number that will not make the difference and append 0’s to
the beginning (0||k), totaling a size of 128 bits. Then encrypt
a string of zeros with the result using 128-bit AES and obtain
a value y which will be sent to the computer with the public
key, pk.

The computer receives and saves y. A random number r is
chosen between the bit size of 0 and - 1. First, append ones
to r, totaling the size of 1||r to 128 bits, and then use it as key
in 128-bit AES, to encrypt string of zeros (h = E1||r(0)).
Encrypt the result with the public RSA key that was received
with y from the IoT device pk(r) = (r||h)e mod n = c. Note
that r||h has a size of 256 bit. This is important for future AES
encryption. The result, c, is then sent back to the IoT device.

Originally when the IoT device received c, to recover r||h the
algorithm utilized the prime number p from the RSA
algorithm but instead it was decided to use n. The modulo p
would recover the original r disregarding the appended 1’s
that the h affixed. Unfortunately, due to the large ratio
between p and q, the algorithm became computationally
challenging and inefficient. Therefore, it was decided to use
n to find the r||h. Once obtained compute res by encrypting
recovered r||h with 256-bit AES (E0||r(k)). Then send res to
the computer.

The computer recovers k by decrypting the res using 256-bit
AES with key being r||h (k = E-1

r||h(res)). Once k is recovered,
encrypt 0||k with 128-bit AES, and key being a zero 128-bit
string (E0||k(0) = y) to verify the original y. Once verified, k
XOR r to achieve key K. See figure 1.

Figure 1: Alike algorithm. The boxes on the right hand
side is the computer, the boxes on the left hand side is the
IoT device.

The next section will discuss Alike algorithm implementation
on Raspberry Pi Zero to analyze the performance in a
resource constraint environment.

3. RASPBERRY PI ZERO IMPLEMENTATION OF

ALIKE

It is decided to implement Alike algorithm on a Raspberry Pi
Zero development kit (devkit) shown in figure 2. The
Raspberry Pi Zero Wireless comes with 802.11n Wireless
LAN, Bluetooth, and BCM2835 [15]. This contains an
ARM1176JZFS with floating point, running at 1 GHz, and a
video core 4 GPU. [16] We burned the Raspbian image to the
SD card, enabled ssh, and added network info [17][18].

Figure 2: A picture of Raspberry Pi Zero

Raspberry pi Zero with ARM1176JZFS is considered the
target platform, which is specifically designed for these
environments and supports the specifications mentioned in
Table 1.

46 Int'l Conf. Wireless Networks | ICWN'19 |

ISBN: 1-60132-504-5, CSREA Press ©

Table 1 – Raspberry Pi Zero devkit Specification

The Raspberry Pi Zero features many I/O pinouts for
component interfacing, however for this study these pins are
not used. The Raspberry Pi Zero is assembled with a small
microSD card slot. The python program developed for this
study uses direct output transmitted over SSH with reporting
results and debug messages [21]. The Raspberry Pi Zero
Wireless was connected via Wi-Fi to a 2015 MacBook pro
with Retina Display laptop running MacOS X Mojave. RSA
algorithm is considered a secure algorithm due to its
factorization properties [19]. Hence, we believe the security
of the algorithm is still formidable.

The Alike algorithm was implemented utilizing the latest
edition of Python 3.7.2 with the Raspbian operating system
installed on the Raspberry Pi Zero Wireless [18][20].
Raspberry Pi was run headless (a.i. without a monitor) and
was fully configured and controlled via SSH. File transfer
(code has been initially written and tested on the
aforementioned Mac OS machine) was accomplished via the
use of sftp utility [21]. In order to get the most adequate
results, Raspberry Pi’s uptime was kept as low as possible and
it was rebooted after every 5 runs of the program.

As shown in figures 3 and 5, the RSA and AES encryption
we employed were elicited from the PyCrypto library, which
was the only non-standard library we selected [22]. Random
values came from Python’s standard library - random
module. The AES algorithm is administered in ECB mode
[22]. To apply RSA, we were required to adjust the size of the
message to fit under PyCrypto’s standards, which enforced us
to apply a padding algorithm [23]. Specifying byte order was
important because different systems have different ways of
reading payloads and we want to make sure our code is
reusable on different types of computers.

Figure 3: AES implementation

We used relatively small size r (16 bit) and k (32 bit) but their
size should not affect the performance of the program. As you
can see from the figure 4, generating zeroes was done with
plain bytes method, included in Python’s standard library.

Figure 4: Test case constants

Generating ones, however, required a little trick - byte array
method with ‘\xFF’. See figure 5.

Figure 5: 0||r generation and RSA encryption

4. ALIKE ALGORITHM PERFORMANCE

ANALYSIS

Execution time for Alike algorithm is tested on Raspberry Pi
Zero and results are assessed. Performance of the
implementation was calculated using line_profiler and
memory_profiler in python [24][25]. Private and public keys
are generated using pythons RSA algorithm with exception
for 256 and 512-bit keys. Key size under 1024 bits is
considered unsafe by PyCrypto developers, so an additional
Ruby script was introduced in order to generate small RSA
keypairs [26][27]. Results are evaluated below.

Table 2: Total Execution time

RSA (bits) Time (secs) Clock
(peak %)

RAM (MB)

256 0.025598 62.26 1.0656

512 0.0306904 68.98 1.0948

1024 0.245425 76.02 1.1034

2048 0.3790166 86.68 1.165

4096 0.9041591 93.8 1.1356

Int'l Conf. Wireless Networks | ICWN'19 | 47

ISBN: 1-60132-504-5, CSREA Press ©

From Table 2 we can see that, as the RSA key size increases,
the execution time increases exponentially. Since
memory_profiler takes both base Python and executable code
in account, we used an empty “Hello World” program to
determine the baseline memory consumption. In an average
of 5 trials it turned out to be 25.617 MB on our Raspberry Pi
Zero Wireless. Then, we subtracted the averaged baseline
value from values we have got with memory_profiler.

We have also used line_profiler to measure peak CPU usage.
As it turns out RSA decryption is the “heaviest” process in
code due to arithmetic involved. Increasing the RSA key size
increases the execution and memory/CPU usage accordingly.
Interestingly, increasing RSA from 2048 to 4098 almost
triples the execution time.

Figure 6: Peak CPU load.

As we can see in figure 6, peak CPU usage grows
proportionally to the key size used.

Figure 7: Execution Time.

Figure 7 suggests that execution time exponentially increases
when larger key sizes are introduced: with 256 and 512-bit

key execution time is less than 0.031 seconds. When 1024-bit
encryption only takes around 0.25 seconds to process, 4096-
bit encryption takes 0.9 seconds.

Figure 8: RAM usage in megabytes.

From figure 8, the use of memory varies within 50 kilobytes
with 2048-bit encryption surprisingly using the most - 1.165
MB - which is not critical. We suspect that the reason behind
2048-bit encryption being the heaviest on RAM is that despite
the key being bigger, the primes randomly generated were
smaller. Additionally, it’s possible that the values we are
using in in the encryption for 4096 is significantly smaller
than the being used in 2048 since its being randomly
generated. Hence, that is why we conjecture that 2048 utilizes
a considerable amount of RAM.

In order to estimate power consumption, we will use a simple
formula that takes voltage (5.1V), current (1A) and amount
of clock cycles and returns joules. The voltage and amperage
were taken from the power adapter that came with Raspberry
Pi, and clock cycles are calculated by multiplying execution
time by processors clock rate, which in case of our Raspberry
Pi Zero Wireless is 1GHz.
 = (1)

Table 3: Average clock cycle count by RSA size

RSA (bits) Clock cycles

256 25,598,000

512 30,690,400

1024 245,424,509

2048 379,016,638

4096 904,159,069

50
55
60
65
70
75
80
85
90
95

100

256 512 1024 2048 4096
RSA key size, bits

CPU usage peak, %

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

256 512 1024 2048 4096
RSA key size, bits

Execution time, sec.

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

256 512 1024 2048 4096
RSA key size, bits

RAM used, MB

48 Int'l Conf. Wireless Networks | ICWN'19 |

ISBN: 1-60132-504-5, CSREA Press ©

Using the given equations (1) we estimate the power of Alike
algorithm on Raspberry Pi [28]. = 3.3 = 0.12 = 0.12 3.3 = 0.396 (1)

Multiplying the following power consumption with the
execution time, average power consumption can be
calculated. = 0.396 4096 : 0.3580452

Knowing that an average AA battery yields around 12960
Joules [29], this algorithm will consume 1425.6 joules per
hour. We can conclude that an average AA battery will only
last about 9 hours, which is quite insufficient for an IoT
device assuming that Alike algorithm is running
continuously. On the contrary, Alike algorithm will not be
running continuously so the power consumption could be
fine.

5. CONCLUSION

In this study we have evaluated the performance of Alike
algorithm on a Raspberry pi Zero with ARM1176JZFS
processor with respect to execution time, CPU usage,
memory and power consumption. These factors play a
significant role in implementing Alike algorithm because of
the constrained resources in IoT devices. Evidently, RSA key
generation requires more memory and time due to the
mathematical complexity. Fortunately, key generation is
done once on the computer end of this algorithm, hence IoT
devices shouldn’t not have an issue with memory
consumption. Considering for IoT devices Alike algorithm
can be implemented on Raspberry Pi Zero applications with
moderate processing time with peak memory and CPU
utilization.

Favorably, Raspberry Pi Zero has sufficient amount of
memory and CPU that Alike algorithm is viable. In the case
of IoT devices we conclude that our implementation of Alike
algorithm will most likely be staggering for the IoT device if
applying RSA keys greater than or equal to 1024. In addition,
the power the algorithm utilizes is ideal for IoT devices. From
our analysis, if we were to run Alike algorithm continuously
the algorithm will drain a AA battery very quickly but,
fortunately, Alike will not be running continuously. The 256
and 512 RSA key size will make Alike algorithm lightweight
and feasible.

REFERENCES

[1] G. Saldamli , L. Ertaul and B. Kodirangaiah. “Post-
Quantum Cryptography on IoT: Merkle’s Tree
Authentication”. Int’l Conference Wireless Networks. 2018,
40, 286.

[2] A. Zanelle, N. Bui, A. Castellani, L. Vangelista, M. Zorzi.
“Internet of Things for Smart Cities”. IEEE Internet of
Things Journal, Vol. 1, February 2014

[3] H. Petersen, E. Baccelli, and M. Wählisch. “Interoperable
Services on Constrained Devices in the Internet of Things”.
In W3C, editor, W3C Workshop on the Web of Things,
Berlin, Germany, June 2014.

[4] Ericsson, “More than 50 billion devices,” Ericsson White
Paper, Tech. Rep., 2011.

[5] S. Kumari. “A Research Paper on Cryptography
Encryption and Compression Techniques”. International
Journal Of Engineering and Computer Science, Vol 6, Issue
4, April 2017

[6] J. Gaba, N. Rani, M. Kumar. “A Review Based Study of
Key Exchange Algorithms”. International Journal of Recent
Trends in Mathematics & Computing, Vol 1, Issue 1, October
2012

[7] A. Mouloudi. “NEW SYMMETRIC ENCRYPTION
SYSTEM BASED ON EVOLUTIONARY ALGORITHM”.
International Journal of Computer Science & Information
Technology (IJCSIT) Vol 7, No 6, December 2015

[8] S. Pavithra, E. Ramadevi. “Study and Performance
Analysis of Cryptography Algorithms”. International Journal
of Advance Research in Computer Engineering &
Technology Vol 1, Issue 5, July 2012

[9] G. J. Simmons. "Symmetric and Asymmetric Encryption"
(PDF). Computing Surveys, Vol 11, No. 4. December 1979.

[10] F. Shao, Z. Chang, Y. Zhang. “AES Encryption
Algorithm Based on the High-Performance Computing of
GPU”. Second International Conference on Communication
Software and Networks, February 2010

[11]N.p n.p N.d. (2018) “Senate Bill No. 327”

[12] K. A. McKay, L. Bassham, M. S. Turan, N. Mouha.
(2017), NISTIR 8114, Report on Lightweight Cryptography.
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.
8114.pdf

[13] S. Agagliate. “ALIKE: Authenticated Lightweight Key
Exchange PowerPoint” GEMALTO Security Labs. N.p. n.d.

[14] O. Toshiko, “Lightweight Cryptography Applicable to
Various Iot Devices”. 2017

[15]T. Klosowki. “The Raspberry Pi Zero W Adds Wi-fi and
Bluetooth to the zero, Cost $10”.
Article. https://lifehacker.com/the-raspberry-pi-zero-
wireless-adds-wi-fi-and-bluetooth-1792789503

[16] “RPi Zero Hardware General Specifications” N.p. n.d.
Web. https://raspberry-
projects.com/pi/pihardware/raspberry-pi-zero/raspberry-pi-
zero-hardware-general-specifications

Int'l Conf. Wireless Networks | ICWN'19 | 49

ISBN: 1-60132-504-5, CSREA Press ©

[17] N.p. n.p. N.d. “Raspbian Installer”. [Online]
Available: https://raspbian.org/RaspbianInstaller

[18] Allen, Mitch. (N/A) “Headless Pi Zero Wifi Setup
(Windows)”. [Online] Available:
https://desertbot.io/blog/headless-pi-zero-w-wifi-setup-
windows

[19] M. Preetha, M. Nithya (2013) “A Study and Performance
Analysis of RSA Algorithm” IJCSMC, Vol. 2, Issue. 6, pg.
126-139

[20] N.p. (2018) “Python 3.7.2” [Online] Available:
https://www.python.org/downloads/release/python-372/

[21] N.p. n.p. N.d. “SFTP - Raspberry Pi
Documentation” [Online] Available:
https://www.raspberrypi.org/documentation/remote-
access/ssh/sftp.md

[22] “PyCrypto Documentation”. [Online] Available:
https://pypi.org/project/pycrypto/

[23] N.p. (2018) Python Crypto: Using AES - 128 in ECB
mode. [Online] Available:
https://techtutorialsx.com/2018/04/09/python-pycrypto-
using-aes-128-in-ecb-mode/

[24] “Line_Profiler 2.1.2” [Online] Available:
https://pypi.org/project/line_profiler/

[25] N.p. (2018) “Memory-Profiler 0.55.0” [Online]
Available: https://pypi.org/project/memory-profiler/

[26] N.p. “Welcome to open SSL” [Online] Available:
https://www.openssl.org/

[27] J. Britt, Neurogami. “Open SSL” [Online] Available:
http://ruby-doc.org/stdlib-
2.0.0/libdoc/openssl/rdoc/OpenSSL.html

[28] K. Nisimova. “Energy of a 1.5 V Battery”. 2001

[29] B. Gebeau. “How Many AA Batteries Would to Take to
Power a Human?” N.d.

50 Int'l Conf. Wireless Networks | ICWN'19 |

ISBN: 1-60132-504-5, CSREA Press ©

