
Abstract— Privacy preserving content sharing has become one
of the most desired feature of most social, mobile or internet
applications. Today the amount of private data flowing in the
internet or at rest is bigger than ever before and its size is growing
with an unpresented pace. Most of the users as well as the
regulators are concerned about privacy of that data. Most
applications do not need raw data but instead require some data
analytics. In reality, desired analytic functions are mostly simple
ones such as accumulations, mean or average calculations, unions
or intersections. In this study, we focus on private intersection of
data owned by different parties without revealing the data that is
not in the intersection. We propose an efficient method of privacy
preserving sensitive information sharing that are usable and
practical in the real world scenarios. Our method guaranties that
communicating parties learn no information beyond what they are
required to know. There are wide set of applications ranging from
social networking to national security using privacy preserving
data intersection.

Index Terms—Privacy preserving computations, location,

contact sharing.

I. INTRODUCTION
The growing concern related privacy is increasing and many

people are concerned about their private data as the private data
is online and readily accessible ever before. Privacy can be
defined as the ability of an individual/group to separate
themselves or any information about themselves and to share
the information selectively. So selective sharing is important.
Sharing only a selected part of information and to selected set
of people. So it is important to have a method to achieve this in
an efficient manner. A common privacy preserving sharing
example would be a user, Bob wants to find common contacts
with another user, Alice. However, Alice doesn’t want to share
her all of the contacts but she is fine showing Bob the common
contacts. The question of how can they check for common
contact without revealing their other contacts so the solution to
this technique is Privacy-Preserving Sharing of Sensitive
Information (PPSSI). The applications of this simple story
telling can be mind blowing. For instance, the following are
some of the direct application:
• Aviation Safety: There are many secret list with the

department of Homeland Security. The list like Terror
Watch list (TWL) [2]. The Department of Homeland
security depending on these list checks whether any
passenger on flight from/to USA must be allowed or

denied. So the information about a flight is given to DHS
by the airlines. The information surrendered contains a lot
of private information about the passengers. This includes
a liability for the innocent passengers. So ideal case should
be that the DHS should get only the information about the
passenger which are on any of the watch list and the other
information should not be disclosed. (For recent incidents
about sensitive information stolen by government officials
check [3]).

• Law Enforcement: For an investigating agency like FBI
often require to get information about a suspect for various
places like IRS, DMV, or suspect’s employer. FBI can’t
disclose the subject of its investigation and all the other
agencies can’t trust the FBI to extract only relevant
information and share the whole set of the data which
includes other unsuspected people. PPSSI method would
also be beneficial in this use case.

• Health Care: Hospitals have lot of private information
regarding their patients but many other department and
agencies would a particular information regarding a patient
with disclosing who that patient is. In that case also the
PPSSI would be useful.

There are many more example in which the PPSSI technique

would be a perfect fit and would be able to solve many issues.
Some other examples include Profile Matching algorithm,
sharing interest from smart phone [1, 5, 6, 7].

Fig. 1. Google trends for “privacy violation”.

Fig. 1 shows the google trends graph on “Privacy violation”
as a search term. Notice that the privacy awareness are in a

Gokay Saldamli1, Levent Ertaul2 and Mayur Gala 2
1San Jose State University, San Jose, CA, USA

2California State University, East Bay, Hayward, CA, USA
gokay.saldamli@sjsu.edu, levent.ertaul@csueastbay.edu, mayurgala@horizon.csueastbay.edu

Privacy-preserving contact comparison for
social networks

28 Int'l Conf. Wireless Networks | ICWN'19 |

ISBN: 1-60132-504-5, CSREA Press ©

rising trend. More people are concerned about privacy more
than ever before.

Private set intersection or privacy preserving sharing are
methods of achieving privacy using cryptographic primitives.
We take [1] as a baseline where the authors modeled in the form
of a normal database querying application with a server and a
client. Where server has the database and client performs query.
The main building blocks of their protocol were the efficient
private set intersection (PSI) techniques. We used one of the
protocol defined in [1] and implemented a working version of
that protocol into a mobile application to compare contacts
targeting possible applications including social networks.

We organize the paper as follows: we briefly explain the base
protocol in Section II. We go through the implementation
details in Section III. After discussing some major security and
performance analysis in Section IV we follow by conclusion in
Section V.

II. PPSSI PROTOCOL
The protocol we refer to in this paper is the protocol designed

by [1]. We use this protocol to implement as simple common
contact android application where users can intersect their
contact privately. Following are three main steps involved in
the exchange of between client and server.

1. The Client and server do Oblivious Computation and
exchange initial parameters.

2. Using that initial parameters the server will then
calculate and create the Encrypted Database and send
that to the client.

3. Client does the lookup procedure using the initial
parameters.

Table 1:Notation

The main use case for using our protocol is where there is a

party, client, who wants to compare his contacts with other
party called the server. They both want to compare the contacts
but they don’t want to compromise the information about their
rest of the contact. Hence the client and server both know the
structure of contacts database. They both also share a common
prime number p and a generator g. In order to have a compact

presentation we summarize the notation used in the protocol in
Table 1.

Fig. 2. Online of the PPSSIU approach [1}

The client and server communicate initially and exchange
some initial parameter. Then after receiving the initial
parameter the server generates the EncryptedDatabase called
EDB and send that to the client. During that time the client
generates tokens for all its (Attribute, Value) pairs and after
receiving the EDB the client runs the lookup procedure on the
EDB. The tokens which match are the common contacts so that
the client can then decrypt only those contacts. Note that not all
the encrypted database but only the entries which exist for both
are revealed and the server would not know the contacts which
were matched.

Fig. 3. Oblivious computation of Token(.) using DT10-1 [1,4]

Figs. 2 and 3 gives the details of the protocol [1] which we
will be using for the implementation purpose. In step 1 of Fig.
2, the client and server do the oblivious computation of the
Token. After step 1 the client has tki = Token (ci), where ci =
H(attr*i, val*i). The server is not aware of tki. The token is
calculated using a PSI-DT protocol [4]. In Step 2 the server runs
EncryptDatabase(EDB) procedure that is described in
Algorithm 1. The EDB is then sent to client in step3 then finally
in step 4 client executes the lookup procedure which showed in
Algorithm 2. Using the token over EDB the client retrieves the
set of records.

Oblivious Computation shown in appendix of [5] the authors
had selected PSI-DT protocol from [4] denoted as DT10-1
shown in Fig. 3. The token calculation can be summarized in
short with Eqn. (1).

Int'l Conf. Wireless Networks | ICWN'19 | 29

ISBN: 1-60132-504-5, CSREA Press ©

EncryptDatabase procedure is illustrated in Fig. 4. In this
after the oblivious computation the server encrypts the database
using Algorithm 1. In this the server shuffles all the records and
then encrypt each record then for each attribute value pair in the
record, it calculates the token and using that token it encrypts
the key and index number of the row encrypted and generate a
LTable entry with the hash of the token, encrypted key of row,
and encrypted index. All the encrypted row and Ltable entries
makeup the Encrypted database.

After the EDB is generated it is sent to the client, it goes

through a lookup procedure on the EDB. The Lookup procedure
is given in Algorithm 2. The lookup procedure is straight
forward where the client generates its set of token with the
Attribute value pair that client has. The token generation is done
after the oblivious computation step is finished. The client loops
through all the tags which received from the server in the EDB.
If the token matches it mean that it is an intersection. The client
decrypts the value of index and key and then using that index it
extracts the specific record and decrypt it using the key
extracted from the LTable.

 (1)

III. IMPLEMENTATION
We have implemented the PPSSI method mentioned in [1] as

an android application to compare contacts. We use AES (with
key sizes 128, 192 and 256) encryption [11] and SHA1 hashing
[12]. During the key generation for AES in android there is a
issue with android in SecureRandom function. It keeps
changing whenever the application is restarted so the Secure
random function used is with a seed string. The SecureRandom
function works well in Desktop version of Java but when using
the SecureRandom Function while decryption it failed to
generate the same key. It gives the Bad Padding Exception [10].

Fig. 4. Reply from a friend’s request

The public input are hardcoded into the application. Our
main objective was to check the performance of the protocol on
a mobile platform. For development, the Android KitKat was
used and most of the functions we current and not deprecated.
The minimum API level for the Network Communication was
APILEVEL 9. Eclipse with the whole ADT bundle was used
for the development at the beginning and the during the end of
development switched to Androids IDE called the Android
Studio [9][10]. For testing device VMware was used. We
Installed Android_x86 project ISO in a VMware and connected
to the VMware using the “adb” connect command. The ram
allocated to the VM was 1GB and single processor.

The first thing we developed was client server
communication on the two mobile devices. So the requirement
for this app is that both the client and server should be in a same
network and their IP should be routable.

When the user open the application, it shows two options
namely: send request to friend or receive request form friend. If
the “send req to friend” option is selected then the user will be
presented by the input box to enter IP address of the other user
and there will be a button to connect. The “Send req to Friend”
option is displayed. If the user selects “Recv request from
friend” then he will be displayed with his own IP address so that
the other friend can connect using this displayed IP address. The
“rec req from friend” option is displayed in Fig. 4. In this way

30 Int'l Conf. Wireless Networks | ICWN'19 |

ISBN: 1-60132-504-5, CSREA Press ©

the two user are connected. So the one who is sending the
request in the client in terms of protocol and the other user who
is receiving the request is the server. Here on for ease of
explanation the two user will be referred as client and server for
the rest of this paper.

Fig. 5. server response

After the connection is established the client and server carry
out the oblivious computation. For the initial calculation
BigInteger [13] is used as it integer and Long datatypes were
small. Then as the end of oblivious computation the BigInteger
is converted to long to save memory. During the first testing of
the app the contacts were hardcoded and both the client and
server had 6 contacts each with 3 common contacts. For
understanding and easy debugging purpose there is a message
box (TextView [14] in Android terms) called console. In
Console the all the steps taken and progress of protocol is
displayed (see Fig. 5).

IV. SECURITY AND PERFORMANCE ANALYSIS
The authors in [1] do not mention any way of transferring the

EDB to the client. In Algorithm 1 where the server calculates
the EDB they encrypt the key and index using the hash of token
(tag) as key, and tag is one of the entry in the LTable. This
implies that they are providing the key with the encrypted
values. Hence the client can access all the records.

Fig. 6. Client oblivious transfer

Fig. 7. Server oblivious transfer

The protocol execution time is high for larger dataset. For
around 50 contacts the wait time is around 5 minutes which
could be frustrating for users and not scalable and for large scale
systems as seen in Figs. 6 and 7. The major time consuming part
is oblivious transfer.

Fig. 8. Client lookup performance

For evaluating the performance of the algorithm, first thing

we checked is how many contacts it can handle (dataset size).
So we varied the size of contact list to check the performance
with respect to the Oblivious Transfer and lookup or EDB
generating procedure for client and server respectively. There
was huge difference when the size of dataset increased. But the
any point the memory requirement did not increase
significantly as all the calculations were atomic at a time only
one entry was processed as seen in Figs. 8. More efficient way
would be to do the calculation in a multithreaded environment
that will increase a performance but that is a future scope as
many devices still are single core they might not be able to
utilize the full potential of multithreading. But there are
increasing number of devices coming out with multi core CPU.
So it would be lot faster to implement a multithreaded version
of this protocol.

Int'l Conf. Wireless Networks | ICWN'19 | 31

ISBN: 1-60132-504-5, CSREA Press ©

Fig. 9. Total execution time for client

Figs. 10 and 11 shows that the change in size of AES
encryption key did not impact the time of execution but we
noticed that the protocol is not good for scaling because as we
increase the number of contacts the time taken to execution also
increased. This is also evident looking at other figures also. All
the figure had the similar pattern. In Fig. 6 there was an anomaly
in the time, but the reason for that would be the CPU load if the
CPU cycles are free then it the execution time is less.

Fig. 10. Total execution time for server

As there was no way to keep the execution environment
perfect always there were some time variation seen so they have
been averaged out. In theory the Key size for AES encryption
should not change the execution time of algorithm. One more
thing observed was the time taken by Server to calculate the
EDB and the time taken by the Client to do the lookup was
always almost the same.

V. CONCLUSION
In this paper we studied a PPSSI protocol and implemented it
on Android Platform. It was interesting to study the protocol
and implement the same in an android app because of which we
got to learn new things about security like the Private set
intersection approach and PPSSI and learnt how important it is
to implement the protocol as specified else it may generate more
security concerns. This approach has some small flaws in terms

of Security and performance. There is some future scope in
improving the implementation by using multi-threaded
approach. There is also need to improve security as the key is
given in LTable there should be a different approach used to
share the key.

REFERENCES
[1] E. De Cristofaro, Y. Lu, G. Tsudik. “Efficient Techniques for Privacy-

Preserving Sharing of Sensitive Information. ” In Proceedings of Trust
and Trustworthy Computing (Trust 2011), LNCS 6740, Springer, pp. 239-
253, 2011.

[2] J. P. Bjelopera, B. Elias and A. Siskin, "The terrorist screening database
and preventing terrorist travel," [Online] Available:
https://fas.org/sgp/crs/terror/R44678.pdf, November 2016..

[3] Caslon Analytics: Consumer Data Losses.
http://www.caslon.com.au/datalossnote.htm.

[4] E. De Cristofaro and G. Tsudik. "Practical private set intersection
protocols with linear complexity." In Proceedings of the 14th international
conference on Financial Cryptography and Data Security (FC'10),
Springer, pp. 143-159, 2010.

[5] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and
Nikita Borisov. “BotGrep: finding P2P bots with structured graph
analysis.” In Proceedings of the 19th USENIX conference on Security
(USENIX Security'10). USENIX Association, Berkeley, pp. 7-7, 2010.

[6] Emiliano De Cristofaro, Anthony Durussel, and Imad Aad. “Reclaiming
privacy for smartphone applications.” In Proceedings of the 2011 IEEE
International Conference on Pervasive Computing and Communications
(PERCOM '11). IEEE Computer Society, pp. 84-92, 2011.

[7] Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne and Dan Boneh.
"OpenConflict: Preventing Real Time Map Hacks in Online Games." In
proceedings of the 2011 IEEE Oakland Security and Privacy conference,
pp. 506-522, 2011.

[8] Android Developers. [Online] Available:
http://developer.android.com/guide/index.html.

[9] Android Developer Tools. [Online] Available:
http://developer.android.com/tools/index.html

[10] Bad Padding Exception fix. [Online] Available:
http://blog.kchandrahasa.com/blog/2013/08/09/android-4-dot-2-and-
javax-dot-crypto-dot-badpaddingexception-pad-block-corrupted/

[11] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-
Verlag, Berlin, Heidelberg, 2002.

[12] Secure Hash Standard, FIPS 180-4. [Online] Available:
https://csrc.nist.gov/csrc/media/publications/fips/180/4/final/documents/
fips180-4-draft-aug2014.pdf

[13] Oracle Java BigInteger, [Online] Available:
http://docs.oracle.com/javase/6/docs/api/java/math/BigInteger.html

[14] Android TextView, [Online] Available:
http://developer.android.com/reference/android/widget/TextView.html

[15] Secure Random Class java. [Online] Available:
http://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.ht
ml

[16] BigInteger Android Developer, [Online] Available:
http://developer.android.com/reference/java/math/BigInteger.html

[17] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.
“Private information retrieval.” J. ACM vol. 45, Issue 6, pp. 965-981,
November 1998.

[18] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant.
“Information sharing across private databases.” In Proceedings of the
2003 ACM SIGMOD international conference on Management of data
(SIGMOD '03), ACM, New York, NY, pp. 86-97, 2003.

[19] M. J. Freedman, K. Nissim and B. Pinkas. “Efficient Private Matching
and Set Intersection,” Advances in Cryptology - EUROCRYPT 2004,
Lecture Notes in Computer Science, vol. 3027, Springer, pp. 1-19, 2004.

32 Int'l Conf. Wireless Networks | ICWN'19 |

ISBN: 1-60132-504-5, CSREA Press ©

