
Enterprise Backend as a Service (EBaaS)
1st Gokay Saldamli

Computer Engineering Department
San Jose State University

San Jose, CA, USA
gokay.saldamli@sjsu.edu

2nd Aditya Doshatti
Computer Engineering Department

San Jose State University
San Jose, CA, USA

3rd Darshil Kapadia
Computer Engineering Department

San Jose State University
San Jose, CA, USA

4th Devashish Nyati
Computer Engineering Department

San Jose State University
San Jose, CA, USA

5th Maulin Bodiwala
Computer Engineering Department

San Jose State University
San Jose, CA, USA

6th Levent Ertaul
Department of Computer Science

California State University East Bay
Hayward, CA 94542, USA

Abstract—In the world where we have computers and world
wide web, web applications have become more and more popular.
There has been a constant decrease in installed applications with
people mostly relying on web applications to get their work done.
With constant innovations in the field of computer, we see tons
of startups everyday and what better option do they have than
reaching to million people with a web application of their own.
Talking about web applications we usually have 1) Frontend:
what a user can see on their screen while accessing that web
application and 2) Backend: what frontend communicates with
to process the users’ requests. Since the invention of RESTful
web services, developers have relied on APIs to which frontend
sends request to in order to get an appropriate response. RESTful
APIs have become more of a standard in developing the backend
and more often than not, they are pretty basic with only queries
changing to get data from the database. This paper provides
a solution to automate the development of backend and thus
doesn’t need any expert knowledge other than the knowledge of
the underlying database and hence even a non-developer or a
developer with no prior experience in developing backend can
easily get access to the backend. The solution discussed here will
ask user to provide database details and will create the database
along with the downloadable code for backend which will be
ready to use to interact with the frontend and the database.

Index Terms – REpresentational State Transfer(REST), Back-
end, Frontend, Application Program Interface(API)

I. INTRODUCTION

Web Application is nothing but a piece of software run-
ning on a remote computer which can then be accessed by
anyone and at anytime over the internet. The idea of not
having the code on our local computer and still be able
to access it has played a major role in people accepting
the trend of web applications. But this development of web
applications would not have been this popular if the concept
of RESTful(REpresentational State Transfer) system had not
come into the picture. REST system was introduced as a
protocol for exchanging data over the internet and by doing so
revolutionized the development of web services. As discussed
above, web application is majorly comprised of frontend and
backend. Frontend deals with how the data should be shown
to the user and backend deals with what data needs to be
shown. In the past when REST system wasn’t introduced,

people were controlling the data on the frontend side and in
turn making the whole process heavy. Since the introduction
of REST and RESTful APIs, developers have started to design
the functionalities as APIs which will then be consumed
on the frontend. This separate piece of RESTful code is
major part of the backend. In today’s world, one can see
no projects that doesn’t use the RESTful system for the
creation of professional web services. Major companies like
Yahoo, Facebook, Google, and many more do business on their
RESTful APIs.

So the next question can be, what is RESTful API and what
does it do? If thought at a very basic level, API is going to
control what data will the frontend show and what operations
need to be done on that data. The data can be static but most
usually API communicates with the database to manipulate
on the data. To understand it in the real world, let’s take
an example of Airbnb. The most basic thing a user do on
Airbnb is searching for a property and when a user request the
application to show him/her properties in a particular region
and in a date range, then that information is sent to the API
which manipulates the database to find all the properties which
satisfy the user’s requirements. This API uses the GET method
of Hyper Text Transfer Protocol(HTTP) since it is just getting
the data from the database. But one can think, how was the
database populated in the first place. For that, API which uses
POST method of HTTP is used by the frontend to post a new
property into the database. Not just that, using PUT method
APIs can edit the already stored data in the database i.e for
changing the price of already posted property. To remove a
property, DELETE method is used by the API to remove that
record from the database. This was an example of Airbnb but
the same things can be visualized in other applications too
like Grubhub, Facebook, and many more. So if thought at a
lower level, it all comes down to interacting with the database
using queries and the normal CRUD(Create, Read, Update and
Delete) operations are a must when it comes to developing any
web application.

In the world of startups, the need for fast development of
applications is rising. Companies constantly urge developers to



create applications and other business software more quickly
without sacrificing quality. In such situation, having a solution
which provides RESTful APIs on the go based on the database
details can be seen as a blessing. To address this situation, this
paper provides a solution by offering enterprise backend as a
service [1]. The solution discussed in this paper communicates
with the user to get their requirements in terms of database
and takes care of the tasks like creating the database, hosting
the database and creating a CRUD based RESTful APIs and
providing the code for the same. Along with that, the solution
also provides machine learning based RESTful APIs for the
enterprise businesses to get insight into their data. Small
organizations or start ups face problems in creating back-end
API’s and hosting the server on cloud platforms. Automated
generation of back-end API’s can save a lot of time. It can
benefit not only IT experts but non IT people also. It can help
back-end developers, front-end developers, data scientists and
non technical people as follows:

• “Back-end Developers”: It can help back-end developers
to create databases, quickly create API’s by auto gener-
ation, modify the API’s if needed and quickly host the
server on some cloud platform. “Front-end Developers: It
can save a lot of time for front-end developers who needs
backend API’s and databases hosted on a cloud platform.

• “Data Scientists”: It can help data scientists and machine
learning engineers as they can quickly save data into
databases using API’s, add on the API’s for their pur-
pose.“

• “Non Technical People”: It can be a life saver for non
technical people as they can create databases using this,
create and host a server with RESTful API’s, connect
with a machine learning service. Later they can even use
the code to extend the functionalities.

II. RELATED WORK

A key factor driving business growth is the need to minimize
nuances in the development of applications. Backend as a
service reduces the subtleties of mobile and web applications
development and design. It eliminates the need for applica-
tion developers to create their own server interaction process
backend system. Backend-as-a-service vendors offer solutions
that do not require complex coding for server hosting, which
reduces application development time and improves frontend
tasks such as application design and user interface (UI) de-
sign.[1] In the paper “Availability Evaluation and Sensitivity
Analysis of a Mobile Backend-as-a-service Platform”, Costa,
Igor, Jean Araujo, Jamilson Dantas, Eliomar Campos, Fran-
cisco Airton Silva, and Paulo Maciel have explained how back-
end as a service enables engineers to connect their application
backend to cloud servers. They also explain, how backend
as a service can be used to integrate with other apps.[2]
After gaining understanding of backend as a service we dig
deep to understand different type of structures in Databases
as Databases are the integral and most important part of
any system if you are focusing on Database. In the research
paper. Having a look towards a REST-based Universal API for

Database-as-Service Systems, ”Till Haselmann explained that
the objectives of the API should be to provide maximum flex-
ibility and exchange-ability, for which the relational databases
operate as the greatest source and we should, therefore, use
the SQL database.To support this thought we found that in
“A relational database environment for numerical simulation
back-end storage” Jacek Nazdrowicz also supports the thought
of using SQL databases for back-end[3][4]. A few efforts
have been made to understand relation between Model Driven
Engineering and Web Engineering which normally called
Model Driven Web Engineering which proposes the utilization
of the models and model changes for the specification and
semiautomatic age of Web applications [6][8][9]. Most of the
projects have essentially utilized information models, route
models and presentations models to automate the process
of the Rest API Creation. [11] [17] [18] most of them are
providing features of creating web services but generating the
REST-ful APIs is very less and even if they are providing
APIS the approach require us to model the APIs in specific
DSL from which it generates the APIs. Going forward one
more step EMF-REST [19][20] approach generates REST-ful
web APIs from EMF models. This implementation has filled
the gap between Modeling methodology and web technologies.
The Eclipse Modeling Framework also has one limitation that
it does not provides the Code which has it’s own limitation
of maintenance.There are also several approaches explored
about generating REST API from a legacy application which
follows a common process of reverse engineering of L-System
to REST-ful APIs[8]. It is also having the same limitation
they are not providing any code which comes which one
more limitation of maintenance and future changes. This work
generates the REST-ful APIs from the MODELs which is
also one of the adaptation of Model Driven approach, with an
added advantage of the access to the automatecally generated
REST APIs.Which helps the stack holders to deal with the real
code and make the changes based on their requirements. Code
Generation as a servise uses Epsilon [5] to perform model-to-
text transformations,the generated output can be utilized for
any language and the service is being implemented with an
API, so any client program can do the maximum use of it.[21]
which is one more improvement this study is doing. Our work
is removing the requirement of Epsilon and also providing a
complete code in proper folder and file structure which can
be utilized or maintained by the client.

III. OVERVIEW
A. Problem Statement

As explained in the above section, backend is a middleware
that handles the functionality of an enterprise application via
API or SDK. Backend as a Service allows users to maintain
only the frontend with everything behind the scenes aspects
related to the backend being managed by the service model.

Our problem statement is to build an application that will
interact with the user to create a backend code that should
create the required product with bare minimum requirements
starting from the creation of the database to the creation of



the APIs to communicate with the database. The user should
be able to build applications in a few minutes with just a few
clicks. The user should be able to achieve 3 main goals:

• Build Application: The user should build the backend
applications with just a few clicks and be able to host
them on different cloud services.

• Generate Code: The user should be able to generate the
backend code without having any prior knowledge of
coding.

• Build Databases: The user should be able to migrate their
existing databases or create new databases easily using
our application.

B. Architecture

The architecture can be divided into 3 parts. The first part
is the user interaction part as shown in Fig. 1. Here we would
have a website wherein user would input data in forms. The
user would be able to give their specifications and details using
these forms. After collecting the input in the second part we
have the EBaaS server, where our code would process the
inputs and generate the database with the schema on the user
provided database server and generate the code for APIs for
the same and publish a docker image with the code for the
code.

Fig. 1. Architecture Diagram

We plan to use the machine learning services provided by
AWS to suggest the data points which user should consider
adding to their schema to make it more good. The output
would be a published docker image which the user can
download and spawn a container out of it on its API server.
The container will also have the code so the user can get into
the container and customize the code if he/she wishes to do
so.

IV. METHODOLOGY

This section of the paper describes the process that goes
behind bringing the idea of Enterprise Backend as a Service
into existence. Our study aims for allowing user to control
the information from nothing but just the mere knowledge of
the user of what information he/she wants to manage. Putting
it in a technical context, this study is trying to provide the
user with a backend that gives control to the models which
are nothing but a representation of the information the user

wanted to manage. Breaking it into various processes, two
major processes stand out 1) Generating the models from the
information the user provides and 2) Generating the actual
backend to control those models.

For simplicity, lets discuss a use-case where the user would
feel the need to use our solution and how the solution works
for that particular use-case. Consider a situation where a user
is tasked with building a prototype of a employee management
system within an organization in a short span of time. Now, the
user would be needing models which can than be translated
into a database system and obviously an application which
can handle basic operations like creating, retrieving, updating
and deleting of resources of a particular model. This will
be the first and the most basic requirement that the user
would have to kick start the more complex operations on the
models. In fact for that matter, any model driven system would
need an application which can handle the basic CRUD(Create,
Retrieve, Update, Delete) operations as a starting point. Now,
in this particular situation the user could either opt to design
the application that handles CRUD operations which could
take up a substantial amount of time for something very basic
but important. Or the user could opt for a solution which could
provide this basic application on hand with nothing but the
information about the model. This is where this work comes
into the picture to make life easier for that user and saving
the user’s days of designing.

Before digging deep into the major processes discussed
above. lets discuss about the actual application that the user
would interact with for obtaining results. The application
runs on a load balanced EC2 instances on Amazon Cloud
Service which is hosting the application’s front-end developed
in JavaScript and ReactJS framework and back-end which
is developed using Python and Flask Framework. The user
would be presented with a login screen on a startup and
hence allows the application to manage each and every user’s
projects separately and securely from one another. This calls
for the need of the database which is a SQL database hosted on
Amazon Web Service’s RDS service. Coming to the security,
the actual application never really stores the database records
anywhere within the whole system and only helps users to
create a database in the first place. After the creation, the user
has full access to the database without the actual application
having any access to that. So, now its time to dig deep into
the major processes.

A. Generating Models

As discussed above, the first thing the user would want in
this use case would be the models which can be mapped to
and from the database system. The actual application never
gets too harsh with the user which can be proved by the way
the application asks the information from the user. Let’s say
that the user in this case has no idea of what different kinds
of information the organization wants to manage except for
the employee’s name and salary. To handle such cases, the
application presents user with the User Interface which asks
information progressively.



Fig. 2. Generation of Models - Workflow

The very basic thing the user would need over here is the
server where the database can be hosted. This again brings
forward the point that once the database and the back-end
is created, none other than the user will have access to that
database’s records. So, the application will put forward 4
options to the user allowing him/her to connect to the database
viz. 1) Create a new database 2) Connect to an existing
database 3) Connect to a database using Excel and 4) Connect
to a database using SQL file. In this case, lets assume that
there is no existing database that the user has and selects the
first option of creating a new database. As shown in the Fig.
x, the application would ask user to enter details like host-
name, username, password, database name and connection
name. Connection name is required to extinguish multiple
connections to various databases the user connect to. This
would result into a database creation on the server hosted by
host-name. Didn’t that feel like a magic? Behind the scenes,
this operation of the user would result in a request hitting
the application’s back-end which does nothing but executes
the required commands to connect to the host and creating
a database. User has decided to create a new database called
“test” locally denoted by localhost as the database address in
Fig. 3. On submitting the request the application would create
a database named “test” with privileges given to the user “root”
with no tables which can been seen in Fig. 4.

Now, since the user in this case has created a new database
there won’t be any tables present in that database. Hence, the
next thing the User Interface presents to the user is a chance to
create tables. As discussed earlier, the user only knows about
managing employee’s name and salary and hence will suffice
with creating only one table and on successful creation, the
user will progress to add columns like name and salary.

These operations would be presented to the user as shown
in Fig. 5 and Fig. 6. Fig. 5 allows user to add tables and Fig.

Fig. 3. Create database form

Fig. 4. Corresponding database with no tables

6 allows user to add columns to the tables which the user
selects from the drop-down of already available tables in the
database. The corresponding change could be validated in Fig.
7.

By doing this, the user has provided the minimal require-
ments that it needs to launch an operation of creating a
back-end. But what if the user is now informed that the
organization wants to manage employee’s addresses too? In
that case, the User Interface which has been designed for
entering information progressively, allows user to add a new
table in to the database and along with that establishing a
relationship between those two tables. This again, behind the
scenes would result in operations that executes SQL queries
to reflect the user changes on the actual database.

This way the application generates the database model step
by step. There is no ground breaking technique which the
application is using here to generate these models but instead
is focusing on operating and manipulating database models
through simple SQL queries known to the whole world in
a systematic and a more structural way. For example, the
user’s request to add a new column to the table with specific
data type would do nothing but trigger an “ALTER TABLE”
query behind the scenes. The progressive way of asking
the information from the user will make sure that the table
“ALTER TABLE” is trying to alter already exists as the user
would have been asked to create a table first before adding
columns.

This database model will help in generating object oriented
models which our back-end will be using to manipulate data
within the database. Hence, the next step would be to map
models out of these already created tables and generating the
code to manipulate database through those models. That is
where our next process of “Generating Code” comes into the



Fig. 5. User Interface to add tables in a database

Fig. 6. User Interface to add columns in a particular table

picture.

B. Generating Code

Generating code is something that has brought that extra
edge to this propose work. To be even more specific, this work
aims to generate a back-end code with basic CRUD operations
on the models. The first decision that had to be made over here
is deciding over the service’s architectural style. With many
architectural styles out there like SOAP, REST, RPC, GraphQL
etc. the style which has dominated the market in the past
decade has been the RESTful architectural style. The support
of REST style is ever increasing and competence of using
REST is something which every programmer is demanded
for. Not just that, majority of the web services in the past
decade has been designed using RESTful architectural style.
This was the major reason that drove the idea of generating a
RESTful API as a back-end that will further manipulate with
the database/models as it allows us to target the maximum
crowd out there. Once that decision was made, the next
decision was to decide upon the programming language that
the code will adhere to which in this case was decided as
JavaScript.

Coming to the process of generating code, it is further
divided into small processes like deciding a generated code’s
file structure, mapping database system to JavaScript models,
database connection, type of URIs etc. Lets discuss these
processes one by one.

1) File Structure: Once the technology was decided as
JavaScript, NodeJS was the clear option to go with as we
were creating a server which the client could use to interact
with the database. According to [14], the solution decided to
organize and present the files around features and not roles.

Fig. 7. Corresponding change in database

Fig. 8. Generation of Code - Workflow

Apart from that, a configuration file that would take care of
all the configuration written in JSON and imported wherever
necessary. This certifies the uniformity across the back-end
code as any change in the configuration could be easily be
made by changing only one file in the whole application.
Lastly, the logic of each model is separated in the “routes”
folder with ”index.js” working as the router that routes to the
correct file.

This file structure ensures the best practices are followed
and brings modularity in terms of structure.

2) Mapping Models: Once the user submits the information
through the application and wishes to launch an operation of
generating the code, the mapping of database to JavaScript
models becomes important. Models work as abstraction be-
tween the object oriented programming and the database which
is generally called Object Relational Mapping(ORM).

This study uses Sequelize as the ORM and exploits the
sequelize’s feature of auto generating the models through
specified database using “sequelize-auto” command. Sequelize
takes care of converting the database tables into the appropriate
JavaScript object models. The table “employee” and ”address”



Fig. 9. Employee model mapped from database

Fig. 10. Address model mapped from database

in the database has been converted to the JavaScript models
as shown in Fig. 9 and Fig. 10.

3) Database Connection: Coming to the connection to the
database, our work manages a pool of connection which elim-
inates problems related to connections like open connections.
The configuration of the database like host-name, username,
password and database name is stored in the configuration file
for a single point of manipulation.

4) URIs: Selecting the URIs that the solution would pro-
vide was the most critical part. Our work only kept focus on
providing CRUD operations in the generated code. But even
then, updation, deletion and retrieval of the resources needs
a parameter which acts as a filter on which the operation is
going to get performed. For example, if there is an employee
with ID as ‘1’ and if the user wants to change that employee’s
name then the URI would be /employee/¡id¿ where ¡id¿ will
be replaced by 1 and the change would be made on only that
particular employee. Hence, it works as a filter. But ID is said
to be an identifier and more often than not this identifier is
managed directly by the database. Hence it cannot be assumed
that the user would always know the employee’s ID.

Hence, giving only the identifier as the filter option would
have made most CRUD URIs useless for the users and also it
would have been a chaos if the project provided each attribute

of the model for filtering purpose. Analyzing the situation, a
middle ground had to be established. Looking at the employee
model, it shows that “email” attribute is unique across all
employees which could be exploited by the user for filtering
through the employees. This very idea is put into effect in this
work where the filter options includes identifiers like IDs and
unique fields like email, name, etc.

Apart from that, URIs to honor the relationship between
models are also provided. For example, one employee model
record can hold many records of address model. So the
user should be allowed to manipulate the child table(address)
through parent table(employee). The example of one such URI
is presented in Fig. 11.

Fig. 11. Skeleton for designing URI to connect child and parent table

Once the types of URIs were decided, the project digs
deep into the database schema to find information about the
structure like number of tables, columns in tables, relationship
between tables etc. This information is then provided to the
templates one by one to create the actual code from the
template. An example of template and its corresponding actual
code in shown in Fig. 11 and Fig. 12 respectively.

Fig. 12. Generated code from the skeleton

Once the whole operation from generating models to gen-
erating code is completed, the application creates a zip file of
the generated code readily available for the user to download.



V. DEPLOYMENT AND MAINTENANCE
A. Deployment

The architecture diagram briefly explains the components
in our work. We can divide the architecture in different
planes viz. the management plane, API plane and the storage
plane. We have to do the deployment and maintenance of
our interaction server. Which is the management plane in
our architecture. User would interact with this as it would
be hosting the front end and rest of the deployments are to be
done at the users end.

1) Management Plane: For the management plane, we have
the management server hosted in cloud on a docker hub having
resilient kubernetes cluster serving the APIs. The management
plane is further divided in 2 servers the front end server and
the API server i.e. the docker hub. The front end server hosts
our React application and the API server provides us the APIs

2) Storage Plane: The deployment of the interaction plane
would be done after the deployment of storage plane. The
storage plane will basically have the database servers which
user wants for their application. The user needs to have the
sql client server installed on the server and can use any
deployment strategy and storage strategy for their database.
The user just needs to provide the important credentials of
the database to create tables in the database and do all the
important changes required in their database and get APIs for
content of database.

3) Interaction Plane: The interaction plane is the plane in
which the user will host the APIs generated by us. Once
the user has connected his database with the management
plane and launched the application the completed code for
the APIs would be ready also the Dockerfile required for
the same would be ready. the user just has to download the
zip and launch the node application or create an image of
the Dockerfile and spawn a container of that dockerfile. To
deploy the interaction plane user can decide his own strategy
and device his own architecture. User can have single server
hosting the APIs in the node app or user can also have
kubernetes cluster inside a docker hub or a basic docker
container running the APIs this would be the interaction plane
with single server or multiple server deployed by the user.

Fig. 13. Deployment Diagram

B. Maintenance

The responsibility of deployment of management plane is
with us and so will be the responsibility of maintaining the

management plane is ours. For the maintenance of manage-
ment we need to keep the servers always reachable up and
running so that we always have a user input. To maintain the
management plane with every bug fix or new change we will
have to update the code on the front end server if we have
changes in front end. For the other changes in APIs we will
have to build a docker image with the latest code and change
the pods in the kubernetes cluster to use the updated docker
image.

The other planes are deployed by the user so the mainte-
nance is also users responsibility. For the storage plane once
the user has deployed it with a required architecture user can
make all the changes in the schema of database using the
management UI as we can connect to the Database and make
any changes required in the database.For maintenance of the
interaction plane if the user wants to change the database or
re deploy the APIs or make any changes in API code he just
needs to make the required change himself. So the steps to
keep the interaction plane updated is the user need to make
the changes in database using the UI and download the latest
code once the code is downloaded and updated by making
any changes in code the user must again the deploy code in
the server and start the API server or generate the docker
image of the latest updated code and use the docker image
to spawn containers or in the kubernetes cluster according the
user requirements.

VI. EVALUATION

A. Evaluation Methodology

The main goals of our application are building the ap-
plication, building databases and generating the code. We
have evaluated our application on these parameters by using
different methods. We followed the following methods:

1) We gave our application to different professionals like
back-end developers, data scientists, and different non
technical people and collect the evidence for evaluation.
The users evaluated our application on the performance
quality. They filled a grid of specifications for the
performance. Table 1 represents the mean of all the users
values. We gave the following metrics:

• Usability: The user used our application for their
particular use case. We gave the steps to some users
and take their evaluation. The user connected/built
the database, generate code and host the application.

• Speediness: The users evaluated this metric by how
fast they were able to achieve their use case. Evalu-
ating this part was a little tricky. If the user started
building the database and then built the application,
then the speed was a little slow. But if the users
connected to an existing database and then built
the application, then it was created in just a few
seconds.

• Efficiency: The users evaluated this metric by how
efficient our application is. The user checked how
efficient our generated code is. How many lines are



util-raml xmysql sandman2 EBaaS
Usability 2/5 3/5 3/5 5/5
Speediness 2/5 5/5 5/5 4/5
Efficiency 3/5 2/5 2/5 4/5
Code Quality 4/5 N/A N/A 4/5
Database Connectivity N/A N/A 4/5 4/5
Cloud Services N/A 4/5 4/5 5/5

TABLE I
*

present. How good the code structure is. Are all the
CRUD operations that the user want in our code.
How bug free our code is and how RESTful it is.

2) We compared our application with the existing code
generators. We compared them with xmysql[15], sand-
man[16] and util-raml-code-generator[22]. We had a
predefined metrics for this evaluation also. We evaluated
all the applications on the following features:

• Code Quality: Once the code is generated, we eval-
uated how bug free the code is, how good the file
structure is, how many lines of code are present, and
how accessible, editable and modifiable the code is.

• Database Connectivity: We evaluated how easy it
is to integrate the users existing database or create
new databases, edit tables and create complex rela-
tionships.

• Cloud Services: We evaluated how easy it is to host
the code provided these applications.

B. Performance and Benchmarks

• Usability: 10 users tried to create rest API’s using all the
4 applications. 9 users were able to successfully create the
API’s using EBaaS. Fig 14 shows the comparison of all
the 4 applications. Util-raml was a little complicated as
the user had to create the raml file. 4 out of 10 users were
able to generate API’s using that. Sandman2 and xmysql
performed quite similarly. Users with prior technical
background were easily able to launch the API’s but users
with non technical background faced challenges. 7 out of
10 users were able to launch API’s using Sandman and
8 out of 10 users were able to launch using xmysql.

Fig. 14. Usability to Create API’s

• Speediness: We tracked the average times to launch the
API’s for different use cases. The use case to connect to
an existing database was common for all the applications.
Util-raml performed quite slow as the users had to create
a raml file for their database and give that file to the code
generator. It took around 4.3 mins to create API’s using
util-raml. Xmysql, sandman2, and EBaaS performed had
nearly the same speed. It took around 12 seconds to
launch the applications. Fig 15 shows the comparison
between different applications.

Fig. 15. Time to launch an Application

• Code Quality: xmysql and Sandman2 does not give code.
So we did not add them in this comparison. Util-raml and
EBaaS both performed pretty good. For the same use
case, util-raml had 102 lines of code for entities and 166
lines of code for services. While EBaaS had 26 lines of
code for entities and 143 lines of code for services. Both
the code generated were quite modifiable. Util-raml gave
the code in PHP and JavaScript while EBaas generated
the code in JavaScript. Fig. 16 shows the comparison
between the different applications on the basis of lines of
code.

Fig. 16. Lines of Code

• Database Connectivity: EBaaS performed the best here.
EBaaS supported database connectivity from existing
databases, and also gave access to create new databases
from scratch or by uploading a sql file or excel file. It was



Fig. 17. File Structure Comparison

difficult to connect to database in util-raml because the
user had to create the raml files. xmysql and Sandman2
takes the database string in the parameters. They do not
give features to create a new database or modify an ex-
isting database. Sandman2 supports many different types
of databases. EBaaS only supports MySQL databases.

• Cloud Services: The world is quickly moving towards
cloud computing which allows software to be available
based on demand. To make it even more feasible, con-
tainerization has taken its own place allowing to provide
better security, portability, fast deployment amongst other
benefits. Keeping this in mind, EBaaS provides a docker
file on hand which provides users to easily make their
backend application containerized. Even though, Xmysql
and Sandman2 provides docker support, Util-raml-code-
generator fails to do so.

VII. CONCLUSION

EBaaS is basically a one stop application for developing
and maintaining the complete back end of any application.
Interacting with the UI, user can develop and database, make
updates in the database and have the API code ready to
integrate the APIs with their own front end. User with their
own servers can have the complete, efficient and speedy back
end with all basic APIs ready with just few clicks and inputs.
User can later make any changes in the API code provided by
our code generator to also have user defined APIs. So EBaaS
basically as the name suggested is an application to provide
enterprise backed as a service.

VIII. FUTURE WORK

Our work currently focuses on the connection/Creation of
the relational databases based on which it is generating the
RESTful APIs. In future the scope of this work can be
expanded to the Non Relational databases. This work has
so much scope of incorporating ML Services which can be
used later on for recommendation based on the use case. For
example, if the use case involves sales then a ready to use
ML API service to gain insights into the sales and much
more. Currently, this study is reserving REST web architecture
for generating the back-end code, it could be made even
more useful by giving users the option of selecting different
architectures like GraphQL, SOAP, RPC etc. When it comes to
automation, the work, research and innovation is never going

to stop and hence the future capabilities of this work can also
be infinite.

REFERENCES

[1] Technavio Updates on the Global Backend as a Service
Market. Professional Services Close-Up. Online available:
https://advance.lexis.com/api/document?collection=news&id=urn:
contentItem:5TVM-M141-F06S-P1FM-00000-00&context=1516831

[2] Costa, Igor, Jean Araujo, Jamilson Dantas, Eliomar Campos, Francisco
Airton Silva, and Paulo Maciel. “Availability Evaluation and Sensitivity
Analysis of a Mobile Backend-as-a-service Platform.” Quality and
Reliability Engineering International 32.7 (2016): 2191-205.

[3] T. Haselmann, G. Thies and G. Vossen, ”Looking into a REST-Based
Universal API for Database-as-a-Service Systems”, 2010 IEEE 12th
Conference on Commerce and Enterprise Computing, Shanghai, 2010.
pp. 17-24, doi: 10.1109/CEC.2010.11.

[4] J. Nazdrowicz, ”A relational database environment for numerical sim-
ulation backend storage,” 2015 22nd International Conference Mixed
Design of Integrated Circuits & Systems (MIXDES), Torun, 2015. pp.
601-606, doi: 10.1109/MIXDES.2015.7208595.

[5] Kolovos, D. et al.: Epsilon (Jul 2015), http://www.eclipse.org/epsilon
[6] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language

(WebML): a Modeling Language for Designing Web Sites. J. Comp.
Netw., 33:137–157, 2000.

[7] Prajak Chertchom, Shigeaki Tanimoto, Hayato Ohba, Tsutomu Kohnosu,
Toru Kobayashi, Hiroyuki Sato, Atsushi Kanai, Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing,
vol. 721, pp. 107, 2018.

[8] R. T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, 2000.

[9] N. Koch and S. Kozuruba. Requirements models as first class entities
in model-driven web engineering. In ICWE Workshops, pages 158–169,
2012.

[10] Blog.v soft consulting.com. (2019). Swagger (OAS) vs. RAML - Which
is Better for Building APIs?

[11] X. Qafmolla and V. C. Nguyen. Automation of Web Services Develop-
ment Using Model Driven Techniques. In ICCAE conf, volume 3, pages
190–194, 2010.

[12] Zenqry.com. (2019). ZenQuery - Enterprise Backend as a Service.
[13] GitHub Paysera. (2019). paysera/util-raml-code-generator.
[14] https://blog.risingstack.com/node-hero-node-js-project-structure-tutorial/
[15] https://github.com/o1lab/xmysql
[16] https://github.com/jeffknupp/sandman2
[17] A. Schauerhuber, M. Wimmer, and E. Kapsammer. Bridging Existing

Web Modeling Languages to Model-driven Engineering: A Metamodel
for WebML. In ICWE conf., 2006.

[18] WebRatio. https://www.webratio.com/site/content/en/web-application-
development (last accessed on April. 2020)

[19] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Mas-
simo Tisi, and Jordi Cabot. 2016. EMF-REST: generation of RESTful
APIs from models. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing (SAC ’16). Association for Computing Machin-
ery, New York, NY, USA, 1446–1453.

[20] Liu, Y., Wang, Q., Zhuang, M., Zhu, Y.: Reengineering Legacy Systems
with RESTful Web Service. In: 2008 32nd Annual IEEE International
Computer Software and Applications Conference (2100219007), pp.
785–790 (2008)

[21] Crocombe, R., & Kolovos, D. S. (2015, September). Code Generation
as a Service. In CloudMDE@ MoDELS (pp. 25-30).

[22] https://github.com/paysera/util-raml-code-generator


