

Abstract—In this research paper, a multi-factor authentication
scheme is facilitated in the form of an android application called
EasyAuth that will improve the Login process of Twitter via
three schemes: Voice/Sound Based Authentication, Fingerprint
Authentication, and One-Time Password (OTP). There is a well-
established and known 2-factor authentication scheme, however,
the EasyAuth application is designed as a one-step advancement
authentication scheme that integrates three types of
authentication methods making use of multi-factor
authentication with a random selection for those methods. The
authentication process is explained step-by-step with help of code
snippets for each of the schemes used in the EasyAuth
application. This paper explains and gives detailed description on
the Vigo library used in the voice authentication as well as SPass
API used for fingerprint authentication. In addition to voice and
fingerprint authentication, a randomly generated one-time
password generation is used which is produced by a web-service.
Finally, test results are shown for all three authentication systems
used in the EasyAuth application which makes the login process
much easier for end users by using the provided schemes that can
be randomized further to improve security.

I. INTRODUCTION
Mobile users are nowadays highly frustrated because they

need to remember distinct passwords for different websites as
well as for their Android applications that include a variety of
requirements for setting a password. For example, common
requirements include minimum length or combination of:
upper case letters, lower case letters, special characters and
numbers. Users also need to remember those passwords which
can be an irritating process and every end user wants very high
security but without bearing the stress and pain of creating and
remembering lengthy passwords [1].

The first authentication scheme is voice based
authentication using the Vigo library [2] that is provided by a
company based in California named Voice Vault Inc. The
Vigo library is a standardized approach to mobile voice
biometrics that is based on the simple and overriding idea that
mobile use cases are inherently the same: people are using the
same devices, in the same environments to achieve the same
goals. The Vigo approach means that building and deploying
voice biometrics in a mobile app is as simple as possible and
can be achieved in the shortest possible time and with a
minimum of resources [23]. It is a mobile voice biometrics
service which is working on two major guiding principles:
Simplicity and Standardization. Vigo is hosted by Amazon
Web Service (AWS) and there is no local infrastructure to

deploy or maintain [3]; hence, the data is stored on the cloud
and the Voice Vault manages and maintains it for you and
assures you that it is secured.

The second type of authentication scheme used in EasyAuth
is fingerprint authentication – the basic algorithm used here
compares two fingerprints and upon finding the match, it
grants access to the system. It is proved that every human has
unique fingerprints and hence it is useful for authentication
process [4]. EasyAuth uses Samsung Pass API to authenticate
a user before providing access to a Twitter account. In order to
make this feature work, the system requires a fingerprint
sensor to digitally capture the image of users’ fingerprints
which is called “live scan”. This live scan is digitally
processed to make a biometric template out of it, which is
stored and used to perform matching. There are various
technologies used in the sensors which are piezoelectric, piezo
resistive, ultrasonic etc. are used in the sensors.

To add another security layer to the above schemes, the idea
of adding OTP is explored. OTP works like a token which
changes every time or on periodic time intervals [5]. This is
used to add an additional layer of security as it has been used
in other 2-way authentication schemes and has been
successful. A huge example of this scheme is Google
Authenticator which provides users with this functionality but
has some limitations too for third party applications [6]. OTPs
have been proved better than a user selected password since
passwords selected by users are relatively weak and can be
guessed or cracked easily; contrary OTP’s are not easily
guessed since they change every 30 or 60 seconds.

In EasyAuth, a special provision is made so whenever users
select from the above three schemes; a random scheme will be
shown to them for authentication which is totally random and
very hard to guess too. This is the one twist introduced for
EasyAuth for making the system significantly secured.
Further, users will be able to choose the different kind of
authentication which may be either one of the users’ choice or
they can select 2-way or multi-factor as per their security
requirements. This makes EasyAuth best fit and simple to use
as based on users need.

This mechanism will solve the password frustration
problem of the users since every scheme adopted in EasyAuth
is making use of users’ voice/finger biometrics that they do
not need to remember. Section II of this paper addresses the
comparison between 2-factor and multi-factor authentication.

EasyAuth – Implementation of a Multi-Factor
Authentication Scheme based on Sound,

Fingerprint and One Time Passwords (OTP)
Levent Ertaul, Ishita Thanki

CSU East Bay, Hayward, CA, USA.
levent.ertaul@csueastbay.edu, ithanki@horizon.csueastbay.edu

mailto:levent.ertaul@csueastbay.edu

Section III will highlight the details of how the multi-factor
authentication method was implemented in EasyAuth, and
provide the system architecture for the same. Section IV will
present the test results obtained during testing EasyAuth
application. Section V gives the final conclusion.

II. 2-WAY AUTHENTICATION VS MULTI-FACTOR
AUTHENTICATION

There are different types of technologies used to provide
authentication. Some of them include: 2-way authentication
(2FA) or 2-step verification or multi-factor (MFA), and 2 or
more step authentication.
 The 2-factor authentication is basically based on two things:
something you have and something you know. If a system
provides authentication that fulfills the above two things, then
this can be called a two-factor authentication system. For
instance, a user can have his username and password and user
will be provided by a token, which is a random number and is
independent of the system. Once he enters his credentials to
login to system and if the token which user entered matches
then only he will be allowed to login otherwise the
authentication fails.
 The 2-factor authentication is very unpopular because it
involves extra steps that the user must complete in order to log
into the system. Traditionally, hardware tokens like RSA
Secure ID [7] and dongles [8] were used which complied with
FIDO U2F [9] standard for universal two factor
authentication. These methods may not be cost effective and
need a physical token that is provided by a service provider to
each user. Nowadays software tokens are being used instead of
hardware tokens to make it easy and affordable cost wise.
Google 2-Step Verification [10] is one such example, which
allows users to enter verification codes.
 But, these systems are giving a hard time to users because
they need to wait for a code and sometimes it would take a
long time to authenticate. One more flaw in Google
Authenticator is that it is based on the local time of the system
so if your time is incorrect then it will not authenticate you
since the algorithm fails to work. Hence, it is important that
your phone’s time is accurate [10] [11]. Most of time 2-factor
authenticator and multi-factor authentication are considered
the same but they are not similar. One example is a corollary
of mathematics which says “Every square is a rectangle but
not every rectangle is a square”. This means the criteria
defining one object doesn’t encompass the criteria for the
second object in all situations [12]. Hence as both of these
sounds too similar it is very common for many companies to
market their products as having multi-factor authentication.
 Basically, multi-factor authentication comprises of three
criteria’s – something you know, something you have, and
something you are. These three factors are needed, the last
factor “something you are” plays a very significant role since
it will be very unique and independent from the system used.
Further, there’s no way an attacker can guess or have any idea
of that authentication factor as it is based on something you
are. For instance, the “something you are” factor can be a
biometric of the user which may require them to give their

voice biometric, fingerprint, retinal scanning, or facial
recognition [13].
 One can design a system where users’ needs to go through
multiple layers of security requiring them to enter their
username and password followed by a verification code and
finally authenticate with biometrics. But in spite of designing
such systems, which make use of 2-factor authentication or
multi-factor authentication, most of the users prefer password-
only authentication for services where 2-factor authentication
is not mandatory [14] [15]. This is probably due to the extra
burden that 2 factor authentication causes to the user [16] [17].

The best example of multi-factor authentication currently is
Microsoft Azure multi-factor authentication. They provide
many different ways by which user can authenticate
themselves and hence called multi-factor authentication. The
Microsoft Azure has one additional fraud reporting feature in
which a user gets a message asking to proceed for step-2
verification using OTP. At that time user can press a Fraud
Report button, which will help in detecting frauds [18].

There are different vendors who provide MFA solutions like
EMC RSA Authentication Manager which is part of its
SecureID technology, Symantec Verisign VIP, CA Strong
Authentication and Vasco Identikey Digipass [29]. There is
one more alternative to this that is offered by LastPass [30]
which gives 2-factor authentication. Also PCI will make use of
MFA which has been proposed recently [31].

On further research, one can make up a point that it is
impossible to use such methods which provide high security
but are frustrating to users where users need to remember
passwords and again enter some more information to secure
their systems. One such system which makes use of multi-
factor authentication, which gives users the freedom to
authenticate themselves very easily as well as with their
biometrics, could be one solution to reduce the password
frustration and make the authentication process easy for users
which is discussed in the next section.

III. EASYAUTH APPLICATION - IMPLEMENTATION
In order to provide ease to users to authenticate themselves

we came up with an idea of building and designing an android
application called “EasyAuth”. The main objective behind
creating this application was to provide users a very simple
mechanism to make the login process easier. Twitter accounts
are too much likely as well as relatively easy to hack. History
shows that approximately 250,000 Twitter account passwords
have been compromised by hackers [20] and Twitter suffered
high-profile spate of hacks in 2013 [21].

To overcome this, Twitter implemented 2-factor
authentication but it was not mandatory for users and thus
asked users to create strong passwords. However, recent news
shows that “Twitter is emailing users whose account security
was compromised by a bug last week, exposing email
addresses and phone numbers linked to “a small number of
accounts.” The company also said that fewer than 10,000
accounts were affected [22]. The above news clearly shows
that Twitter accounts are very much targeted by hackers, and it
would be difficult for twitter users to secure their accounts if
the accounts get hacked even after implementation of 2-factor
authentication by the company.

http://www.symantec.com/vip-authentication-service

We figured out how to build such an application which uses
authentication factor which is “something you are” and came
up with an idea of providing enhancement to Twitter users by
giving them an option of multi-factor authentication with
random selection. The system will only be able to decide on
the basis of selected options provided by users which will
make the login process of Twitter very convenient and difficult
for hackers to guess and crack too.

Fig. 1 System Architecture Diagram for EasyAuth Application
Figure 1 above depicts the system’s architecture of

EasyAuth and gives an idea about how the functioning of the
EasyAuth application and various components used to build
this application. This includes various APIs used to integrate
Twitter with the different types of authentication schemes
provided by the application in Android OS. As shown in
Figure 1, the user needs to login to Twitter.com via EasyAuth;
we have used Twitter -4j API [18] to integrate Twitter login
with EasyAuth which is done securely using https connection.
The users need a smart phone and the internet to download
and install EasyAuth.
 Furthermore, users will login to Twitter using their Twitter
ID and password which is a single type of authentication. In
integrating Twitter login to EasyAuth, whenever user logs in
Twitter – an Auth token is generated and sent back which is
further used to retrieve user’s information for user Tweets.
Once they login, users will be provided three types of
authentication schemes which acts here as multi-factor
authentication. These includes authentication with voice,
fingerprint, and OTP. We have given flexibility to users to
select any of one, two, or all the three schemes based on their
requirements as well as the level of security they need.

 Once they select the authentication scheme, they will be
asked for registration with the preferred scheme. For instance,
if a user selects voice based authentication, then in the next
phase, a user will be asked to register his/her voice. This will
be done with the help of Vigo Library where a user will be
asked to speak phrases composed of 4-digit codes, i.e.,
“1234”. This process is repeated until the user’s voice is
successfully stored in the cloud server used by Vigo [23]. Next
time when users logs in, they will be asked to speak a random
4-digit code and the spoken phrases will be matched with the
voice samples stored in the Fusion Biometric Engine
whenever users attempts to log in to Twitter.com using
EasyAuth.
 The second authentication scheme is Fingerprint
Authentication which asks users to log in to Twitter using their
fingerprint. We have used Samsung Pass API [24] to
implement this in EasyAuth where users’ needs to first register
their fingerprints using the enrollment module, and later they
will verify their fingerprint at the time of authentication by
placing their finger on the hardware sensor which is provided
by most recent Samsung Galaxy cell phones including
Samsung Galaxy S6 Edge, Samsung Galaxy S7 etc. In this
way, users will be able to use the inbuilt fingerprint sensor for
authentication making this cost effective, fast and secure.
 The third scheme is Time-Based One Time Passwords
authentication scheme. To use this, we make use of a web-
service which is called to send an OTP to the email of a user
which he/she will enter when asked for by this type of
authentication during the login to Twitter. The only reason we
ask users to enter the email address again during login is due
to security issue of Twitter’s API which will not allow the
storing of credentials for security reasons. Also, we believe
that user credentials are highly confidential and must never be
stored anywhere in the application.
 In EasyAuth, there is a twist to enhance the security to its
pinnacle because if a user selects all three schemes, next time
whenever a user wish to login to Twitter, the system itself will
give any one of the three schemes to provide authentication.
The scheme chosen will be random, making it very hard for an
attacker to guess what kind of authentication scheme will be
asked by system. This is very significant and this is the most
important aspect of our project.
 The benefit of random selection is tremendously useful to
users since they do not need to go through several steps in
order to authenticate themselves. This will definitely avoid
many problems which lead users to use multi-factor
authentication schemes and help them login to their Twitter
account easily without any issues of entering any extra
information.

This project was implemented on a personal computer with
a 2.5GHz Intel i7 processor, 8 GB of RAM, and running on a
Windows 8.1 OS. Android Studio 1.5.1 Build 141.2456560
[25] was used to develop the project. The minimum SDK
version required for this application development is 21; the
minimum complier version required to build this application is
23 and the build tool version is 22.0.1. Apart from the GUI-
related code, there are four prominent code portions
categorized as 1) Twitter Integration with EasyAuth, 2) Voice
authentication using Vigo and its operations, 3) Fingerprint

Authentication using SPass API and, 4) OTP Generation using
web-service. The section below describes about the important
code snippets of the EasyAuth application.
A. Twitter Integration with EasyAuth
1) Code for integration with Twiiter.com – Twitter Login
private void loginToTwitter() {

 boolean isLoggedIn =

mSharedPreferences.getBoolean(PREF_KEY_TWITTER_LOGIN,

false);

 if (!isLoggedIn) {

 final ConfigurationBuilder builder = new

ConfigurationBuilder();

 builder.setOAuthConsumerKey(consumerKey);

 builder.setOAuthConsumerSecret(consumerSecret);

 final twitter4j.conf.Configuration configuration =

builder.build();

 final TwitterFactory factory = new

TwitterFactory(configuration);

 twitter = factory.getInstance();

 try {

 requestToken =

twitter.getOAuthRequestToken(callbackUrl);

 final Intent intent = new Intent(this,

WebViewActivity.class);

 intent.putExtra(WebViewActivity.EXTRA_URL,

requestToken.getAuthenticationURL());

 startActivityForResult(intent,

WEBVIEW_REQUEST_CODE);

 } catch (TwitterException e) {

 e.printStackTrace();

 }

 } else {

 loginLayout.setVisibility(View.GONE);

 shareLayout.setVisibility(View.VISIBLE);

 }

}

 This function contains functionality regarding twitter’s
login. It is using Twitter4j library to perform the login. The
first line checks the applications’ local shared preferences to
check if a user of twitter is already logged in. We have stored
the flag regarding twitter login as true or false to app's private
context. So, if we get that false, it will attempt for the twitter
login with a consumer key and secret provided by twitter
developer console. In case of requesting twitter’s API,
developers need to request twitter API with consumer key and
consumer secret. To get consumer key and consumer secret,
developers need to create an app here [26] and fill the details
regarding the app. Once it is successfully created it will obtain
Consumer Key and Consumer Secret which will be used to
send request to twitter’s API. The above method creates the
instance of twitter library and sends request for authentication
token to twitter’s API using the provided consumer key and
secret. Once the Auth token is obtained, the user login will be
successful.
2) Initialize Twitter Configuration
private void initTwitterConfigs() {

 consumerKey =

getString(R.string.twitter_consumer_key);

 consumerSecret =

getString(R.string.twitter_consumer_secret);

 callbackUrl = getString(R.string.twitter_callback);

 oAuthVerifier =

getString(R.string.twitter_oauth_verifier);

}
To request twitter’s API, we need for authentication, we

need to use a Consumer Key and Consumer Secret, which can
be obtained by creating application at twitter’s developer
console [27]. We have created new app at twitter’s developer
console, completed the app creation process and obtained the
Consumer Key and Consumer Secret to integrate in our
Android app. Also, to use these configuration details
throughout the application, we have stored the values to the
string.xml file. From there we can get values by calling a
getString(int ID) function. In this way, we have initialized the
local String variables before calling loginTwitter() function.
3) Save Twitter Configuration to local shared preferences
private void saveTwitterInfo(AccessToken accessToken) {

 long userID = accessToken.getUserId();

 User user;

 try {

 user = twitter.showUser(userID);

 String username = user.getName();

 SharedPreferences.Editor e =

mSharedPreferences.edit();

 e.putString(PREF_KEY_OAUTH_TOKEN,

accessToken.getToken());

 e.putString(PREF_KEY_OAUTH_SECRET,

accessToken.getTokenSecret());

 e.putBoolean(PREF_KEY_TWITTER_LOGIN, true);

 e.putString(PREF_USER_NAME, username);

 e.commit();

 } catch (TwitterException e1) {

 e1.printStackTrace();

 }

 }

 This function is used to save the twitter auth token and auth
secret as well as other profile information to the application's
private shared preferences. Once the twitter authentication is
completed successfully, the API will return the oAuthToken
and oAuthSecret, which will be used to fetch other details
regarding logged-in users. Once we get all details, we call a
saveTwitterInfo function to save all details to private context.
Those can be used globally throughout the application in case
of fetching details regarding logged-in user's details. We also
need to display logged in user's tweets once the authentication
is completed successfully. So, in that case we can use
oAuthToken and oAuthSecret to request twitter’s API and
fetch user's tweets and display to the screen. In case of this, we
use these values globally in the app; we have stored the
information to application’s shared preference using this
function.

B. Voice Authentication using Vigo and its operations
1) Code for initialization using Vigo credentials
ViGoLibrary.getInstance().init(

 VIGO_CREDENTIAL_ID,

 VIGO_CREDENTIAL_PWD,

 VIGO_SERVER_URL,

 VIGO_APP_ID);
 In case of voice authentication, we need to use Vigo
Library. The above code is used for initialization of the
library. To request Vigo API, we need CREDENTIAL_ID,
CREDENTIAL_PASSWORD, URL and APP_ID. To get
these details we need to complete registration at Voice Vault
[28]. Once we get all the details, we need to integrate them to

application and using these we can send request to Vigo
Library. It is important to note that the Vigo Library is paid
but provides a 45 days’ trial version, which we have used for
our development.
2) Code for Register User using Vigo library
public void startRegistrationClick(View button) {

 button.setEnabled(false);

 if (mClaimantId == null) {

 ViGoLibrary.getInstance().registerClaimant(this)

 }

 else if (!mIsClaimantRegistered) {

 registerClaimantCallback(mClaimantId);

 }

}
In case of using Voice Authentication, we need to register the
voice with Vigo Library before using login. To register the
voice with Vigo Library the above code snippet will be used.
Also, when registration is completed successfully, the
registered call back event will get notified and the details will
be passed to a new recording screen. Once the user is
registered with Vigo Library, the claimant ID will be provided
to users and that will be used to record an audio phrase with
Vigo Library.
3) Code to record voice using Vigo library
public void recordClick(View recordButton) {

 findViewById(R.id.buttonRecord).setEnabled(false);

findViewById(R.id.buttonRecord).setSoundEffectsEnabled(false)

;

mTextViewStatus.setText(getString(R.string.status_recording))

;

 ViGoLibrary.getInstance().startRecording(

 VIGO_RECORD_TIME_MILLISECS,

isAudioRecordVoiceRecognitionOptionEnabled, this);

}

In the case of voice authentication, the audio should be
registered to Vigo API. The above displayed function is used
to record a user's voice with Vigo Library. The method is
useful to both REGISTER YOUR VOICE and LOGIN WITH
YOUR VOICE cases. There is a method with Vigo Library to
record user's voice, startRecording () which will require 3
arguments: Time in millisecond
(VIGO_RECORD_TIME_MILLISECS), in or case 4000
milliseconds (4 seconds) in our case; a flag to check whether
the voice recognition feature is available to the device or not;
and context of activity class. Vigo Library has an interface
VoiceVaultAPIVoiceCallback, which contains the callback
methods like onRecordCompleted (), which will be notified
when a recording is completed after 4 seconds. Thus, this way
voice authentication is established as an authentication scheme
in EasyAuth application.

C. Fingerprint Authentication using SPass API
private SpassFingerprint.IdentifyListener mIdentifyListener

= new SpassFingerprint.IdentifyListener() {

 @Override

 public void onFinished(int eventStatus) {

 int FingerprintIndex = 0;

 String FingerprintGuideText = null;

 try {

 FingerprintIndex =

mSpassFingerprint.getIdentifiedFingerprintIndex();

 } catch (IllegalStateException ise) {

 }

 if (eventStatus ==

SpassFingerprint.STATUS_AUTHENTIFICATION_SUCCESS) {

 Toast.makeText(DashBoardFingerPrint.this,

"Success",Toast.LENGTH_SHORT).show();

 Intent intent = new

Intent(DashBoardFingerPrint.this , DashBoard.class);

 startActivity(intent);

 finish();

 } else if (eventStatus ==

SpassFingerprint.STATUS_AUTHENTIFICATION_PASSWORD_SUCCESS) {

 } else if (eventStatus ==

SpassFingerprint.STATUS_OPERATION_DENIED) {

 } else if (eventStatus ==

SpassFingerprint.STATUS_USER_CANCELLED) {

 } else if (eventStatus ==

SpassFingerprint.STATUS_TIMEOUT_FAILED) {

 } else if (eventStatus ==

SpassFingerprint.STATUS_QUALITY_FAILED) {

 needRetryIdentify = true;

 FingerprintGuideText =

mSpassFingerprint.getGuideForPoorQuality();

 Toast.makeText(DashBoardFingerPrint.this,

FingerprintGuideText, Toast.LENGTH_SHORT).show();

 } else {

 needRetryIdentify = true;

 }

 if (!needRetryIdentify) {

 resetIdentifyIndex();

 }

 }

 @Override

 public void onReady() {

 }

 @Override

 public void onStarted() {

 }

 @Override

 public void onCompleted() {

 onReadyIdentify = false;

 if (needRetryIdentify) {

 needRetryIdentify = false;

 mHandler.sendEmptyMessageDelayed(MSG_AUTH, 100);

 }

 }

};

 In case of the fingerprint authentication, users need to
register the fingerprints with SPass API. After registration is
successful, it will start identifying the fingerprint and compare
with a registered one. The above code snippet is showing the
listener for the identification process. There are various
methods that are called in various cases which are explained
below. 1) onReady - This will notify when the SPass library is
ready for the identification process. 2) onStart - This will
notify when the user starts the identification process.3)
onFinished - This will notify when the user finishes the
identification process. 4) onCompleted - This will get notified
once the whole process finished. Here we are attempting to
retry if identification is not successful. The requirement for
fingerprint authentication is a smart phone with an inbuilt
sensor to make use of this authentication scheme.

D. OTP Authentication using web service
private void startTimer() {

 countDownTimer = new

CountDownTimer(totalTimeCountInMilliseconds, 500) {

 @Override

 public void onTick(long leftTimeInMilliseconds) {

 long seconds = leftTimeInMilliseconds / 1000;

 if (leftTimeInMilliseconds <

timeBlinkInMilliseconds) {

timer.setTextAppearance(getApplicationContext(),

R.style.blinkText);

 if (blink) {

 timer.setVisibility(View.VISIBLE);

 } else {

 timer.setVisibility(View.INVISIBLE);

 }

 blink = !blink;

 }

 remainingSecond = leftTimeInMilliseconds;

 Log.i("", "++" + remainingSecond);

 timer.setText(String.format("%02d", seconds /

60)

 + ":" + String.format("%02d", seconds

% 60));

 }

 @Override

 public void onFinish() {

 Intent intent = new

Intent(CodeVerificationActivity.this,

ResendCodeVerification.class);

 intent.putExtra("emailId", emailId);

 startActivity(intent);

 finish();

 }

 }.start();

}

 In case of using OTP Authentication, we need to generate
One Time Password to complete the process. Once the OTP is
generated, it will be sent to our server and will also be sent to
users via email; valid for 2 minutes. The above method is used
to display the timer for the OTP lifetime on screen. Once the
timer is over, the user will be redirected to another screen with
the message “The OTP which was sent to you in email is
expired”. If desired, users can resend the OTP again by
clicking on Resend OTP.
Random rnd = new Random();

n = String.valueOf(100000 + rnd.nextInt(900000));

 The above code snippet is used to generate a new random
number between 100000 and 900000. We can change the
range also and generate more complex codes that contain
alpha numeric characters and special symbols randomizing it
as required to make the guesswork difficult for hackers.

IV. TEST RESULTS FOR EASYAUTH
We took several test cases and tested the EasyAuth

Application in various different environments and the entire
performance analysis is shown on graphs. They are plotted by
taking fixed number of counts and later on we are able to
derive which authentication scheme is accurate and which one
fails when the environment changes.

Fig. 2 Test Results in various environments for Voice and Fingerprint

Figure 2 depicts pass as well as fail scenarios for all the
different test environments we choose for testing this
application. We tested this application in environments which
include: authentication with voice based authentications
schemes at a coffee shop, while driving a car, while driving a
car with loud music, while driving a car with slow music,
while walking, while cooking and other noise heavy
environments. We have observed that the voice authentication
takes a longer time during loud music and also if one is using
a mobile network like 4G/LTE, it will sometimes fail due to
the lack of network availability. For fingerprint authentication,
we took test cases like touching the sensor with a wet finger,
applying little oil on the finger, applying talcum powder on
finger and so on. We have observed that it fails to recognize
your fingerprint if we consider such scenarios.

Fig. 3 Test Results which shows Random Selection given by System for

three authentication schemes
Figure 3 depicts the relationship between the number of

trials (Total 100), which we selected for testing versus
different authentication schemes. Whenever a user selects all
three authentication schemes, the system would give any one
out of three whenever a user tries to login to Twitter. We tried
to login 100 times, out of which 34 times the system gave us
fingerprint authentication, 28 times OTP and 38 times voice.
Thus, the voice authentication scheme topped among the three
during our testing.

Fig. 4 Comparison of Accuracy of Voice, Fingerprint and OTP Scheme

Implementing three authentication schemes along with a
single factor authentication gave us multi-factor authentication
systems especially for Twitter.com but it was quite challenging
to figure out which one is more accurate. For this testing, we
chose fixed counts of trails to login to Twitter but took several
test cases to measure the accuracy of EasyAuth.

From the Figure 4, one can make out that of all three
mechanisms, OTP is always successful if user enters correct
code unless a wrong code or wrong email address is provided.
To conclude, for voice it failed during loud music
environments specifically and thus is 93% accurate and for
fingerprint we intentionally tested by applying talcum powder
as well as water on finger which resulted in low accuracy
specifically for our testing around 90%.

V. CONCLUSION
We have shown that by implementing multi-factor
authentication, we can surely make the login process of
Twitter.com easier and also provide users a hassle-free login
to Twitter by using “something they are” as well as
“something they know”, like voice, fingerprint and OTP. We
also provide users the flexibility to choose the level of desired
security as per their preference so users can be flexible. Our
results show that multi-factor authentication is much better;
and by randomizing it with different authentication schemes,
can be used effectively which makes the system sustainable
and secured against the guesswork of hackers. Many issues
were discovered with the Android fingerprint scanner which
comes inbuilt so we have aimed to resolve the problem of
unrecognized fingerprints. We also target to develop an iOS
version of the EasyAuth application in future.

VI. REFERENCES
[1] Password Rage. http://www.information-

age.com/technology/security/123459599/do-you-have-password-rage-
third-people-admit-tantrums-over-password-frustration

[2] Vigo Architecture and Principles. http://voicevault.com/wp-
content/uploads/2014/03/ViGo-Architecture-and-Principles.pdf

[3] Vigo Introduction & Security. http://voicevault.com/wp-
content/uploads/2014/03/ViGo-Introduction_secured.pdf

[4] What is so unique about your fingerprint?
http://wonderopolis.org/wonder/what-s-so-special-about-your-
fingerprints

[5] One-Time Passwords – htop and totp.
http://blogs.forgerock.org/petermajor/2014/02/one-time-passwords-hotp-
and-totp/

[6] Google Authenticator Support Answers.
https://support.google.com/accounts/answer/185833?hl=en

[7] EMC INC. RSA Secure ID. http://www.emc.com/collateral/data-
sheet/h13821-ds-rsa-securid-hardware-tokens.pdf

[8] Yubi Key Hardware. https://www.yubico.com/faq/yubikey/
[9] Fido U2F Specifications.

https://fidoalliance.org/specifications/overview/
[10] Google 2-Step Verification. http://www.google.com/landing/2step/
[11] Google Authenticator – Product Forum Topic.

https://productforums.google.com/forum/#!topic/gmail/4-D-0lXGtwc
[12] 2-factor authentication v/s Multi-Factor Authentication. http://mi-

token.com/2fa-vs-multi-factor-authentication/
[13] Multi-factor Authentication Explanation with Authentication Factors.

http://searchsecurity.techtarget.com/definition/multifactor-
authentication-MFA

[14] Impermium study unearths consumer attitudes toward internet security.
http://goo.gl/NsUCL7, 2013Lagrange polynomial interpolation.
http://www2.lawrence.edu/fast/GREGGJ/Math420/Section_3_1.pdf

[15] PETSAS, T., TSIRANTONAKIS, G., ATHANASOPOULOS, E., AND
IOANNIDIS, S. Two-factor authentication: Is the world ready?
Quantifying 2FA adoption. In 8th European Workshop on System
Security (2015), EuroSec ’15

[16] GUNSON, N., MARSHALL, D., MORTON, H., AND JACK, M. A.
User perceptions of security and usability of single-factor and two-factor
authentication in automated telephone banking. Computers & Security
30, 4 (2011), 208–220.

[17] WEIR, C. S., DOUGLAS, G., RICHARDSON, T., AND JACK,M. A.
Usable security: User preferences for authentication methods in e-
banking and the effects of experience. Interacting with Computers 22, 3
(2010), 153–164.

[18] Multi-factor authentication using Microsoft Azure.
https://azure.microsoft.com/en-us/documentation/articles/multi-factor-
authentication/

[19] Twitter 4j API. http://twitter4j.org/en/powered-by.html
[20] Twitter Accounts Hacked in 2013- Report in Abcnews.

http://abcnews.go.com/blogs/technology/2013/02/250000-twitter-
accounts-hacked-dont-panic-heres-what-to-do/

[21] Twitter Accouts Vulnerable in 2013. https://www.thewrap.com/twitter-
warns-users-about-hacked-accounts/

[22] Bug in Twitter. https://blog.twitter.com/2016/fixing-a-recent-password-
recovery-issue

[23] Vigo Rest API Guide. http://voicevault.com/wp-
content/uploads/2014/03/ViGo-REST-API-Guide.pdf

[24] Samsung Pass API Documentation. http://img-
developer.samsung.com/onlinedocs/sms/pass/index.html

[25] Android Studio. http://developer.android.com/tools/studio/index.html
[26] Developer Twitter for new application. dev.twitter.com/apps/new
[27] Create Application at Twitter Console. https://apps.twitter.com/
[28] Vigo Free Trail Registration Sign up Link. http://voicevault.com/for-

developers/#signup
[29] Comparison of Top MFA products.

http://searchsecurity.techtarget.com/feature/The-fundamentals-of-MFA-
Comparing-the-top-multifactor-authentication-products

[30] Last Pass. https://lastpass.com/support.php?cmd=showfaq&id=375
[31] MFA Heads PCI’s List of Change.

http://www.paymentssource.com/news/retail-acquiring/multi-factor-
authentication-heads-pcis-list-of-changes-3023992-1.html

http://www2.lawrence.edu/fast/GREGGJ/Math420/Section_3_1.pdf
https://www.thewrap.com/twitter-warns-users-about-hacked-accounts/
https://www.thewrap.com/twitter-warns-users-about-hacked-accounts/
https://blog.twitter.com/2016/fixing-a-recent-password-recovery-issue
https://blog.twitter.com/2016/fixing-a-recent-password-recovery-issue
http://voicevault.com/wp-content/uploads/2014/03/ViGo-REST-API-Guide.pdf
http://voicevault.com/wp-content/uploads/2014/03/ViGo-REST-API-Guide.pdf
http://developer.android.com/tools/studio/index.html
https://dev.twitter.com/apps/new#_blank
https://apps.twitter.com/
http://voicevault.com/for-developers/#signup
http://voicevault.com/for-developers/#signup
http://searchsecurity.techtarget.com/feature/The-fundamentals-of-MFA-Comparing-the-top-multifactor-authentication-products
http://searchsecurity.techtarget.com/feature/The-fundamentals-of-MFA-Comparing-the-top-multifactor-authentication-products
https://lastpass.com/support.php?cmd=showfaq&id=375
http://www.paymentssource.com/news/retail-acquiring/multi-factor-authentication-heads-pcis-list-of-changes-3023992-1.html
http://www.paymentssource.com/news/retail-acquiring/multi-factor-authentication-heads-pcis-list-of-changes-3023992-1.html

	I. INTRODUCTION
	II. 2-way authentication VS Multi-factor authentication
	III. EasyAuth Application - Implementation
	1) Code for integration with Twiiter.com – Twitter Login
	2) Initialize Twitter Configuration
	3) Save Twitter Configuration to local shared preferences
	B. Voice Authentication using Vigo and its operations
	1) Code for initialization using Vigo credentials
	2) Code for Register User using Vigo library
	3) Code to record voice using Vigo library

	C. Fingerprint Authentication using SPass API
	D. OTP Authentication using web service

	IV. Test Results For EasyAuth
	V. Conclusion
	VI. References

