Multi-Party Computation for IoT
Environments: Evaluating Information
Checking Protocol-Based Verifiable Secret

Sharing Under Resource Constraints

Jaishnoor Kaur, Levent Ertaul
CSU East Bay, Hayward, CA, USA.
jkaur122@horizon.csueastbay.edu, levent.ertaul@csueastbay.edu

Abstract—As IoT devices continue to proliferate
across both consumer and critical infrastructure, se-
curing their communications is paramount. While stan-
dardized Lightweight Cryptography (LWC) provides
security under resource constraints, it does not facil-
itate privacy preservation—an essential requirement
given the sensitive nature of IoT-collected data. This
paper explores the integration of privacy-enhancing
cryptographic primitives in constrained devices by
evaluating the Information Checking Protocol (ICP), a
key component in Rabin’s implementation of verifiable
secret sharing (VSS), on the Arduino Uno. Using ex-
ecution time and energy consumption as key metrics,
we analyze the viability of implementing ICP under
severe computational and memory constraints. Our
findings provide empirical insights into the limits of
secure protocol deployment on constrained IoT devices,
indicating that although certain cryptographic opera-
tions are possible at lower bit lengths, resource limita-
tions render full protocol implementation impractical
without significant optimization or upgraded hardware.

Keywords: Security, IoT Security, Privacy Preserving
Computations, Multi-party Computation, Verifiable Se-
cret, Sharing, Information Checking Protocol.

I. INTRODUCTION

The Internet of Things (IoT) has witnessed immense
growth, and while estimates vary wildly [1][2][3][4], it is un-
deniable that they have been deployed across a multitude
of sectors, encompassing everyday consumer devices like
wearables for healthcare and home automation systems, as
well as critical infrastructure in industrial manufacturing
and autonomous vehicle [5]. Their pervasive connectivity,
coupled with the amount and nature of data collected
by these devices, which may include sensitive information
like health indicators, location, preferences, habits etc.
[6], makes them a treasure-trove of information and thus,
prime targets for cyber attacks [7]. In the same vein, they
are also critical to secure.

However, these devices are often small, low-powered,
and resource constrained [7]. This is where Lightweight
Cryptography (LWC), which is aimed at providing

security in resource-constrained applications, becomes
paramount [§]. The National Institute of Standards and
Technology has published standards for LWC [g]; however,
while these algorithms provide security in constrained
environments, they do not provide privacy-preservation,
which is crucial given that these devices have permeated
almost every sphere of our lives. Privacy preservation,
thus, must instead be achieved by combining LWC with
other techniques [9][I0]. One of these privacy enhancing
techniques is FHE (full homomorphic encryption)[I0].
However, as Goyal and Saha|lI] write, this often means
that most of the current privacy-preserving methodologies,
which are ”either depend on computation-intensive Homo-
morphic Encryption based operations or communication-
intensive collaborative mechanisms” [I1] are not suitable
for these systems. It is in these circumstances that secure
multi-party computation (MPC) and secure secret sharing
come into the spotlight.

Secure multi-party computation (MPC), which first
emerged in the 1980s, has become "one of the most active
research areas in both theoretical and applied cryptog-
raphy” [I2]. MPC enables a group to jointly perform a
computation without disclosing any participant’s secret
shares [12]. Essentially, each party holds a secret share
of the input, and computations are performed directly
on these shares. However, if an adversary corrupts some
participants and causes them to send incorrect values, it
could compromise the entire computation. This is where
the importance of Verifiable secret sharing (VSS) becomes
apparent [I3]. VSS helps mitigate this risk by ensuring
that all shared values are verifiable, preventing dishonest
participants from injecting false data into the protocol[13].

In Section of this paper, we introduce Verifiable
Secret Sharing, the Information Checking Protocol (ICP)
as well as our goals for this study. Section [II] outlines
the steps and participants in the Information Checking
Protocol while Section [[V] goes into specific details of each
component of ICP tested. Next, we introduce our experi-
mental environment in Section [V] In Section [VI} we share
our experimental results and analyze the performance

and limitations of Arduino Uno for ICP as explained in
Sections [[and [[V] Finally, in Section 7, we summarize
our findings and present our conclusions.

II. VERIFIABLE SECRET SHARING (VSS)

Verifiable Secret Sharing (VSS) is a cryptographic
protocol that ensures shared secrets remain consistent
and reconstructable, even in the presence of a malicious
dealer [I4].Unlike standard secret sharing, which assumes
an honest dealer, VSS incorporates auxiliary verification
mechanisms to prevent adversarial manipulation. This
property makes VSS fundamental for secure multi-party
computation (MPC), where computations are performed
on secret shares [I3][I5],as it allows for security against
active adversaries.

Rabin and Ben-Or [I6)made key contributions to VSS,
and proposed an implementation of VSS under the as-
sumption that participants can securely communicate and
broadcast messages. Their work demonstrated that any
multi-party protocol or game with incomplete information
could be securely executed if the majority of players
remain honest. Notably, they introduced the Informa-
tion Checking Protocol (ICP), a cryptographic tool en-
abling authentication without relying on computational
intractability assumptions.

In this paper, we investigate the feasibility of imple-
menting Identity Commitment Protocols (ICP) within a
Verifiable Secret Sharing (VSS) framework on the Ar-
duino Uno—one of the smallest and most resource-limited
microcontrollers available. Due to its stringent computa-
tional and memory constraints, using the Uno serves as
somewhat of an extreme benchmark for assessing practical
deployment in lightweight IoT environments. For each
critical component of the protocol, defined in section [[V]
execution time was measured using the millis() function,
which leverages the Arduino’s hardware timer interrupt
mechanism [I7]. These timing metrics were then used to
estimate energy consumption, offering insights into the
real-world cost of cryptographic security on low-power
devices. In addition to performance profiling, the study
highlights the limitations imposed by the Uno’s limited
memory, which affected the feasibility of certain crypto-
graphic operations. Together, our results assess whether
ICP-based VSS can be effectively adapted to such con-
strained environments, or whether further optimization is
necessary to enable secure communication on ultra-low-
power hardware.

ITI. INFORMATION CHECKING ProTOCOL (ICP)

Rabin’s VSS protocol utilizes two sub-protocols [16]:

1) ICP: Information Checking Protocol
2) WSS: Weak Secret Sharing

In this paper, the focus is on the Information Checking
Protocol (ICP). The Information Checking protocol con-
sists of three actors: the dealer (D), the intermediary (I),
and the recipient (R).

To achieve an error probability of at most 1/2*, set
k = 128. This is also the value of k£ used within the ICP
protocol.

Additionally, the ICP protocol operates under the as-
sumption that a sufficiently large prime number has been
chosen for all computations, such that p > 2*. The
generation of such prime numbers was also tested using
the Arduino Uno.

The Information Checking Protocol and the steps per-
formed by each actor (D, I, and R) in it are outlined
below:

Dealer (D)

1) Chooses 2k values b # 0 and 2k values y, both in Z,,.

2) Calculates ¢ = s + by for each of the 2k b and y.

3) Transmits 2k pairs (s,y) to I.

4) Transmits 2k pairs (b, c) to R.

Intermediary (/)

1) Receives 2k pairs (s,y) from D.

2) Transmits 2k pairs (s,y) to R.

3) Selects k distinct random indices from the range
1, 2K].

4) Requests R to reveal the check vectors (b, c) corre-
sponding to the selected indices.

5) For each revealed check vector, verifies whether s +
by == c. If all k vectors satisfy this condition, [
confirms that R will accept secret s. Otherwise, I
determines that R will reject s.

Recipient (R)

1) Receives the 2k pairs (b1,¢1), ..., (bak, cox) from D.

2) Receives the 2k pairs (s,y1), ..., (8, ya2x) from T.

3) For the unrevealed check vectors, verifies whether s+
by == c. If any fail this check, R rejects s; otherwise,
R accepts s.

IV. ARDUINO FEASIBILITY AND PERFORMANCE
TESTING METHODOLOGY

The ICP protocol was tested on the Arduino Uno, in
addition to testing prime number generation. For the ICP,
recall that it consists of three actors: the dealer (D), the
intermediary (I), and the recipient (R). The Arduino was
used to represent each of these actors in turn, and its
performance was investigated for the actions performed
in each role. The specifics are outlined below.

For each role, the following were tested:

Dealer (D)

1) Choosing 2k values of b and y as per the constraints

described in Section 2.

2) Calculating ¢ for each pair (b,y).

3) Transmitting the check vector pairs (s,y) and (b, c).

Intermediary (1)

1) Transmit 2k pairs (s,y) to R: Unlike the transmis-
sion of (s,y) and (b, c) tested in the previous phase,
here only 256 (s,y) pairs needed to be transmitted.

2) Selecting k indices as described in Section 2: Choos-
ing indices follows the same process regardless of the

size of the prime, secret, or other data. Therefore, a
unified test was performed irrespective of bit size,
but with multiple runs.

3) Checking if s + by == ¢ for the k indices selected:
Unlike the generation of ¢ tested in the previous
phase—where each ¢ was generated and sent without
storing any previous values— here, there was a need
to store the values of b, y, and c.

Recipient (R)

1) Checking if s + by ¢ for remaining k indices
(the ones not selected): Checking 128 times takes the
same amount of time as for I, as the same device,
architecture, code, and the same number and size of
data were used. This step requires verifying ¢ only for
those pairs that have not been revealed. We traverse
the range [0, 256] linearly, skipping indices that were
selected for checking. Since the indices are already
sorted (because of the way they were stored upon
selection), overhead from searching gets reduced.

For each of these components, execution time was
recorded using the millis function, which is based on the
Arduino’s hardware timer interrupt [17]. This information
was then used to calculate energy consumption for each of
the tested operations.

V. IMPLEMENTATION ENVIRONMENT

The Arduino Uno R3 board was used for this study. It
is one of the smallest and least powerful boards available.
Its technical specifications are detailed in the Table|[T] [18].

Table 1. Arduino Uno Specs

Feature Spec
CPU (Microcontroller) ATmega328P
SRAM 2KB
Flash Memory 32KB
Serial I/O USB-B
Connection Serial

It can be seen that this Arduino board has extremely
limited resources, with only 2 kilobytes of SRAM and 32
kilobytes of flash (non-volatile) memory. Additionally, we
note from Table [I] that the board is severely restricted in
terms of communication media as it does not support wire-
less connections, rather it only has Serial communication
available. The features of this communication method have
been briefly explained in ”Transmission of Check
Vector Pairs”.

VI. PERFORMANCE ANALYSIS

This section presents the results of the tests conducted
on the Arduino Uno R3. The code for all these tests was
written in Arduino, an Arduino-specific variant of C++.

A. Prime Number Generation

To generate n-bit prime numbers on the Uno, the
BigNumber library was used for large integer support (128-
bits and above).

The process involved:

1) Generating a random BigNumber of the approxi-
mately desired length.

2) Finding the next prime number greater than or equal
to the generated number

3) Using the Miller-Rabin test to verify primality.

For each bit size, 240 test runs were done.

Table 2. Time Taken (in ms) to Generate Prime

No. of Bits Mean Median Std Dev
32 3050.41 2343 1561.70
64 23644.06 19105 13066.01
128 263865.44 191749 174809.89
152 623644.17 436752 435591.10

436752

4e+05

3e+05

191749

2e+05

Time Taken (ms)

1e+05

19105

2343
0e+00

32 64 128 152
Number of Bits

Fig. 1. Time Taken (in ms) to Generate Prime

It was observed (ref. Table that the prime generation
time varied significantly depending on the initial seed
value, which is reflected in the high standard deviation.
Given this variation, the median time was calculated, as
it is a more robust statistic and is not affected by extreme
outliers. To maintain consistency, we have continued dis-
playing the median in all subsequent measurements, pro-
viding a more reliable overview of resource consumption
during ICP execution.

From Fig. [T} it is evident that as the bit size increases,
the time to generate a prime grows rapidly— almost
by an order of magnitude (10') per step. For larger bit
sizes, prime generation could take several minutes, with
the median time for generating a 152-bit prime reaching
approximately 7 minutes. This indicates that frequent
generation of primes of such large sizes may be impractical
on the Arduino Uno.

Additionally, the Arduino Uno R3 was unable to con-
sistently generate primes larger than 152 bits. For primes
greater than 152 bits, the processing time occasionally
exceeded 2,000,000 ms, at which point the calculation was
manually aborted.

Recall that the ICP and VSS protocols require a prime
number p > 2% (i.e., > 2128). A prime of this size requires

at least 129 bits for correct representation. This limitation
significantly restricts the ability of the Arduino Uno to
generate and efficiently handle sufficiently large primes for
use in these protocols.

For the remainder of this paper, we include computa-
tions with numbers of sizes >152-bits by using predefined
prime-numbers (externally generated and hard coded) of
the required sizes. This is also a practice that may be used
in real-world situations.

B. Arduino acting as Dealer D

1) Generation of 2k b and y for a Given Prime: 256
(= 2k) values of b and y were generated for given primes
of sizes 64, 128, 256, and 512 bits, within the constraints
outlined in the description of ICP in Section [[TI}

Table 3. Time Taken (in ms) to Generate 256 b and 256 y

Bit Size of Prime Mean Median Std Dev
64 3635.86 3673 89.54
128 9143.74 9136 45.95
256 24810.25 24884 183.77
25000
20000
g 15000
i
8
g 10000
E 9136

5000
3673

64 128 256
Bit Size of Prime

Fig. 2. Time Taken (in ms) to Generate 256 b and 256 y

As seen in Table [3] the generation of the 256 values for
b and y was not overly time-consuming. Even though the
time consumption increased with increasing bit sizes (Fig.
, overall the times remain relatively modest across all
tested bit sizes.

However, it is important to note that these values were
not stored. Instead, they were generated and immediately
overwritten. This approach suffices at this stage, but for
later stages of the ICP protocol, storage becomes neces-
sary. Specifically, at least one b and one y need to be stored
at any given time, and any memory limitations will be
explored during those phases.

At this stage, it was also observed that for 512-bit
primes, memory constraints on the Arduino Uno prevented
the computations required to generate 256 b and y as the
Uno was unable to handle all the transient data generated

during these calculations. This limitation hindered the
Uno’s ability to efficiently handle 512-bit primes (including
externally generated ones) for use in the VSS protocol. But
for primes of sizes like 256 bits, which are >152 bits and
<512 bits, it is possible to generate the prime externally
and then provide it to the Arduino. The Arduino can then
take over and handle the generation and calculation of the
check vectors.

2) Calculating c: For a given secret s (of size approxi-
mately = sizeof(b - y)), ¢ was computed as ¢ = s + by for
each of the 256 pairs of b and y.

Table 4. Time Taken (in ms) to Calculate ¢ for 256 b,y

Bit Size of Prime Mean Median Std Dev
64 413.26 413 11.93
128 1102.28 1099.5 18.33
256 3549.31 3548 9.17

3000

2000

Time Taken (ms)

1099.5
1000

64 128 256
Bit Size of Prime

Fig. 3. Time Taken (in ms) to Calculate ¢ for 256 b,y

The calculation of ¢ was very fast across all tested
bit sizes, as shown by the mean, median, and standard
deviation values in Table [

For the 64-bit prime, the time taken to compute c
averaged around 413 ms, with a small standard deviation
of 11.93 ms, indicating consistent performance. Similarly,
for 128-bit primes, the mean time was 1102.28 ms, and the
performance remained fairly consistent with a standard
deviation of 18.33 ms. For the 256-bit primes, the time
taken grew to an average of 3549.31 ms, but the standard
deviation remained relatively low at 9.17 ms, again indi-
cating stable performance despite the increase in bit size.

Figure 3| shows the increase in calculation time as the
size of the prime increases. The time-taken seems to
increase exponentially, possibly because of the large size
of the values involved in the calculations as well as the
often greater number of values to be checked. Despite this
increase, the computation time for calculating ¢ remains
relatively low even for the largest tested prime size (256
bits).

However, it is important to note that ¢ must be stored
alongside b and y for subsequent phases of the ICP
protocol. As the prime size increases, so too does the
number of values to be stored, placing additional demands
on the Arduino’s memory capacity. This factor must be
considered when scaling up the protocol to handle larger
primes.

3) Transmission of Check Vector Pairs (s,y) and (b,c):
The 256 check vector pairs (s,y) and (b,¢) were trans-
mitted via serial communication. Serial ports are used to
physically connect asynchronous devices to a computer,
enabling the transfer of data in a sequential format, where
bits are transmitted one after the other in a series [I9]. As
mentioned in [I} the Arduino board tested here facilitates
serial communication using the UART protocol [20], a sim-
ple, low-cost and easy to implement serial communication
protocol that can be used to send data between an Arduino
board and other devices [20].

Table 5. Time Taken (in ms) to Transmit 256 Pairs of
(s,9) and (b, ¢)

Bit Size of Prime Mean Median Std Dev
64 27537.88 27571.5 122.10
128 52298.85 52291 152.34
256 101355.9091 101540 534.4533
101540

100000
75000

B

S 52291

E 50000

[}

E

IS5

27571.5
25000

64 128 256
Bit Size of Prime

Fig. 4. Time Taken (in ms) to Transmit 256 Pairs of
(s,y) and (b, ¢)

It is observed in Table [l that the transmission time
is largely dependent on the size of the data being sent.
For 64-bit primes, transmitting all 256 check vector pairs
took approximately 27.5 seconds, whereas for 128-bit and
256-bit primes, the time increased to 52.3 seconds and
101.3 seconds, respectively. The near-linear growth in
transmission time seen in Fig. 4| aligns with the increasing
bit size of the data being communicated.

Given that the secret s remains constant across all
256 check vectors in a transmission sequence, a potential
optimization could be sending s once, followed by the 256
values of y, instead of redundantly transmitting 256 pairs

of (s,y). This would effectively cut the transmission size
by nearly (for the (s,y) pairs, reducing both time and
resource consumption.

C. Arduino acting as Intermediary I

1) Transmission of Pairs (s,y): The 256 check vector
pairs (s,y) were transmitted via Serial communication
from the intermediary I. The transmission time is primar-
ily dependent on the size of the transmitted data.

Table 6. Time Taken (in ms) to Transmit 256 Pairs of
(s,9)

Bit Size of Prime Mean Median Std Dev
64 12380.67857 12380 5.25

128 22181.32143 22182 6.2083
256 38362.10714 38347 37.0833

38347

40000
]

30000
1

22182

Time Taken (ms)
20000
|

12380

64 128 256

10000
|

0
L

Bit Size of Prime

Fig. 5. Time Taken (in ms) to Transmit 256 Pairs of
(s,)

The transmission time increases steadily with the bit
size of the prime, as seen in Table [f] and Fig. For
64-bit primes, the process takes 12.4 seconds, whereas
for 128-bit and 256-bit primes, the transmission time
nearly doubles and triples, respectively. The low standard
deviation indicates that the transmission times remain
stable across multiple runs, suggesting minimal external
interference or buffering issues.

As previously noted, since the secret s remains constant
for all check vectors, a more efficient approach would be
to transmit s once and then send only the 256 values of y.

2) Selecting k Random Unique Indices: The process
used for selecting k distinct random indices was as follows
in Fig. [6}

Table 7. Time Taken (in ms) to Select £ Random
Distinct Indices

Bit Size of Prime Mean Median Std Dev
ANY 24 24 0

As shown in Table [7] the time taken for selecting k
random indices was consistently 24ms, with no variation
observed across multiple runs. This indicates that the

FOR j FROM @ TO 127 DO
SET seed TO j + 1000
INITIALIZE random number generator
with seed

SET temp TO random number between

@ and 255

SET exists TO false
FOR k FROM @ TO n - 1 DO
IF ind[k] == temp THEN
SET exists TO true
DECREMENT j
BREAK
END IF
END FOR

// Find correct position and shift

//elements

SET i TOn - 1

WHILE i >= @ AND ind[i] > temp DO
SET ind[i + 1] TO ind[i]
// Shift elements to the right
DECREMENT i

END WHILE

SET ind[i + 1] TO temp

// Insert the value in the correct

//position

INCREMENT n

// Increase the number of elements

END FOR

Fig. 6. Pseudocode for selecting k distinct random indices

operation is both stable and computationally efficient,
imposing minimal overhead in the overall protocol.

3) Checking ¢ for k b and y in I: For a given secret
s (of size approximately sizeof(b - y)), ¢ was computed as
¢ = s + by for each of the 128 pairs of b and y.

Initially, the thought was to store these values in an
array. However, since BigNumber does not support arrays
directly, the common practice is to store them as strings
and create an array of those. The first attempt was made
by using the ‘String‘ type, but this approach consumed
too much dynamic memory, even for b and y values of 64
bits.

Sketch uses 24658 bytes (76%) of program storage space. Maximum is 32256 bytes.

Global variables use 13874 bytes (677%) of dynamic memory, leaving -1
cc/hc/en-us/articl

tion

Compilation error: data section exc v space

Fig. 7. Memory Exhausted When Using Strings

As shown in Fig. using ‘String‘ resulted in 13,874
bytes of dynamic memory usage, while the Arduino only
has 2,048 bytes available.

To overcome this, each BigNumber was stored as a

character array instead, as character arrays have much less
overhead than ‘String‘ objects. Additionally, the ‘PROG-

MEM’ technique [21], which stores these character arrays
in program memory rather than dynamic memory, was ap-
plied. This is advantageous because the Arduino has much
more program memory available (32,256 bytes) compared
to SRAM (2,048 bytes).

With this adjustment, it became possible to handle 64-
bit numbers effectively. However, when testing with 128-
bit numbers, a memory limitation again was encountered
again. Despite using the second method, storing 128 b, v,
and ¢ values (with b and y of 128 bits each) along with
the program code required 34,804 bytes of memory. This
exceeds the available program memory of 32,256 bytes
(Fig. [8).

Note also, that in both the methods tried previously, s
was stored only once as a space saving measure, since it is
the same for all values of b, y and c.

Fig. 8. Program Memory Exhausted with Method 2 for
128-bit Numbers

The results of the timing measurements for checking c
are shown in Table [§| below. We observe that the checking
was quite fast, taking only ~270ms or ~3s.

Table 8. Time Taken (in ms) to Check ¢ for 128 b,y

Bit Size of Prime Mean Median Std Dev
64 270.7931034 269 2.6531
128 - - -

256 - - -

Note: Optimizations have not been explored yet. One
option is the use of F() macro. In general, for IoT appli-
cations, a more powerful board with internet capabilities
(e.g., ATmega 2560 or Raspberry Pi) would be more suit-
able, as these boards have more memory and processing
power [22][23].

Overall, checking ¢ was relatively quick, with little time
taken for 64-bit primes. However, as the size of the primes
increases, the memory limitations become more apparent,
and handling larger bit sizes may require more capable
hardware.

D. Arduino acts as recipient R

1) Checking ¢ for k b and y in R: The same setup and
code were used for this as for the intermediary I. The
main difference is that R stores 256 b, y, and ¢ values,
as compared to the 128 b and c values stored by I. This
increased storage requirement implies that calculations
that were previously not possible for I are also not feasible
for R.

For R, only the ¢ belonging to pairs (b, c) that have not
been selected by I for verification need to be checked. This

was achieved using the condition:
if (ind[j] == i) { j++; continue; }

This approach ensures
checked.

Table 9. Time Taken (in ms) to Check ¢ for 128 b,y

that only the relevant pairs are

Bit Size of Prime Mean Median Std Dev
64 278 278 0
128 - - -
256 - - -

It was observed that the time required for the checking
was minimal (Table E[) The timing is almost identical
to the previous section (Table , with a slight increase
caused by the additional step of checking the indices of
the pairs. This extra checking of indices was necessary to
ensure that only the relevant pairs of (b,c) that had not
been sent to I were processed.

The minimal increase in time is in line with expecta-
tions, as the added step of checking indices introduces a
small overhead, but the overall computational complexity
remains low for 64-bit primes. Larger primes were not
tested due to the memory limitations previously discussed
in Section

E. Energy Consumption

The energy consumption for each component was calcu-
lated using the formula:

E=V.-I-n-1

where:

- V is the voltage (5V for the Arduino Uno R3),

- I is the current (20mA for the Arduino Uno R3) [24],

- n is the number of operations, and

- 7 is the time taken for each operation.

Since time taken for each component has already been
measured, energy can be simplified to:

E=V-I-t

where t is the time taken for the operations.

The energy consumption was calculated using the me-
dian execution times for each component and bit size, with
the values shown in Table [0t

Unsurprisingly, the energy consumption across different
components of the system is influenced primarily by the
size of the data being processed and transmitted as larger
bit sizes require more time to process and transmit data,
which directly translates to higher energy consumption.

Table [I0] also shows that the generation of primes and
the transmission of data are the two most expensive opera-
tions. In fact, prime generation also shows one of the most
drastic increases in energy consumption with increasing

Table 10. Energy Consumption for Various Components
at Different Bit Sizes

[Component D | Bit Size [Energy (J) |

64 0.04
b and y Gen. 128 0.11
256 0.35
64 0.37
Calc. ¢ 128 0.91
256 2.49
64 2.76
Transmission 128 5.23
256 10.15
[Component 1 [[]
64 1.24
Transmission from I to R 128 2.22
256 3.84
Selecting k indices Any 0.0024
Checking 128 ¢ in I 64 0.027
[Component R [[|
[Checking128cinR [64 [0.028]
[General [[|
32 0.23
Prime Gen. 64 1.91
128 19.17

bit-size, from 1.91J for 64-bit primes to 19.17 for 128-bit
primes. Transmission, be it from D (seen in Fig. E[) or
is also an energy-intensive operation. In this study, Serial
communication was, but in practice some form of wireless
communication is quite likely to be used[25], and that is
generally more expensive than the Serial communication
method used here [26].

Another relatively expensive operation is the calculation
of ¢ when Arduino is acting as dealer D. It can be seen in
Table [L0] that as the bit-size of operands increases, energy
consumption increases quite a lot. Other operations, such
as generating b and y, selecting k£ random indices etc., do
not require much energy in comparison to the two most
expensive actions (all <0.5J).

Overall, with larger bit-sizes being used for computaion
and transmission, the combined energy consumption for
each role (D, I, or R) grows. Considering that prime
number generation can be outsourced or performed in-
frequently, in general, transmission emerges as the most
expensive operation in terms of energy consumption, fol-
lowed by operations that involve larger bit sizes like
calculation of c¢. Optimizing calculations and memory han-
dling could lead to substantial power savings, particularly
when working with large data sets. Furthermore, using
more powerful microcontrollers (e.g., ATmega2560 [23] or
Raspberry Pi[22]) could allow for handling larger bit sizes
more efficiently, improving execution time and reducing
energy consumption per operation.

Putting this in practical terms of battery life, consider
a 6V battery. (Arduino ideally requires a 7-12V supply
if powered via DC, but it can function with 6V as well.)
For a lightweight 6V battery, capacity commonly ranges
from 1000-2000mAh [27]. For these calculations, consider
a battery with a capacity of 1400mAh such as a Duracell

Energy Consumption - Component D

10 |1 mmm b and y Gen.
Calc. ¢
g - MM Transmission

Energy ()

i J

0 T T

64 128 256
Bit Size

Fig. 9. Energy Usage Comparison of Arduino as D

DL 233 CR-P2. Converting this to Wh using the formula
Capacity(mAh) x Voltage(V) / 1000 gives a battery ca-
pacity of 8.4Wh.

Now, consider the Arduino’s combined energy consump-
tion for a role and include all operations of that role. For
cases where multiple bit-sizes have been tested, only the
most expensive for each operation will be considered.

As can be seen from Table the most energy is
consumed when the Arduino acts as the dealer D, making
it a good candidate case for the upcoming calculations.
Thus, considering the case when Arduino acts a D. Here,
the main operations are:

1) Generation of b and y which consumes 0.35.J in

25s. This can be converted to Power consumed using
the formula: Power(P) = Energy(E)/Time(T) i.e.,
P =0.35/25=0.014W.

2) Calculating ¢ which consumes 2.49J in 4s, giving
power usage equal to 0.6225W .

3) Transmitting check vector pairs which consumes
10.15J in 101s, giving a power consumption of
0.1005W.

Thus, for dealer D, power consumption comes out to be

0.737TW.

6V 1400mAh
Battery

6V13Ah
Battery

No. of Batteries Required by D over 5 Days

Fig. 10. Battery Consumption of Arduino acting as
Dealer D over 5 days

Battery life can now be calculated using the formula:
BatteryLife(hrs) = BatteryCapacity(Wh)/Piotar(W).
The result is an approximate battery life of 11.4 hours
i.e., when Arduino is acting as Dealer D, a 6V 1400mAh
battery will require replacement every 11 hours or so.
However, if the use case allows for a larger, more powerful
battery such as a 13Ah Duracell LA battery [28], it would
require much more infrequent replacement. Specifically,
the capacity for such a battery would be 78Wh, giving

a battery life of 105.8 hours for use with Arduino as D.
In other words, such a battery would require replacement
approximately every 4 days.

In other words, for every 5 days of operating the Ar-
duino Uno as dealer D, a 1400mAh battery will require
replacement 10 times and a 13Ah will require replacement

once (ref. Fig. [10)).

VII. CONCLUSION

This study evaluated the performance of the Arduino
Uno R3 while executing critical components of the In-
formation Checking Protocol (ICP) from Rabin’s imple-
mentation of the VSS [I6]. Through extensive timing and
energy measurements across multiple bit sizes (64, 128,
and 256 bits), we derived a comprehensive understanding
of the limitations and capabilities of the Arduino in the
roles of Dealer (D), Intermediary (I), and Recipient (R).

Our findings indicate that while the Arduino performs
consistently and reliably for 64-bit operations, scalability
becomes a challenge with increasing bit sizes. Notably, the
Arduino ran out of memory when attempting to generate
large primes or attempting to store multiple 128-bit and
256-bit values and perform operations on them.

From a performance standpoint, execution times for key
operations (except prime-number generation) remained
stable across repeated trials. However, the transmission of
check vectors and generation of primes proved to be the
most power-hungry operations. When the Arduino acts as
the dealer, a 6V 1400mAh battery can continuously sus-
tain such operations for about 11.4 hours. Larger batteries,
such as a 13Ah unit, can extend operational time to 105.8
hours, supporting multi-day deployments. These findings
highlight the importance of power-aware protocol design
in low-power IoT environments.

In light of these observations, we conclude that while
there are a few options, such as aggressively optimizing
memory usage, reducing transmission overhead by avoid-
ing redundant data, choosing to use small primes while
making concessions on the security of the protocol etc. for
implementing ICP in a severely limited device like Arduino
Uno, a complete, highly secure implementation requires
the use of better, more powerful hardware.

REFERENCES

[1] Alam T. A reliable communication framework and its use
in internet of things (iot). International Journal of Scientific
Research in Computer Science Engineering and Information
Technology 05 2018;3.

[2] Technologies D. Internet of things and data placement. URL
https: //infohub.delltechnologies.com /en-us/1/edge-to-core-and
-the-internet-of-things-2/internet-of- things-and-data- placeme
nt/.

[3] Analytics I. Number of connected iot devices worldwide. URL
https://iot-analytics.com/number-connected-iot-devices/.

[4] Statista. Internet of things (iot). URL https://www.statista.c
om /topics/2637 /internet-of-things/#topicOverview.

[5] SoluLab. Iot: The future of innovation technology. URL https:
/ /www.solulab.com /iot-the-future-of-innovation-technology/.

https://infohub.delltechnologies.com/en-us/l/edge-to-core-and-the-internet-of-things-2/internet-of-things-and-data-placement/
https://infohub.delltechnologies.com/en-us/l/edge-to-core-and-the-internet-of-things-2/internet-of-things-and-data-placement/
https://infohub.delltechnologies.com/en-us/l/edge-to-core-and-the-internet-of-things-2/internet-of-things-and-data-placement/
https://iot-analytics.com/number-connected-iot-devices/
https://www.statista.com/topics/2637/internet-of-things/#topicOverview
https://www.statista.com/topics/2637/internet-of-things/#topicOverview
https://www.solulab.com/iot-the-future-of-innovation-technology/
https://www.solulab.com/iot-the-future-of-innovation-technology/

[6]

[9]

(10]

(11]

(12]

(13]

14]

(15]

[16]

(17]

(18]
(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

TrustCloud. Data privacy in the age of iot: securing connected
devices in 2024. URL https://community.trustcloud.ai/docs/g
rc-launchpad/grc-101/governance/data-privacy-in-the-age-o
{-iot-securing-connected-devices-in-2024/,

Simmons-Simmons. Technotes — top 10 security and privacy
issues within the iot. URL https://www.simmons-simmons.c
om/en/publications/ckmx5qvys13hb0910ags2nx7o/technotes-t
op- 10-security-and-privacy-issues-within-the-iot.

Meltem Sonmez Turan Kerry A. McKay DCJKJK. Ascon-
based lightweight cryptography standards for constrained de-
vices. NIST Special Publication 800 NIST SP 800 232 ipd 2023;
URL https://nvlpubs.nist.gov/nistpubs/Special Publications/
NIST.SP.800-232.ipd.pdfl

Knudsen LR, Peyrin T, Sasaki Y. Can lwc and pec be friends?
https://csrc.nist.gov/CSRC/media/Events/lightweight-cry
ptography-workshop-2020/documents/papers/can-lwc-pec
-be-friends-1lwc2020.pdf, 2020. Paper presented at the NIST
Lightweight Cryptography Workshop 2020.

NIST. Fostering standards for privacy-enhancing cryptography
(pec). |https://csrc.nist.gov/csrc/media/Presentations/202
2 /fostering-standards-for-pec/images-media/20220519-PET
-Summit- Boston--Fostering-Standards- PEC--Slides-rev2022
0526.pdf, 2022. Presentation at the 2022 Privacy-Enhancing
Technologies (PET) Summit, Boston.

Goyal H, Saha S. Multi-party computation in iot for privacy-
preservation. In 2022 IEEE 42nd International Conference on
Distributed Computing Systems (ICDCS). 2022; 1280-1281.
Evans D, Kolesnikov V, Rosulek M. A Pragmatic Introduction
to Secure Multi-Party Computation. NOW Publishers, 2018.
Online version: Apr. 15, 2020. [Online]. Available: https://ww
w.cs.virginia.edu/~evans/pragmaticmpc/pragmaticmpc.pdf.
Das S, Xiang Z, Tomescu A, Spiegelman A, Pinkas B, Ren L.
Verifiable secret sharing simplified. Cryptology ePrint Archive,
Paper 2023/1196, 2023. URL https://eprint.iacr.org/2023/119
6l

Krenn S, Loriinser T. Verifiable Secret Sharing. Cham: Springer
International Publishing. ISBN 978-3-031-28161-7, 2023; 45-54.
URL https://doi.org/10.1007/978-3-031-28161-7_ 7.

Chor B, Goldwasser S, Micali S, Awerbuch B. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In
26th Annual Symposium on Foundations of Computer Science
(sfcs 1985). 1985; 383-395.

Rabin T, Ben-Or M. Verifiable secret sharing and multiparty
protocols with honest majority. In Proceedings of the Twenty-
First Annual ACM Symposium on Theory of Computing, STOC
’89. New York, NY, USA: Association for Computing Machin-
ery. ISBN 0897913078, 1989; 73-85. URL https://doi.org/10.1
145/73007.73014.

Electronics P. millis() arduino function: 54 things to consider,
n.d. URL https://www.programmingelectronics.com/millis-a
rduino/|

Documentation A. Arduino uno rev3 technical specs, n.d. URL
https://docs.arduino.cc/hardware /uno-rev3/tech-specs.

IBM. Serial communication. URL https://www.ibm.com/docs
/en/aix/7.37topic=communications-serial-communication,
Siebeneicher H. Universal asynchronous receiver-transmitter
(uart). URL https://docs.arduino.cc/learn/communicatio
n/uart/.

Documentation A. Arduino progmem, n.d. URL https://www.
arduino.cc/reference/tr/language/variables/utilities /progmem
/.

Pounder L. Raspberry Pi vs Arduino: Which Board is Best?
https://www.tomshardware.com/features/raspberry-pi-vs-ard
uino, 2023.

Microchip Technology Inc. ATmega2560 - 8-bit AVR Microcon-
troller. https://www.microchip.com/en-us/product/atmega25
60, 2024.

Forum A. Power consumption discussion, 2020. URL https:
//forum.arduino.cc/t/power-consumption/661308 /5,

Sinha S. State of iot 2024: Number of connected iot devices
growing 13 URL https://iot-analytics.com/number-connected
-iot-devices/#:~:text=Wi%2DFi.

Kasslack R. Balancing wireless innovation with wired reliability,
2024. URL https://www.securityindustry.org/2024/03/19/

27]

(28]

balancing-wireless-innovation-with-wired-reliability /#:~:
text=Wired %20networks%2C%20with%20their%20lower, the%
200overall%20energy %20efficiency %200f.

Junction B. 6v batteries. URL https://www.batteryjunction.
com/batteries/6v?srsltid=AfmBOopsK3jNAak-9npp- QyuxO
Cgc OpxxLAgWeBviXJ6GuWYSK2gurg.

Uline. Duracell 6v lantern alkaline battery. URL https://www.
uline.com/Product/Detail /S-17590/Batteries/Duracell-6V-L
antern- Alkaline- Battery?pricode=WB0943&gadtype=pla&id
=S-17590&gad source=1&gclid=Cj0KCQjw4cS-BhDGARIsA
Bgd4 J1ImT70gc36pCQvLGdLbOkZskzePykjEcJmueOF6tOg9w
gdLvT5ZpBlEaArMvEALw wcB.

https://community.trustcloud.ai/docs/grc-launchpad/grc-101/governance/data-privacy-in-the-age-of-iot-securing-connected-devices-in-2024/
https://community.trustcloud.ai/docs/grc-launchpad/grc-101/governance/data-privacy-in-the-age-of-iot-securing-connected-devices-in-2024/
https://community.trustcloud.ai/docs/grc-launchpad/grc-101/governance/data-privacy-in-the-age-of-iot-securing-connected-devices-in-2024/
https://www.simmons-simmons.com/en/publications/ckmx5qvys13hb0910ags2nx7o/technotes-top-10-security-and-privacy-issues-within-the-iot
https://www.simmons-simmons.com/en/publications/ckmx5qvys13hb0910ags2nx7o/technotes-top-10-security-and-privacy-issues-within-the-iot
https://www.simmons-simmons.com/en/publications/ckmx5qvys13hb0910ags2nx7o/technotes-top-10-security-and-privacy-issues-within-the-iot
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-232.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-232.ipd.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/can-lwc-pec-be-friends-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/can-lwc-pec-be-friends-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/can-lwc-pec-be-friends-lwc2020.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/fostering-standards-for-pec/images-media/20220519-PET-Summit-Boston--Fostering-Standards-PEC--Slides-rev20220526.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/fostering-standards-for-pec/images-media/20220519-PET-Summit-Boston--Fostering-Standards-PEC--Slides-rev20220526.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/fostering-standards-for-pec/images-media/20220519-PET-Summit-Boston--Fostering-Standards-PEC--Slides-rev20220526.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/fostering-standards-for-pec/images-media/20220519-PET-Summit-Boston--Fostering-Standards-PEC--Slides-rev20220526.pdf
https://www.cs.virginia.edu/~evans/pragmaticmpc/pragmaticmpc.pdf
https://www.cs.virginia.edu/~evans/pragmaticmpc/pragmaticmpc.pdf
https://eprint.iacr.org/2023/1196
https://eprint.iacr.org/2023/1196
https://doi.org/10.1007/978-3-031-28161-7_7
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://www.programmingelectronics.com/millis-arduino/
https://www.programmingelectronics.com/millis-arduino/
https://docs.arduino.cc/hardware/uno-rev3/tech-specs
https://www.ibm.com/docs/en/aix/7.3?topic=communications-serial-communication
https://www.ibm.com/docs/en/aix/7.3?topic=communications-serial-communication
https://docs.arduino.cc/learn/communication/uart/
https://docs.arduino.cc/learn/communication/uart/
https://www.arduino.cc/reference/tr/language/variables/utilities/progmem/
https://www.arduino.cc/reference/tr/language/variables/utilities/progmem/
https://www.arduino.cc/reference/tr/language/variables/utilities/progmem/
https://www.tomshardware.com/features/raspberry-pi-vs-arduino
https://www.tomshardware.com/features/raspberry-pi-vs-arduino
https://www.microchip.com/en-us/product/atmega2560
https://www.microchip.com/en-us/product/atmega2560
https://forum.arduino.cc/t/power-consumption/661308/5
https://forum.arduino.cc/t/power-consumption/661308/5
https://iot-analytics.com/number-connected-iot-devices/#:~:text=Wi%2DFi
https://iot-analytics.com/number-connected-iot-devices/#:~:text=Wi%2DFi
https://www.securityindustry.org/2024/03/19/balancing-wireless-innovation-with-wired-reliability/#:~:text=Wired%20networks%2C%20with%20their%20lower,the%20overall%20energy%20efficiency%20of
https://www.securityindustry.org/2024/03/19/balancing-wireless-innovation-with-wired-reliability/#:~:text=Wired%20networks%2C%20with%20their%20lower,the%20overall%20energy%20efficiency%20of
https://www.securityindustry.org/2024/03/19/balancing-wireless-innovation-with-wired-reliability/#:~:text=Wired%20networks%2C%20with%20their%20lower,the%20overall%20energy%20efficiency%20of
https://www.securityindustry.org/2024/03/19/balancing-wireless-innovation-with-wired-reliability/#:~:text=Wired%20networks%2C%20with%20their%20lower,the%20overall%20energy%20efficiency%20of
https://www.batteryjunction.com/batteries/6v?srsltid=AfmBOopsK3jNAak-9npp-QyuxOCgc_OpxxLAgWeBvfXJ6GuWYSK2gurg
https://www.batteryjunction.com/batteries/6v?srsltid=AfmBOopsK3jNAak-9npp-QyuxOCgc_OpxxLAgWeBvfXJ6GuWYSK2gurg
https://www.batteryjunction.com/batteries/6v?srsltid=AfmBOopsK3jNAak-9npp-QyuxOCgc_OpxxLAgWeBvfXJ6GuWYSK2gurg
https://www.uline.com/Product/Detail/S-17590/Batteries/Duracell-6V-Lantern-Alkaline-Battery?pricode=WB0943&gadtype=pla&id=S-17590&gad_source=1&gclid=Cj0KCQjw4cS-BhDGARIsABg4_J1m7Ogc36pCQvLGdLbOkZskzePykjEcJmueOF6tOg9wg4LvT5ZpB1EaArMvEALw_wcB
https://www.uline.com/Product/Detail/S-17590/Batteries/Duracell-6V-Lantern-Alkaline-Battery?pricode=WB0943&gadtype=pla&id=S-17590&gad_source=1&gclid=Cj0KCQjw4cS-BhDGARIsABg4_J1m7Ogc36pCQvLGdLbOkZskzePykjEcJmueOF6tOg9wg4LvT5ZpB1EaArMvEALw_wcB
https://www.uline.com/Product/Detail/S-17590/Batteries/Duracell-6V-Lantern-Alkaline-Battery?pricode=WB0943&gadtype=pla&id=S-17590&gad_source=1&gclid=Cj0KCQjw4cS-BhDGARIsABg4_J1m7Ogc36pCQvLGdLbOkZskzePykjEcJmueOF6tOg9wg4LvT5ZpB1EaArMvEALw_wcB
https://www.uline.com/Product/Detail/S-17590/Batteries/Duracell-6V-Lantern-Alkaline-Battery?pricode=WB0943&gadtype=pla&id=S-17590&gad_source=1&gclid=Cj0KCQjw4cS-BhDGARIsABg4_J1m7Ogc36pCQvLGdLbOkZskzePykjEcJmueOF6tOg9wg4LvT5ZpB1EaArMvEALw_wcB
https://www.uline.com/Product/Detail/S-17590/Batteries/Duracell-6V-Lantern-Alkaline-Battery?pricode=WB0943&gadtype=pla&id=S-17590&gad_source=1&gclid=Cj0KCQjw4cS-BhDGARIsABg4_J1m7Ogc36pCQvLGdLbOkZskzePykjEcJmueOF6tOg9wg4LvT5ZpB1EaArMvEALw_wcB
https://www.uline.com/Product/Detail/S-17590/Batteries/Duracell-6V-Lantern-Alkaline-Battery?pricode=WB0943&gadtype=pla&id=S-17590&gad_source=1&gclid=Cj0KCQjw4cS-BhDGARIsABg4_J1m7Ogc36pCQvLGdLbOkZskzePykjEcJmueOF6tOg9wg4LvT5ZpB1EaArMvEALw_wcB

	Introduction
	Verifiable Secret Sharing (VSS)
	Information Checking Protocol (ICP)
	Arduino Feasibility and Performance Testing Methodology
	Implementation environment
	Performance Analysis
	Prime Number Generation
	Arduino acting as Dealer D
	Generation of 2k b and y for a Given Prime
	Calculating c
	Transmission of Check Vector Pairs (s,y) and (b,c)

	Arduino acting as Intermediary I
	Transmission of Pairs (s,y)
	Selecting k Random Unique Indices
	Checking c for k b and y in I

	Arduino acts as recipient R
	Checking c for k b and y in R

	Energy Consumption

	Conclusion
	References

