

Abstract — In data security, especially in mobile devices, it has
long been understood that to meet the highest compliance
standards, Authenticated Encryption is required. Encryption
alone is not enough to provide the utmost level of security in
various mobile applications. This paper proposes the
implementation of Authenticated Encryption Mode, CCM in our
application. This work also shows a comparison of the
performance analysis of AES-CCM and AES-GCM modes. The
choice to use Android Java programming language was made in
order to create an Android application which sends and receives
text messages between two parties by sharing a secret key, and
uses an authentication feature. The execution of the algorithm is
performed in Android Studio and the implementation of the code
is accomplished using Android API.

I. INTRODUCTION
Authenticated Encryption is a process of ensuring that both

ends of a connection are completely secure. Mobile operating
systems in today’s world are vulnerable when it comes to
hackers. Eighty percent of the world’s cellphones use an open
source operating system such as Android [8]. Open source
allows third parties to change the original code according to
their own requirements and needs. This can often leave open
loop holes and back doors that hackers will try to exploit. For
this, it is not sufficient to use basic encryption techniques to
protect information. Authenticated Encryption, or AE,
addresses these issues by creating a more secure and
bulletproof connection. AE security protects the user and
service being used from the inherent flaws in open source
software, and ensures that information within a session is not
being compromised. In addition to providing authentication
and confidentiality, AE provides a strong protection from
various attacks like replay attacks, chosen cipher-text attacks,
and the man-in-the-middle attack.

Over the last decade, there has been significant amount of
research and effort involved to invent the dedicated AE modes
CCM, GCM, EAX, and OCB [7]. Rather than using the
authenticity and privacy techniques separately, these AE
schemes provide more proficient results and have very few
chances of being incorrect. In order to ensure safety of the
information, it was suggested to combine authentication
mechanism such as MAC with the encryption algorithms. The
combinations were applied in multiple secure and insecure
ways [6]. This paper talks about the comparison of the CCM
(CTR + CBC-MAC) mode and the GCM (Galois Counter
Mode) [9] mode of operation, which are symmetric key block
cipher algorithms defined and used in security systems. The
key features like authenticity, integrity and confidentiality
are achieved by these modes [18]. CCM is defined in IEEE
802.11i, IPsec [19], TLS 1.2 [20] and uses Advanced

Encryption Standard [13] [5] as its cryptographic algorithm.
AES is the standard recognized by National Institute of
Standards and Technology (NIST) in 2001 [2] and specified in
Federal Information Processing Standard (FIPS) [4].

GCM is used in various security standards such as the IEEE
802.1AE for frame data encryption in the Ethernet [15], the
IEEE P1619.1 for encrypting hard disks [16], IEEE
802.11AD, and RFC 4106 IPsec [17]. It is based on a
parallelization process which generates ciphertexts and an
authentication tag simultaneously. It uses counter mode and a
hash function over Galois Field (2 ^ 128) to generate a tag. It
consists of Galois Field (GF) multiplier adders. In counter
mode, the counter blocks are numbered in a sequential manner
and the encryption function is performed on these blocks. The
output of this function is XORed with the plaintexts to
produce ciphertexts. A hash function is used to generate the
tag by combining the ciphertext and an authentication code to
check the integrity of the data [9].

This paper is organized into the following sections: Section
II proposes the approach we followed using the AES-CCM
algorithm. Section III discusses the AES-CCM algorithm.
Section IV represents the implementation of this algorithm
using Android API. Section V shows the performance analysis
of CCM and GCM mode and the comparison results. Section
VI proposes the conclusion of this paper.

II. TRADITIONAL ENCRYPTION V/S AES-CCM

Companies sometimes prefer traditional encryption methods
when it comes to using mobile applications. The main focus of
the traditional encryption schemes is to provide
confidentiality, but they do not protect from malicious
tampering or data being modified intentionally by the
attackers. These methods do not provide the level of security
required, and in fact they can be vulnerable to an informed
hacker. Authenticated encryption schemes are the alternative
methods. Using AE schemes, many different approaches are
taken into consideration, i.e. Encrypt-then-MAC, Encrypt-and-
MAC and MAC-then-Encrypt [14].
 The solution proposed in this paper uses MAC-then-encrypt
scheme in which the MAC value is generated first, and then
the data and MAC are encrypted using counter mode. This
would make it hard for the attacker to obtain the MAC value
in order to perform attacks. The following figure 2.1 depicts
the approach being implemented.

Performance Comparison of AES-CCM and
AES-GCM Authenticated Encryption Modes

Levent Ertaul, Anup Mudan, Nausheen Sarfaraz

CSU East Bay, Hayward, CA, USA.
levent.ertaul@csueastbay.edu, amudan@horizon.cueastbay.edu, nsarfaraz@horizon.csueastbay.edu

mailto:amudan@horizon.cueastbay.edu

Figure 2.1 MAC-then-encrypt mechanism

III. THE AES-CCM ALGORITHM

 Advanced Encryption Standard, or AES, [13] is the
standard known for a symmetric block cipher mechanism that
uses 128 bits, 192 bits and 256 bits of key sizes. CCM is an
Authenticated Encryption Standard which is based on a key
management structure. In this algorithm, the plaintext is
divided into block ciphers of 128 bits size. The modes of
operations used in AES-CCM are counter mode (CTR) with
Cipher Block Chaining and Message Authentication Code
(CBC-MAC). They perform generation-encryption and
decryption-verification functions [3]. The confidentiality
feature is achieved in CTR mode by AES and the
authentication is achieved in CBC-MAC with the MAC value
generated.
 In AES-CBC-MAC, the encryption function is applied to the
first block to generate a cipher. Then the cipher result is
XORed with the second block to obtain the next result. The
process keeps going on for all the remaining blocks until the
final value MAC is obtained, which is used in CTR mode
encryption. The following 3.1 shows the block diagram of
AES-CBC-MAC.

Figure 3.1 Block diagram of AES-CBC-MAC

In AES-CTR, different cipher blocks are produced which are
dependent on nonce value. The CTR mode is applied to MAC
and the payload to obtain the cipher-text [1]. CCM is not
compatible with steam ciphers and does not work with the
Data Encryption Standard which supports a 64 bits of block

size. It works in the packet environment where all of the data
is available in storage beforehand [3]. The following figure 3.2
shows the block diagram of AES-CTR mode.

Figure 3.2 Block diagram of AES-CTR

 The input elements of CCM are: the valid payload (pd <
2^64) (data which is authenticated and encrypted), the valid
nonce (nc < 2^61) (must be unique), and the valid associated
data (ad ≤ 256 bits) (which is authenticated but not encrypted).
The nonce is applied to the payload and the associated data.
The secret key (k) to the block cipher is generated uniformly at
random whose size is 128 bits. CCM only works with the
forward cipher function [3].

A. Generation-Encryption
 In generation-encryption mechanism, cipher block chaining
is applied to the payload (pd), the nonce (nc), and the
associated data (ad), to generate MAC. The MAC length
(Mlen) is always greater than or equal to 64 bits. Then the
counter mode encryption is applied to the MAC and payload
to convert it into cipher-text [3].

Prerequisites:
The various prerequisites that are required are as follows: the
cipher block algorithm, key k, counter generation function,
formatting function, MAC length Mlen.

Input:
The input values required are: valid payload pd of length
pdlen bits; valid associated data ad; valid nonce nc.

Output:
The output will be cipher-text C.

Steps:
1. Apply the formatting function to (nc, ad, pd) to

produce the blocks B0, B1,….., Br
2. Set Y0 = CIPH k(B0)
3. For I = 1 to r, do Yi = CIPH k(Bi XOR Yi-1)
4. Set MAC = MSBMlen (Yr)
5. Apply the counter generation function to

generate the counter blocks CTR0, CTR1, …..,
CTRm, where m = pdlen/128

6. For j = 0 to m, do Sj = CIPH k(CTRj)
7. Set S = S1 || S2 || …. || Sm
8. Return C = (pd XOR MSB pdlen(S)) || (MAC

XOR MSB Mlen(S0))

B. Decryption-Verification
 In decryption-verification mechanism, counter mode
decryption is performed to get the MAC value and its
corresponding payload. Cipher block chaining is applied to the
payload, the nonce received, and the associated data received
to check if the MAC is correct. If the verification succeeds
that means that inputs are generated from the source and have
access to the key [3]. MAC plays the most important role as it
can keep away security threats and can protect data from being
modified.

Prerequisites:
The various prerequisites that are required are as follows:
Cipher block algorithm; Key k; Counter generation function;
Formatting function; and Valid MAC length Mlen.
Input:
The main input values required are: associated data, ad;
nonce, nc; ciphertext C of length cplen bits.

Output:
The output will be either payload pd or INVALID.

Steps:
1. If cplen ≤ Mlen, then return INVALID
2. Apply the counter generation function to generate the

counter blocks CTR0, CTR1, ….., CTRm
3. For j = 0 to m, do Sj = CIPH k(CTRj)
4. Set S = S1 || S2 || ….. || Sm
5. Set pd = MSB cplen – Mlen(C) XOR MSB cplen –

Mlen(S)
6. Set MAC = LSBMlen (C) XOR MSB Mlen(S0)
7. If nc, ad or pd is not valid, then return INVALID, else

apply the formatting function to (nc, ad, pd) to
produce the blocks B0, B1, ….., Br

8. Set Y0 = CIPH k(B0)
9. For I = 1 to r, do Yj = CIPH(Bi XOR Yi-1)
10. If MAC ≠ MSBMlen(Yr), then return INVALID, else

return pd

IV. IMPLEMENTATION
 The following tables I and II show the hardware and
software specifications of the device we used.

A. Specification
Table I. Hardware Specification

Type Specification
Device Type Mac OS X
Processor 2.5 GHz Intel Core i7
RAM 16 GB
Operating
System

Android version 5.1 Lollipop

Table II. Software Specification
Type Specification
Android Programming Java

Language
Android Studio Version 2.0
Android API Spongy Castle
Android Virtual Machine Genymotion

B. Screen Shots
 We created and executed our CryptUtil application using
Android Studio. We made two Android Virtual Machines for
the sender and the receiver side, up and running. The screen
shots are taken from the emulator.
 Once the application is launched, it shows the main page for
sender and receiver (Figure 4.1) which contains buttons to
send and receive a message.

Figure 4.1 Main access page

 Once the sender clicks on the Send Message button, the next
page is displayed which tells the user to enter the IP address of
the receiver side to get connected (Figure 4.2).

Figure 4.2 Entering IP address to connect to the Receiver

 Once the sender enters the IP address, a page is displayed
showing that the connection has been established (Figure 4.3).

Figure 4.3 Connection established page

 After the sender and receiver are connected, the page
showing “Enter Your Message To Encrypt” field, and “Enter
Your Password Key”, field is displayed (Figure 4.4). This
page also includes a text field to enter a AEAD value. The
AEAD value has to match the default value already set in
order to avoid an error.

Figure 4.4 Enter message and key page on sender’s side

 Once the sender clicks on the Send button, the receiver
receives the encrypted text i.e. cipher-text. Also, a dialog box
appears for the receiver to enter the matching AEAD value
and the password key in order to decrypt the text message
(Figure 4.5).

Figure 4.5 Enter password page on receiver’s side

 If the entered AEAD value and the password key both match
the shared value and the key of the sender, then the decryption
process is successful on the receiver’s end (Figure 4.6). This
page also shows the time it took to decrypt the text message in
microseconds.

Figure 4.6 Cipher-text received page

 If the password key or AEAD value entered do not match
the shared key and the value, then the decryption process
cannot be performed and it will end up displaying an error
message (Figure 4.7).

Figure 4.7 Decryption error page

V. PERFORMANCE ANALYSIS AND RESULTS

A. Comparison using different AEAD values of 9 chars, 16
chars and 24 chars in AES-CCM
 In the following graphs (figures 5.1, 5.2 and 5.3), we can see
that as we increase the number of characters in AEAD value,
the encryption and decryption time increases.

Figure 5.1 128 bits Key, 9 chars AEAD, 12 bytes Nonce

Figure 5.2 128 bits Key, 16 chars AEAD, 12 bytes Nonce

Figure 5.3 128 bits Key, 24 chars AEAD, 12 bytes Nonce

B. Comparison using different key sizes of 128 bits, 192 bits
and 256 bits in AES-CCM
 We can see the differences in the encryption time in the
following figures with the variable key sizes. . As the key size
increases, the encryption time rises. On the other hand, it
shows a drop in the decryption time when the key size is
changed from 128 bits to 192 bits.

Figure 5.4 128 bits Key, 9 chars AEAD, 12 bytes Nonce

Figure 5.5 192 bits Key, 9 chars AEAD, 12 bytes Nonce

Figure 5.6 256 bits Key, 9 chars AEAD, 12 bytes Nonce

C. Comparison between different key sizes using Nonce
values as 8 bytes and 10 bytes in AES-CCM
 In this section, we compare the performance by taking nonce
values as 8 bytes and 10 bytes (Figures 5.7 and 5.8),
respectively. The AEAD value used is constant and the key
sizes were compared using a 16 KB plaintext in both cases.
 We can see in the following figures that as the nonce value
is increased from 8 bytes to 10 bytes, there is a vast difference
in the encryption time for the key sizes 128 bits and 192 bits.
The time to encrypt plaintext increases at great speed. For a
key size of 256 bits, there is no substantial difference in the
encryption time as compared to other key sizes. Furthermore,
the time to encrypt plaintext is dependent on the nonce value;
as the higher the latter becomes, the higher the former is.

Figure 5.7 Nonce = 8 bytes, AEAD = 9 chars

Figure 5.8 Nonce = 10 bytes, AEAD = 9 chars

D. Comparison of AES-CCM and AES-GCM
 The main idea behind this paper was to compare the
performance of AES-CCM and AES-GCM mechanisms in
terms of time taken to encrypt the plaintext. The key size
taken is 128 bits as it was kept fixed in the AES-GCM mode.
As we can observe in graphs (Figures 5.7, 5.8 and 5.9), the
AES-GCM has better performance than AES-CCM as it is
taking less time to encrypt the plaintext.

Figure 5.7 128 bits Key, 16 chars AEAD, 12 bytes Nonce

Figure 5.8 128 bits Key, 9 chars AEAD, 12 bytes Nonce

Figure 5.9 128 bits Key, 24 chars AEAD, 12 bytes Nonce

VI. CONCLUSION
In this paper, we have shown the implementation of an
Authenticated Encryption scheme, AES-CCM, on Android
application to check if this algorithm is feasible in terms of
performance. We did performance analysis for AES-CCM to
make comparisons by taking various parameters (key size,
AEAD and nonce). These comparisons show that the
performance of AES-CCM goes down when the key size,
AEAD value and nonce lengths are increased. We have not
noticed any major fluctuations in the encryption and
decryption times of the plaintext when the key size and AEAD
value were changed. However, it was noticeable that when the
nonce value was increased, the encryption time rose at greater
speed.
 We have made another comparison between AES-CCM and
AES-GCM to check which mode of operation is better
performance wise. Our results show that AES-GCM is faster
than AES-CCM when it comes to performance. We have
come to the conclusion that the AES-GCM is more feasible to
be used in applications where performance is the main
concern.

VII. ACKNOWLEDGEMENT
 We respectfully acknowledge the assistance and support of
Bhanuchandra Siddam and Sai Krishna Reddy Siripuram and
their contribution towards the implementation and testing of
the AES-GCM Authenticated Encryption mode of operation.

VIII. REFERENCES
 [1] M. Dworkin. Recommendation for block cipher modes of
operation: The CCM mode for authentication and confidentiality.
NIST Special Publication 800-38C., 2004.
[2] Federal Information Processing Standards Publication 197. United
States National Institute of Standards and Technology (NIST).
November 26, 2001.
[3] National Institute of Standards and Technology Special
Publication 800-38C Natl. Inst. Stand. Technol. Spec. Publ. 800-38C
25 pages (May 2004)
[4] FIPS Publication 197, Advanced Encryption Standard (AES).
U.S. DoC/NIST, November 26, 2001. Available at
http://csrc.nist.gov/publications/.
[5] J Daemen, V Rijmen. The design of Rijndael: AES--the
advanced encryption standard. Springer Verlag, 2002.
[6] Nyberg, K., & Heys, H. (2003). Selected areas in
cryptography: 9th annual international workshop, SAC 2002, St.
John's, Newfoundland, Canada, August 15-16, 2002: Revised papers
(Vol. 2595). Berlin: Springer-Verlag.
[7] NIST Computer Security Division's (CSD) Security Technology
Group (STG) (2013). "Block cipher modes". Cryptographic Toolkit.
NIST.
[8] http://venturebeat.com/2013/08/01/android-reaches-massive-80-
market-share-windows-phone-hits-global-high-iphone-languishes/
[9] Lemsitzer, Wolkerstorfer, Felber, Braendli, Multi-gigabit GCM-
AES Architecture Optimized for FPGAs. CHES '07: Proceedings of
the 9th international workshop on Cryptographic Hardware and
Embedded Systems, 2007.
[10] “Android Studio” http://developer.android.com/sdk/index.html
[11] Genymotion – Fast and easy Android Emulation
https://www.genymotion.com/
[12] Cryptography for mobile security. Mitchell, Chris 1. Security for
Mobility. Ed. Chris J Mitchell. TEE Press, 2004
[13] Daemen, Joan; Rijmen, Vincent (March 9, 2003). "AES
Proposal: Rijndael" (PDF). National Institute of Standards and
Technology. p. 1. Retrieved 21 February 2013.
[14] "Information technology -- Security techniques --
Authenticated encryption". 19772:2009. ISO/IEC. Retrieved March
12, 2013.
[15] IEEE: 802.1AE-media access control (MAC) security, draft 3.5.
http://www.ieee802.org/1/pages/802.1ae.html (2005)
[16] IEEE: P1619.1/d12astandard for authenticated encryption with
length expansion for storage devices.
http://grouper.ieee.org/groups/1619/email/bin00084.bin (2006)
[17] Viega, J., McGrew, D.: The Use of Galois/Counter Mode
(GCM) in IPsec Encapsulating Security Payload (EPS).
http://www.faqs.org/rfcs/rfc4106.htm (2005)
[18] B. Schneider. Applied Cryptography. JohnWiley Sons, NY,
1996.
[19] RFC 4309 Using Advanced Encryption Standard (AES) CCM
Mode with IPsec Encapsulating Security Payload (ESP)
[20] RFC 6655 AES-CCM Cipher Suites for Transport Layer
Security (TLS)

	I. INTRODUCTION
	II. Traditional Encryption v/s AES-CCM
	III. The AES-CCM Algorithm
	A. Generation-Encryption
	Steps:
	B. Decryption-Verification
	Steps:

	IV. Implementation
	A. Specification
	B. Screen Shots
	Figure 4.1 Main access page
	Once the sender clicks on the Send Message button, the next page is displayed which tells the user to enter the IP address of the receiver side to get connected (Figure 4.2).
	Figure 4.2 Entering IP address to connect to the Receiver
	Figure 4.4 Enter message and key page on sender’s side
	Once the sender clicks on the Send button, the receiver receives the encrypted text i.e. cipher-text. Also, a dialog box appears for the receiver to enter the matching AEAD value and the password key in order to decrypt the text message (Figure 4.5).

	V. Performance Analysis and Results
	A. Comparison using different AEAD values of 9 chars, 16 chars and 24 chars in AES-CCM
	B. Comparison using different key sizes of 128 bits, 192 bits and 256 bits in AES-CCM
	C. Comparison between different key sizes using Nonce values as 8 bytes and 10 bytes in AES-CCM
	D. Comparison of AES-CCM and AES-GCM
	Figure 5.9 128 bits Key, 24 chars AEAD, 12 bytes Nonce

	VI. Conclusion
	VII. Acknowledgement
	VIII. References

