
JHide – A Tool Kit for Code Obfuscation

Levent Ertaul Suma Venkatesh
Department of Mathematics & Computer Science

25800 Carlos Bee Blvd., Hayward, CA, 94542
lertaul@csuhayward.edu sumav_99@yahoo.com

ABSTRACT
According to Business Software Alliance statistics, four
out of every ten software programs is pirated in software
business, world wide. Global piracy rate has increased
40% over the past years and nearly $11 billion is lost.
This is definitely a clear threat for software producers and
thus to global economy. Over the years, several software
protection techniques have been developed, code
obfuscation is one of them and it is very promising. Code
obfuscation is a form of software protection against
unauthorized reverse-engineering. In this paper we
discuss software protection techniques in general and
provide a broad overview of known obfuscation
algorithms. We also address the issues related to
implementation of obfuscation algorithms. Finally we
propose JHide, an obfuscation tool kit for protection of
Java code. We conclude our paper identifying the need for
reviewing the performance of the algorithms as the future
scope of our work.

KEYWORDS
Obfuscation, software protection and software security.

1. Introduction

Fast developments in multimedia and internet
technologies have created the need for researching in the
areas of securing data. Every company has an intellectual
property to protect which often includes algorithms built
right into the software that is sold to customers. The
secrecy of such software is an edge to beat their
competition in the market, so it is not surprising that the
approach taken for their protection makes a great deal of
difference [1], [2],[3],[4], [5].

Traditionally techniques for securing data resided in the
firewalls and gateways of a network or on the operating
system of the host. A new idea is to put these defensive
mechanisms inside the application software. Vendors of
this software distribute them as mobile code in
architectural independent formats [1], [2], [4], [5].

Recent statistics [6] show that four out of every ten
software programs is pirated worldwide. This is definitely
a threat to clean players and thus the global economy.
There are two common practices of protecting an
intellectual property of a software producer - Legal and
Technical methods. Legal methods include getting

copyrights on the software and signing legal contracts
against creating duplicates. Technical methods include:
[1],[4],[7], [8], [9], [10], [11]

· Code Authentication: Developers place license files
and identity keys in the software.

· Server side execution: Avoids sending final code to
the user.

· Program Encoding: They detect the pirate’s attempts
to tamper software and protect against those attempts.

· Code Obfuscation: Applying transformations to the
code make their analysis very hard and thus safer
from being reverse engineered. They do not change
the functionality of the program though.

Obfuscation is a new area of research in the field of
software protection and gaining more attention in recent
years [1], [4],[9]. Although the history of first traits of
obfuscation techniques dates back to 1990 [12], their
impact got higher as Java technologies dominated the
software development world. Java is designed to be
compiled into a platform independent byte code format,
which means decompilation is easier than with traditional
native codes. As a result, the java code can always be
reverse-engineered to extract proprietary algorithms from
compiled java programs. Obfuscating them make the
program more difficult to analyze and uneconomical to
reverse-engineer. Software protection tools like DashO,
Dot Obfuscator [13], JMangle [14], JObfuscator [15], and
Sand Mark [7] are all designed based on the principal
theories of code obfuscation techniques.

Based on our research in the software security field and
the capabilities of the existing players we strongly believe
in the potential of “code obfuscation“ techniques as a
major software protection tool in the near future and
hence our attempt in creating such a tool kit called JHide.

JHide is a tool kit designed for obfuscating software
programs written in java. It aids software security
researchers to understand how various known obfuscation
algorithms work. A user can select a program and apply a
desired obfuscation transformation on it so that the code
is safe from being reverse-engineered. JHide can be used
to obfuscate programs against “malicious host attacks“
[16] and make it difficult for an attacker to locate
sensitive information. Next we discuss software

436-035 133

mailto:lertaul@csuhayward.edu
mailto:sumav_99@yahoo.com
melissa

protection techniques in general. Followed by
implementation issues associated with obfuscation
algorithms. Finally we present the features offered by
JHide and its overall design.

2. Software Protection Techniques

Generally software code is mobile and distributed across
untrusted networks. Their protection must be incorporated
into the software and be hardware independent. The main
functions of any software protection technique can be
listed as detection of pirate attempts to tamper or misuse
software, protection against such attempts and alteration
of software to ensure that it functionality degrades in an
undetectable manner if protection fails. A summary of the
most common techniques are discussed here

· Protection by Server-Side Execution: The
application that requires protection is placed on a
server and its services are provided to users over a
remote connection.

· Hardware based solutions: The trusted hardware
components are placed on the user’s machines to
identify applications.

· Protection by Encryption: Program instructions are
decrypted by a co-processor (crypto chip) before they
are executed by the main processor.

· Protection through Signed Native Code: The
software code to be distributed is first compiled into
Java byte codes and stored on a server. Users identify
their architecture/operating system combination to
the server, which then provides the appropriate native
code version of the application.

· Tamper Proofing: It is a methodology built inside
the operating system. This detects any modification
to the software code and disables such an action.

· Software Aging: It is a technique that a periodic
update of the software, which is compatible with
older versions, is sent out to the customers.

· Watermarking: It is a technique used to embed
ownership marks in software.

· Code Obfuscation: The final idea is to hide the code.
In this technique the application is transformed so
that it’s functionally identical to the original but it is
much more difficult to understand. This technique
preserves platform independence.

Advantages and disadvantages of the above techniques
can be found in [1] ,[4] ,[7], [8], [9], [10],[11] .

An obfuscated application does not suffer from delays due
to network limitations. It also does not require the
hardware needed for secure encryption and decryption of
code. Java application will not perform illegal actions
such as erasing a user's files. So unlike native codes, there
is no need to digitally sign a Java application to verify
that it is a safe code from a trusted source. There may be
situations where the other techniques are better, such as

when the source code contains extremely valuable trade
secrets, or when run-time performance is critical the
transformations employed by an obfuscator may not
provide a high level of protection and performance. It has
been evaluated that the server-side execution model
suffers from network bandwidth and latency limitations.
Encryption fails to be effective without specialized
hardware and use of signed native code places restrictions
on portability which is unacceptable for a language like
Java, which is independent of hardware platforms. The
use of specialized hardware also incurs higher cost to the
end-user. So we must look at hardware-independent
means of protecting client executed applications. Java is
designed to be compiled into a platform independent byte
code format which means that decompilation is easier
than with traditional native codes. As a result, the java
code can always be reverse-engineered to extract
proprietary algorithms from compiled java programs. All
the above drawbacks in other protection techniques make
code obfuscation a stronger tool for securing programs
written in java. Although obfuscation attempts to make
decompilation a harder task, given enough time and
effort, it is possible to retrieve important algorithms and
data structures from such an obfuscated code. The aim
here is to increase the time and effort required so that it is
economically infeasible for a company to reverse-
engineer a rival's application [8], [10], [11].

In the next section we focus on the issues involved in
implementing JHide tool kit.

3. JHide Tool Kit

Deciding on whether to analyze the java program at the
virtual machine level (byte code) or as a high level
language (source code) was a major issue while choosing
our obfuscation platform for implementing the
transformations. Breaking the anatomy of a java program
in its source code level into all the language paradigms
requires a great deal of string parsing and program
analysis. Determining a variable and its types, identifying
the methods and differentiating between a method call
and a declaration, identifying loop boundaries, loop
conditions and forming logic dynamically suitable to the
given code to break the instructions and loops into
separate methods and control flow statements, adding
extra intelligence to the program to analyze the task of
modifying the instructions, splitting classes and merging
them are many of the tedious and complex problems
associated in analyzing a program to be obfuscated [17].
These tasks need extensive parsing and the use of external
parsing and scripting tools like Another Tool for
Language Recognition (ANTLR) [18], using this we can
write flexible grammars that can support analysis of the
java source code. ANTLR also lets us define the rules that
the lexer should use to tokenize a stream of characters and
the rules the parser should use to interpret a stream of
tokens. It can then generate a lexer and parsers which can

134

be used to interpret any input program written in any
language recognized by the ANTLR engine and then
translate them to other languages. Since Java classes are
compiled into portable binary class files (byte code), it is
the most convenient and platform-independent way to
implement obfuscation algorithms not by writing a new
compiler or parser but by transforming the byte code.
These transformations can either be performed after
compile-time, or at load-time. Developing such a
specialized byte code manipulation tool is tedious and
also restricted in the range of their re-usability. Hence to
deal with the necessary byte code transformations, we are
using the byte code editing library (BCEL) [19], which is
a Jakarta common’s API [20]. It is a toolkit written in java
for the static analysis and dynamic transformation of Java
class files. It enables the developers to implement the
desired features on a high level of abstraction without
handling all the internal details of the Java class file
format and thus re-inventing the wheel. The analysis of
Java class performed by BCEL is conservative in nature.
For example, it is not possible to have a branch to a non-
existent instruction number in the byte code. Pointer
arithmetic is not permitted in Java, unlike in C and hence
there are no instructions to convert between object
references to other data types such as integers. This area
of obfuscation is not open to Java programs and should be
considered as a limitation for implementation [12]. The
java beans specification allows a user to create an
application out of components downloaded from different
vendors. In this scenario, it is not possible to globally
change identifier names in the application. This is because
some of the identifiers are used to interface to a vendor's
component and cannot be changed. Thus only the
identifiers local to the user’s application are scrambled.
Due to limitations in the class file format, the amount of
extra code that can be added by an obfuscation
transformation is restricted. For example, the method in-
liner transformation will replace an inline method call
with the actual code of the method being called. This
causes a method to exceed the limit on code size. To
overcome this problem, excess use of method inliner
transformations in a class is avoided.

Keeping all the limitations in mind we have created the
obfuscation tool kit JHide which uses BCEL API and
implements 30 known obfuscation algorithms. The
changes made to the class files are shown using DJ Java
[21] decompiler in the view interface of JHide. General
system overview of JHide, JHide structure and
Obfuscation algorithms in JHide is given in next
subsections

3.1. JHide System Overview

The tool is written completely in java and runs on
windows operating system. It uses J2SDK 1.4 package
and has a graphical user interface (GUI) written in Java
Swing. JHide uses BCEL-5.1 API to manipulate java
class files and DJ Java decompiler 3.5 to view the

changes on the java class after it is subjected to
obfuscation transformation. The architecture of JHide is
broadly composed of two main parts:

· Code obfuscation interface: Includes 30 known
obfuscation algorithms [7], [22] and operations
carried out by the user to obfuscate a java source
code. The user selects java source code through a
GUI and picks one of the obfuscation algorithms
from the drop down list

· Code View interface: This interface allows a user to
view the code subjected to obfuscation, before and
after obfuscation. The user can select the option
“source code view “and see the changes in the java
source code using DJ decompiler as shown in Fig 3.
The user can also choose the option “byte code view”
and see the byte code changes displayed as HTML
files as shown in Fig 4.

The user invokes JHide on command prompt by using
“JHide.bat”. A Swing GUI pops up; the user selects a java
class file to be transformed and then chooses one among
the 30 obfuscation algorithms listed in the drop down
menu in the GUI as shown in Fig.1 and Fig.2.

Fig. 1 User selects the source code to obfuscate

Fig. 2 User selects the obfuscation algorithm

135

The obfuscation engine applies the selected
transformation algorithm on the source and dumps the
changed class file into an obfuscated class’s directory and
retains the original class in the examples directory. Once
the obfuscation is done, user can see the “completed”
message on the console. Now he/she can browse to the
view section and select either source code view or byte
code view. If the source code view is selected (Fig 3), two
instances of DJ decompiler windows are opened to show
the changes in the selected java class before and after
applying obfuscation transformation.

Fig. 3 JHide Source Code View

If the user selects byte code view (Fig 4) two instances of
IE (Internet Explorer) is opened to show the changes in
the instruction set. BCEL API supports convertToHTML
method on a class which will create HTML pages of
instruction sets for the class. We have used this feature to
show byte code view

Fig. 4 JHide Byte Code View

3.2. JHide Structure

The selected java class file is parsed by BCEL API into
program structures as shown in Table 1.

String classname = “TestParameterReordering.class”;
JavaClass clazz = Repository.lookupClass ("examples/" +
classname);
ClassGen cgen = new ClassGen (clazz);
ConstantPoolGen cpg = cgen.getConstantPool ();

Table 1 Java Class lookup

The program segment in Table 1 looks up for the java
class files in the specified directory. If it is not found
BCEL Exception is thrown. Once the java class
“TestParameterReordering.class” is found, a class
generator handle (cgen) is created on it, using cgen the
constant pool (cpg) is created and the parameters in the
methods of the class can be parsed as shown in Table 2.

For (int methodNum = 0; methodNum < numMethods;
methodNum++) {

Method meth = cgen.getMethodAt (methodNum);
MethodGen methGen = new MethodGen (meth,
className, cpg);
String [] oldArgNames = methGen.getArgumentNames ();
Type [] oldArgTypes = methGen.getArgumentTypes ();
int numArgs = oldArgNames.length;
ArrayList argNums = new ArrayList ();
for (int ii = 0; ii < numArgs; ii++)

argNums.add (new Integer (ii));
Collections. shuffle (argNums);
String [] newArgNames = new String [numArgs];
Type [] newArgTypes = new Type [numArgs];
int [] indeces = new int [numArgs];
Int [] newIndeces = new int[numArgs];
for (int old Index = 0; old Index < numArgs; old Index++) {

Integer inewIndex = (Integer) argNums.get (old Index);
int newIndex = inewIndex.intValue ();
indices [newIndex] = oldIndex;
newIndeces [oldIndex] = newIndex;
newArgNames [newIndex] = oldArgNames [oldIndex];
newArgTypes [newIndex] = oldArgTypes [oldIndex];}

methGen.setArgumentNames (newArgNames);
methGen.setArgumentTypes (newArgTypes);
Method newMeth = methGen.getMethod ();
cgen.replaceMethod (meth, newMeth);

Table 2 Parsing a Java Class

Here total number of methods in a class is computed
(numMethods) and a method Generator (methGen) is
created for each method in the class. Using methodGen
the argument names and types is obtained. New indices
for these arguments are created and they are mapped to
these new indices using methGen. The references to this
new order of arguments are updated in cgen and cpg using
the respective generators. The same process is done for
each method in the class. This way BCEL reads the entire
program constructs in a class file and converts them to
byte codes .

3.3 Obfuscation Algorithms in JHide

An obfuscator is a program used to transform program
code. The output of an obfuscator is program code that is
more difficult to understand but is functionally equivalent
to the original. Obfuscation transformations are classified
into the following main groups [23]: Layout, Control,
Data, Preventive, Splitting, Merging, Reordering, and

136

Miscellaneous like Method Inliner, Method2RMadness,
and Name Overloading transformations. On the basis of
these classifications the algorithms supported by JHide
can be explained as follows:

Layout Transformations: They modify a program’s
formatting, naming and meta-information they are of two
types: Format removal - removes source code formatting
like tabulation and carriage returns. Scrambling Identifier
Names - changes the identifier names in a program to less
meaningful ones but an attacker can still infer the
meanings based on the context of the program where the
variables are used.

Control Transformations: Hide the flow of Control in a
program using opaque predicates. Types of Control
transformations are Control computations, aggregations
and ordering. Control Computation - affects the control
flow in a program. One of the computations is smoke
and mirrors. This technique inserts irrelevant code (dead
code) into loops, methods, fields, as method arguments
which will never be executed. Each one is implemented as
a separate obfuscation technique in JHide. Other
computation is called High-level language breaking.
This introduces features at the object code level that have
no direct source code equivalent and also breaks the code
into two halves which perform the same function but
obfuscate the second one to such an extent that it is hard
to reverse- engineer. The other technique is called Alter
Control Flow. This technique alters the flow of control by
finding a sequence of low-level instructions that are
equivalent to the construct and then adds redundant
termination conditions to the loop. Last technique is
known as Modify If Else. This changes the flow
conditions in if-else block as shown in Table 3

Before After

int i = 1; int i =1
if (I <10) { if (I > 10) {

a = a+ b; a = a-b;
i++; - - I;

} }
else { else {

a = a- b; a = a+b;
- - i; i ++;

} }
Table 3 Modify If Else block

Control Aggregation - changes the way in which program
statements are grouped together. Cloned Methods are the
only type that is supported in JHide. Here we manipulate
the method signature and make it appear as though a
different method is being called as shown in Table 4

Control Ordering - alters the order in which statements
are executed. We support three types of control ordering.
First one is Loop Blocking. Here nesting is applied to
loops which would functionally remain the same as the
source. Second type is Loop Unrolling which replicates
the body of the loop one or more times. Third type is
Loop Fission. This technique breaks the loop into several

loops keeping the iteration space same, as shown in Table
5.

Before After

class C { class C1 {
method m (int v) { method m (int v) {

v = c * r; v = c * r;
p = v * c; }

} }
} class C2 inherits C1 {

method m (int v) {
p = v * c

}
}

Table 4 Cloned Methods

Before: After:

for(i =1; i<= n ;i++) for(I=1;I<=n;I+=64)
for (j =1;j<=n;j++) for(J=1;J<=n;J+=64)

a[i,j] = b[j,i]; for(i=I;I<=min(I+63,n),i++)
for(j=J;j<=min(J+63,n),j++)

a [i,j] =b[j,i];
Table 5 Loop Fission

Data Transformations: They affect the data structures
used by a program. Different types of data
transformations are Data storage - affects how data is
stored in memory. Data encoding- affect how the stored
data is interpreted. Data aggregation - alters how data is
grouped together. Data ordering - changes how data is
ordered.

Preventive Transformations: intended to stop
decompilers and deobfuscators from functioning
correctly. There are two types of preventive
transformations. Targeted obfuscation- these are
designed to counter specific analysis tools [24]. Inherent
obfuscation - Here loops are reordered.

Splitting Transformations: They include splitting
program constructs. Three different types supported are
Variable Type Splitting - the types of the variables are
split into smaller ones. Node Splitting – Every node in the
data structure is broken into two parts with an extra field
in the first part linking the two together. Class splitting –
Here a class is split into two as shown in Table 6.

Before After

Class A { Class A1 {
public int a =0; public int a =0;
public int b =1; method(int c) {
method(int c){ c = a+2;

c = a+2; }
d = b+3; }

} Class A2 {
} public int b =1;

method(int d) {
d = b+3;

}
}

Table 6 Class Splitting

Merging Transformations: merges all possible program

137

constructs. Different types of merging are: Methods
merging - methods which are logically dependent are
merged. Parameters merging - method parameters which
are logically dependent are merged. Classes merging -
classes which are logically dependent are merged as
shown in Table 7.

Before After

Class A { Class A {
int method1(int a) { int method (int a) {

a = a+1; a = a+1;
return (a); a = a-1;

} return (a);
int method2 (int a) { }

a = a-1; }
return(a);

}
}

Table 7 Method Merging

Reordering Transformations: the sequence of program
segments like method parameters, local variables and
constant pool are rearranged. JHide implements each of
these as separate algorithms.

Miscellaneous Transformations: They are grouped into
three types. Method In liner- Here an entire method body
is substituted for the method call. Method2RMadnes-
This algorithm hides information hidden in methods by
disrupting their signatures, argument orders, and moving
or combining them. Name Overloading - This algorithm
obfuscates methods so that as many methods as possible
have the same name.

4. Conclusion

JHide provides a good starting point for beginners to
understand various obfuscation algorithms and the issues
involved during their implementation. Users of JHide can
see the changes in their code after and before obfuscation
through a simple byte code and source code view
interface. JHide applies obfuscation to a single selected
java source. JHide provides only a show case of
obfuscation algorithms and does not support any interface
to measure their efficiency in terms of level of
obfuscation achieved (Potency) and the maximum
execution time/space that the obfuscated code adds to the
application (Cost). We want to implement such an
interface in our future work where the user would select
the % percentage of obfuscation needed and JHide
obfuscation interface would automatically apply all the
required algorithms to achieve that % level of
obfuscation. JHide can be used to build secure mobile
agents. One of the main drawbacks of mobile agents is
their safety from being corrupted by malicious hosts they
interact over the network. Complex encryption algorithms
cannot be applied to them with the limitations of memory
and bandwidth over the network. In such situations,
mobile agents can be obfuscated using JHide to hide the
important functions that execute and make reverse
engineering uneconomical to the malicious hosts.

References:

[1]M. R Stytz, J. A Whittaker, Software Protection -
Security’s Last Stand, IEEE Security and Privacy
January/February 2003
[2] G. McGraw, Software Security, IEEE Security
&Privacy, March/April 2004.
[3] C. Cowan, Software Security for open source systems,
IEEE Security & Privacy, Feb. 2003
[4] M.R Stytz, Considering Defense in Depth for
Software Applications, IEEE Security & Privacy, Feb.
2004.
[5] J.Whittaker, Why Secure Applications are Difficult to
Write, IEEE Security & Privacy, April, 2003
[6]Business Software Alliance
http://global.bsa.org/usa/press/newsreleases/2002-06-
10.1129.phtml?CFID=4661&CFTOKEN=73044918
[7] C. Collberg, G. Myles & A.H. Work, Sand mark – A
Tool for Software Protection Research, IEEE Security &
Privacy July/August 2003
[8] C. Collberg , C. Thomborson, Watermarking, Tamper
Proofing and Obfuscation – Tools for Software Protection
, Technical Report February 2000-03.
[9] P. Tyma, Encryption, hashing, & obfuscation, ZD Net
April 8 2003
[10] G. Naumovich, N. Memon, Preventing Privacy,
Reverse Engineering & Tampering , Innovative
Technology for Computer Professionals , July 2003
[11] D.Low, Java Control Flow Obfuscation. Thesis
Report University of Auckland June 3 1998
[12] G.Wrobliwski, General Method of Program Code
Obfuscation , PhD Dissertation, Wroclaw University of
Technology, Institute of Engineering Cybernetics, 2002
[13] DashO and Dot Obfuscator
http://www.preemptive.com/
[14] JMangle, The Java Class Mangle
http://www.elegant-software.com/software/jmangle/
[15]Jobfuscator http://download.com.com/3000-2417-
10205637.html
[16] T.Sander, C. F Tschudin, Protecting Mobile Agents
against Malicious Hosts, Lecture Notes in computer
science 1419, Mobile Agent Security Feb 1998
[17] C. Collberg, P.Clark, Breaking abstractions and
structuring data structures, IEEE Computer Language
ICCL’98
[18] ANTLR –Another Tool for language recognition
http://www.antlr.org.
[19]Byte code editing library BCEL,
http://jakarta.apache.org/bcel/.
[20] Jakarta Commons API www.apache.org
[21] DJ Java decompiler http://dj.navexpress.com/
[22] C. Collberg, C. Thomborson & D. Low, Taxonomy
of Obfuscation Transformations, Technical Report #148
July 1997
[23] D. Low, Protecting Java Code via Code Obfuscation
ACM Crossroads Student Magazine Spring 1998
[24] H.P. Vliet, Mocha the Java decompiler, http://
wkweb4.cableinet.co.uk/jinja/mocha.html

138

http://global.bsa.org
http://www.preemptive.com/
http://www.elegant
http://download.com.com/3000
http://www.antlr.org.
http://jakarta.apache.org/bcel/
http://www.apache.org
http://

