
Chapter 11

TEXTURE

Texture is a phenomenon that is widespread, easy to recognise and hard to define.
Typically, whether an effect is referred to as texture or not depends on the scale
at which it is viewed. A leaf that occupies most of an image is an object, but
the foliage of a tree is a texture. Texture arises from a number of different sources.
Firstly, views of large numbers of small objects are often best thought of as textures.
Examples include grass, foliage, brush, pebbles and hair. Secondly, many surfaces
are marked with orderly patterns that look like large numbers of small objects.
Examples include: the spots of animals like leopards or cheetahs; the stripes of
animals like tigers or zebras; the patterns on bark, wood and skin.

Figure 11.1. A set of texture examples, used in experiments with human subjects to
tell how easily various types of textures can be discriminated. Note that these textures are
made of quite stylised subelements, repeated in a meaningful way. figure from the Malik
and Perona, A Computational Model of Texture Segmentation, p.331, in the fervent hope,
etc.

There are three standard problems to do with texture:

287

288 Texture Chapter 11

Figure 11.2. A typical textured image. For materials such as brush, grass, foliage and
water, our perception of what the material is is quite intimately related to the texture.
These textures are also made of quite stylised subelements, arranged in a pattern. figure
from the Malik and Perona, A Computational Model of Texture Segmentation, p.331, in
the fervent hope, etc. figure from the Calphotos collection, number. 0057, in the fervent
hope, etc.

• Texture segmentation is the problem of breaking an image into components
within which the texture is constant. Texture segmentation involves both rep-
resenting a texture, and determining the basis on which segment boundaries
are to be determined. In this chapter, we deal only with the question of
how textures should be represented (section 11.1); chapter ?? shows how to
segment textured images using this representation.

• Texture synthesis seeks to construct large regions of texture from small
example images. We do this by using the example images to build probability
models of the texture, and then drawing on the probability model to obtain
textured images. There are a variety of methods for building a probability
model; three successful current methods are described in section 11.3.

• Shape from texture involves recovering surface orientation or surface shape
from image texture. We do this by assuming that texture “looks the same” at
different points on a surface; this means that the deformation of the texture
from point to point is a cue to the shape of the surface. In section 11.4 and

Section 11.1. Representing Texture 289

section 11.5, we describe the main lines of reasoning in this (rather technical)
area.

11.1 Representing Texture

Image textures generally consist of organised patterns of quite regular subelements
(sometimes called textons). For example, one texture in figure 11.1 consists of
triangles. Similarly, another texture in that figure consists of arrows. One natural
way to try and represent texture is to find the textons, and then describe the way
in which they are laid out.

The difficulty with this approach is that there is no known canonical set of
textons, meaning that it isn’t clear what one should look for. Instead of looking for
patterns at the level of arrowheads and triangles, we could look for even simpler
pattern elements — dots and bars, say — and then reason about their spatial layout.
The advantage of this approach is that it is easy to look for simple pattern elements
by filtering an image.

11.1.1 Extracting Image Structure with Filter Banks

In section 10.1, we saw that convolving an image with a linear filter yields a repre-
sentation of the image on a different basis. The advantage of transforming an image
to the new basis given by convolving it with a filter, is that the process makes the
local structure of the image clear. This is because there is a strong response when
the image pattern in a neighbourhood looks similar to the filter kernel, and a weak
response when it doesn’t.

Figure 11.3. A set of eight filters used for expanding images into a series of responses.
These filters are shown at a fixed scale, with zero represented by a mid-grey level, lighter
values being positive and darker values being negative. They represent two distinct spots,
and six bars; the set of filters is that used by [Malik and Perona, 1990].

This suggests representing image textures in terms of the response of a collection

290 Texture Chapter 11

of filters. The collection of different filters would consist of a series of patterns —
spots and bars are usual — at a collection of scales (to identify bigger or smaller
spots or bars, say). The value at a point in a derived image represents the local
“spottiness” (“barriness”, etc.) at a particular scale at the corresponding point in
the image. While this representation is now heavily redundant, it exposes structure
(“spottiness”, “barriness”, etc., in a way that has proven helpful. The process of
convolving an image with a range of filters is referred to as analysis.

Generally, spot filters are useful because they respond strongly to small regions
that differ from their neighbours (for example, on either side of an edge, or at a spot).
The other attraction is that they detect non-oriented structure. Bar filters, on the
other hand, are oriented, and tend to respond to oriented structure (this property
is sometimes, rather loosely, described as analysing orientation or representing
orientation).

Spots and Bars by Weighted Sums of Gaussians

But what filters should we use? There is no canonical answer. A variety of answers
have been tried. By analogy with the human visual cortex, it is usual to use at
least one spot filter and a collection of oriented bar filters at different orientations,
scales and phases. The phase of the bar refers to the phase of a cross-section
perpendicular to the bar, thought of as a sinusoid (i.e. if the cross section passes
through zero at the origin, then the phase is 0o.

One way to obtain these filters is to form a weighted difference of Gaussian filters
at different scales; this technique was used for the filters of figure 11.3. The filters
for this example consist of

• A spot, given by a weighted sum of three concentric, symmetric Gaussians,
with weights 1, −2 and 1, and corresponding sigmas 0.62, 1 and 1.6.

• Another spot, given by a weighted sum of two concentric, symmetric Gaus-
sians, with weights 1 and −1, and corresponding sigmas 0.71 and 1.14.

• A series of oriented bars, consisting of a weighted sum of three oriented
Gaussians, which are offset with respect to one another. There are six versions
of these bars; each is a rotated version of a horizontal bar. The Gaussians in
the horizontal bar have weights −1, 2 and −1. They have different sigma’s in
the x and in the y directions; the σx values are all 2, and the σy values are all
1. The centers are offset along the y axis, lying at (0, 1), (0, 0) and (0,−1).

You should understand that the details of the choice of filter are almost certainly
immaterial. There is a body of experience that suggests that there should be a series
of spots and bars at various scales and orientations — which is what this collection
provides — but very little reason to believe that optimising the choice of filters
produces any major advantage.

Figures 11.4 and 11.5 illustrate the absolute value of the responses of this bank
of filters to an input image of a butterfly. Notice that, while the bar filters are not

Section 11.1. Representing Texture 291

Figure 11.4. At the top, an image of a butterfly at a fine scale, and below, the result of
applying each of the filters of figure 11.3 to that image. The results are shown as absolute
values of the output, lighter pixels representing stronger responses, and the images are laid
out corresponding to the filter position in the top row.

completely reliable bar detectors (because a bar filter at a particular orientation
responds to bars of a variety of sizes and orientations), the filter outputs give a
reasonable representation of the image data. Generally, bar filters respond strongly
to oriented bars and weakly to other patterns, and the spot filter responds to isolated
spots.

Spots and Bars by Gabor Filters

Another way to build spot and bar filters is to use Gabor filters. The kernels
look like Fourier basis elements that are multiplied by Gaussians, meaning that a
Gabor filter responds strongly at points in an image where there are components
that locally have a particular spatial frequency and orientation. Gabor filters come
in pairs, often referred to as quadrature pairs; one of the pair recovers sym-
metric components in a particular direction, and the other recovers antisymmetric
components. The mathematical form of the symmetric kernel is

Gsymmetric(x, y) = cos (kxx+ kyy) exp−

{
x2 + y2

2σ2

}

292 Texture Chapter 11

Figure 11.5. The input image of a butterfly and responses of the filters of figure 11.3
at a coarser scale than that of figure 11.4. Notice that the oriented bars respond to the
bars on the wings, the antennae, and the edges of the wings; the fact that one bar has
responded does not mean that another will not, but the size of the response is a cue to
the orientation of the bar in the image.

and the antisymmetric kernel has the form

Gantisymmetric(x, y) = sin (k0x+ k1y) exp−

{
x2 + y2

2σ2

}

The filters are illustrated in figures 11.6 and 11.7; (kx, ky) give the spatial frequency
to which the filter responds most strongly, and σ is referred to as the scale of the
filter. In principle, by applying a very large number of Gabor filters at different
scales, orientations and spatial frequencies, one can analyse an image into a detailed
local description.

Gabor filter kernels look rather a lot like smoothed derivative kernels, for dif-
ferent orders of derivative. For example, if the spatial frequency of the Gabor filter
is low compared to the scale and the phase is zero, we get a kernel that looks a
lot like a derivative of Gaussian filter (top left of figure 11.6); if the phase is π/2,
then the kernel looks a lot like a second derivative of Gaussian filter (bottom left of
figure 11.6). Another way to think of Gabor filter kernels is as assemblies of bars —
as the spatial frequency goes up compared to the scale, the filter looks for patches
of parallel stripes rather than individual bars.

Section 11.1. Representing Texture 293

Figure 11.6. Gabor filter kernels are the product of a symmetric Gaussian with an
oriented sinusoid; the form of the kernels is given in the text. The images show Gabor
filter kernels as images, with mid-grey values representing zero, darker values representing
negative numbers and lighter values representing positive numbers. The top row shows
the antisymmetric component, and the bottom row shows the symmetric component. The
symmetric and antisymmetric components have a phase difference of π/2 radians, because
a cross-section perpendicular to the bar (horizontally, in this case) gives sinusoids that
have this phase difference. The scale of these filters is constant, and they are shown for
three different spatial frequencies. Notice how these filters look rather like derivative of
Gaussian filters — as the spatial frequency goes up, so does the derivative in the derivative
of Gaussian model. It can be helpful to think of these filters as seeking groups of bars.
Figure 11.7 shows Gabor filters at a finer scale.

How many Filters and at what Orientation?

It is not known just how many filters are required for useful texture algorithms.
Perona lists the number of scales and orientation used in a variety of systems;
numbers run from four to eleven scales and from two to eighteen orientations [?].
The number of orientations varies from application to application and does not
seem to matter much, as long as there are at least about six orientations. Typically,
the “spot” filters are Gaussians and the “bar” filters are obtained by differentiating
oriented Gaussians.

Similarly, there does not seem to be much benefit in using more complicated
sets of filters than the basic spot and bar combination. There is a tension here:
using more filters leads to a more detailed (and more redundant representation of

294 Texture Chapter 11

Figure 11.7. The images shows Gabor filter kernels as images, with mid-grey values rep-
resenting zero, darker values representing negative numbers and lighter values representing
positive numbers. The top row shows the antisymmetric component, and the bottom row
shows the symmetric component. The scale of these filters is constant, and they are shown
for three different spatial frequencies. These filters are shown at a finer scale than those
of figure 11.6.

the image); but we must also convolve the image with all these filters, which can
be expensive. Section ?? illustrates a variety of the tricks that are used to reduce
the computational expense.

11.2 Analysis (and Synthesis) Using Oriented Pyramids

Analysing images using filter banks presents a computational problem — we have to
convolve an image with a large number of filters at a range of scales. The computa-
tional demands can be simplified by handling scale and orientation systematically.
The Gaussian pyramid (section ??) is an example of image analysis by a bank of
filters — in this case, smoothing filters. The Gaussian pyramid handles scale sys-
tematically by subsampling the image once it has been smoothed. This means that
generating the next coarsest scale is easier, because we don’t process redundant
information.

In fact, the Gaussian pyramid is a highly redundant representation because each
layer is a low pass filtered version of the previous layer — this means that we are
representing the lowest spatial frequencies many times. A layer of the Gaussian

Section 11.2. Analysis (and Synthesis) Using Oriented Pyramids 295

pyramid is a prediction of the appearance of the next finer scale layer — this pre-
diction isn’t exact, but it means that it is unnecessary to store all of the next finer
scale layer. We need keep only a record of the errors in the prediction. This is the
motivating idea behind the Laplacian pyramid.

The Laplacian pyramid will yield a representation of various different scales
that has fairly low redundancy, but it doesn’t immediately deal with orientation; in
section 11.2.2, we will sketch a method that obtains a representation of orientation
as well.

11.2.1 The Laplacian Pyramid

The Laplacian pyramid makes use of the fact that a coarse layer of the Gaussian
pyramid predicts the appearance of the next finer layer. If we have an upsampling
operator that can produce a version of a coarse layer of the same size as the next
finer layer, then we need only store the difference between this prediction and the
layer itself.

Clearly, we cannot create image information, but we can expand a coarse scale
image by replicating pixels. This involves an upsampling operator S↑ which takes
an image at level n+1 to an image at level n. In particular, S↑(I) takes an image,
and produces an image twice the size in each dimension. The four elements of the
output image at (2j − 1, 2k− 1); (2j, 2k− 1); (2j − 1, 2k); and (2j, 2k) all have the
same value as the j, k’th element of I.

Analysis — Building a Laplacian Pyramid from an Image

The coarsest scale layer of a Laplacian pyramid is the same as the coarsest scale
layer of a Gaussian pyramid. Each of the finer scale layers of a Laplacian pyramid
is a difference between a layer of the Gaussian pyramid and a prediction obtained
by upsampling the next coarsest layer of the Gaussian pyramid. This means that:

PLaplacian(I)m = PGaussian(I)m

(where m is the coarsest level) and

PLaplacian(I)k = PGaussian(I)k − S
↑(PGaussian(I)k+1) (11.2.1)

= (Id− S↑S↓Gσ)PGaussian(I)k (11.2.2)

All this yields algorithm 1. While the name “Laplacian” is somewhat misleading —
there are no differential operators here — it is not outrageous, because each layer
is approximately the result of a difference of Gaussian filter.

Each layer of the Laplacian pyramid can be thought of as the response of a
band-pass filter (that is, the components of the image that lie within a particular
range of spatial frequencies. This is because we are taking the image at a particular
resolution, and subtracting the components that can be predicted by a coarser
resolution version — which corresponds to the low spatial frequency components

296 Texture Chapter 11

Figure 11.8. A Laplacian pyramid of images, running from 512x512 to 8x8. A zero
response is coded with a mid-grey; positive values are lighter and negative values are
darker. Notice that the stripes give stronger responses at particular scales, because each
layer corresponds (roughly) to the output of a band-pass filter.

Section 11.2. Analysis (and Synthesis) Using Oriented Pyramids 297

Figure 11.9. An oriented pyramid, formed from the image at the top, with four
orientations per layer. This is obtained by firstly decomposing an image into sub-
bands which represent bands of spatial frequency (as with the Laplacian pyramid),
and then applying oriented filters to these subbands to decompose them into a set
of distinct images, each of which represents the amount of energy at a particular
scale and orientation in the image. Notice how the orientation layers have strong
responses to the edges in particular directions, and weak responses at other direc-
tions. Code for constructing oriented pyramids, written and distributed by Eero
Simoncelli, can be found at http://www.cis.upenn.edu/ eero/steerpyr.html.
figure from Heeger and Bergen, Pyramid-based Texture Analysis and Synthesis, p.
figure 1, in the fervent hope, etc.

of the image. This means in turn that we expect that an image of a set of stripes
at a particular spatial frequency would lead to strong responses at one level of the
pyramid and weak responses at other levels (figure 11.8).

Because different levels of the pyramid represent different spatial frequencies,
the Laplacian pyramid can be used as a reasonably effective image compression
scheme. Laplacian pyramids are also used for image blending (figure ??).

298 Texture Chapter 11

Form a Gaussian pyramid

Set the coarsest layer of the Laplacian pyramid to be

the coarsest layer of the Gaussian pyramid

For each layer, going from next to coarsest to finest

Obtain this layer of the Laplacian pyramid by

upsampling the next coarser layer, and subtracting

it from this layer of the Gaussian pyramid

end

Algorithm

11.1: Building a Laplacian pyramid from an image

Synthesis — Recovering an Image from its Laplacian Pyramid

Laplacian pyramids have one important feature. It is easy to recover an image
from its Laplacian pyramid. We do this by recovering the Gaussian pyramid from
the Laplacian pyramid, and then taking the finest scale of the Gaussian pyramid
(which is the image) . It is easy to get to the Gaussian pyramid from the Laplacian.
Firstly, the coarsest scale of the Gaussian pyramid is the same as the coarsest scale
of the Laplacian. The next-to-coarsest scale of the Gaussian pyramid is obtained by
taking the coarsest scale, upsampling it, and adding the next-to-coarsest scale of the
Laplacian pyramid (and so on up the scales). This process is known as synthesis
(algorithm 2).

11.2.2 Oriented Pyramids

A Laplacian pyramid does not contain enough information to reason about image
texture, because there is no explicit representation of the orientation of the stripes.
A natural strategy for dealing with this is to take each layer and decompose it
further, to obtain a set of images each of which represents a energy at a distinct ori-
entation. Each subimage represents the response of an oriented filter at a particular
scale — this is a detailed analysis of the image.

If we have a strategy for reconstructing each layer from its components, then
synthesis is easy: we reconstruct the layers, and then reconstruct the image from
them. The ideal strategy is to have a set of filters that have oriented responses
and where synthesis is easy. It is possible to produce a set of filters such that
reconstructing a layer from its components involves filtering the image a second

Section 11.2. Analysis (and Synthesis) Using Oriented Pyramids 299

Set the working image to be the coarsest layer

For each layer, going from next to coarsest to finest

upsample the working image and add the current layer

to the result

set the working image to be the result of this operation

end

The working image now contains the original image

Algorithm 11.2: Synthesis: obtaining an image from a Laplacian pyramid

time with the same filter (as figure 11.10 suggests). The design process involves
imposing our two design criteria. Discussing the detailed design of these filters
— which are extremely useful — would take us somewhat out of the way. The
technique is useful; fortunately, an efficient implementation of these pyramids is
available at http://www.cis.upenn.edu/ eero/steerpyr.html. Those who wish
to understand the design processes can look at the same site for papers on the topic.

B

B

B

B

1

2

3

4

O
riented Pyram

id L
evels

Laplacian
Pyramid
Layer B

B

B

B

1

2

3

4

O
riented Pyram

id L
evels

Laplacian
Pyramid
Layer

Figure 11.10. The oriented pyramid is obtained by taking layers of the Laplacian
pyramid, and then applying oriented filters (represented in this schematic drawing by
boxes). By appropriate choice of filters, synthesis is possible by refiltering the layers and
then adding them, as the schematic on the right indicates.

300 Texture Chapter 11

11.3 Application: Synthesizing Textures for Rendering

Objects rendered using computer graphics systems look more realistic if real textures
are rendered on their faces. There are a variety of techniques for texture mapping;
the basic idea is that when an object is rendered, the reflectance value used to shade
a pixel is obtained by reference to a texture map. Some system of coordinates is
adopted on the surface of the object to associate the elements of the texture map
with points on the surface. Different choices of coordinate system yield renderings
that look quite different, and it is not always easy to ensure that the texture lies
on a surface in a natural way (for example, consider painting stripes on a zebra
— where should the stripes go to yield a natural pattern?). Despite this issue,
texture mapping seems to be an important trick for making rendered scenes look
more realistic.

Texture mapping demands textures, and texture mapping a large object may
require a substantial texture map. This is particularly true if the object is close to
the view, meaning that the texture on the surface is seen at a high resolution, so
that problems with the resolution of the texture map will become obvious. Tiling
texture images can work poorly, because it can be difficult to obtain images that
tile well — the borders have to line up, and even if they did, the resulting periodic
structure can be annoying. It is possible to buy image textures from a variety of
sources, but an ideal would be to have a program that can generate large texture
images from a small example. Quite sophisticated programs of this form can be
built, and they illustrate the usefulness of representing textures by filter outputs.

11.3.1 Homogeneity

The general strategy for texture synthesis is to think of a texture as a sample from
some probability distribution and then to try and obtain other samples from that
same distribution. To make this approach practical, we need to obtain a probability
model. The first thing to do is assume that the texture is homogenous. This means
that local windows of the texture “look the same”, from wherever in the texture
they were drawn. More formally, the probability distribution on values of a pixel
is determined by the properties of some neighborhood of that pixel, rather than
by, say, the position of the pixel. This assumption means that we can construct a
model for the texture outside the boundaries of our example region, based on the
properties of our example region. The assumption often applies to natural textures
over a reasonable range of scales. For example, the stripes on a zebra’s back are
homogenous, but remember that those on its back are vertical and those on its legs,
horizontal. We now use the example texture to obtain the probability model for
the synthesized texture in various ways.

11.3.2 Synthesis by Matching Histograms of Filter Responses

If two homogenous texture samples are drawn from the same probability model,
then (if the samples are big enough) histograms of the outputs of various filters

Section 11.3. Application: Synthesizing Textures for Rendering 301

applied to the samples will be the same. Heeger and Bergen use this observation to
synthesize a texture using the following strategy: take a noise image and adjust it
until the histogram of responses of various filters on that noise image looks like the
histogram of responses of these filters on the texture sample.

Using an arbitrary set of filters is likely to be inefficient; we can avoid this
problem by using an oriented pyramid. As we have seen, each orientation of each
layer represents the response of an oriented filter at a particular scale, so the whole
pyramid represents the response of a large number of different filters1 .

If we represent texture samples as oriented pyramids, we can adjust the pyramid
corresponding to the image to be synthesized, and then synthesize the image from
the pyramid, using the methods of section 11.2. We will adjust each layer separately,
and then synthesize an image. The details of the process for adjusting the layers
is given in section 4; for the moment, we will assume that this process works, and
discuss what we do with it.

Once we have obtained an image from the adjusted pyramid, we form a pyramid
from that image (the two pyramids will not, in general, be the same, because we’ve
assumed, incorrectly, that the layers are independent). In particular, we are not
guaranteed that each layer in the new pyramid has the histogram we want it to. If
the layer histograms are not satisfactory, we readjust the layers, resynthesize the
image, and iterate. While convergence is not guaranteed, in practice the process
appears to converge.

make a working image from noise

match the working image histogram to the example image histogram

make a pyramid pe from the example image

until convergence

Make a pyramid pw from the working image

For each layer in the two pyramids

match the histogram of pw’s layer to that of pe’s layer

end

synthesize the working image from the pyramid pw

end

Algorithm 11.3: Iterative texture synthesis using histogram equalisation applied

to an oriented pyramid

The overall technique looks like algorithm 3. This algorithm yields quite good
results on a substantial variety of textures, as figure 11.11 indicates. It is inclined

1The reason this is efficient is that we have thrown away redundant information in subsampling
the images to get the coarser scale layers.

302 Texture Chapter 11

to fail when there are conditional relations in the texture that are important — for
example, in figure 11.12, the method has been unable to capture the fact that the
spots on the coral lie in stripes. This problem results from the assumption that the
histogram at each spatial frequency and orientation is independent of that at every
other.

Figure 11.11. Examples of texture synthesis by histogram equalisation. On the left,
the example textures and on the right, the synthesized textures. For the top example, the
method is unequivocally successful. For the bottom example, the method has captured the
spottiness of the texture but has rather more (and smaller) spots than one might expect.
figure from Heeger and Bergen, Pyramid-based Texture Analysis and Synthesis, p. figure
3, in the fervent hope, etc.

Section 11.3. Application: Synthesizing Textures for Rendering 303

Figure 11.12. Examples of texture synthesis by histogram equalisation failing. The left
column shows example textures, and the right hand column shows synthesized textures.
The main phenomenon that causes failure is that, for most natural textures, the histogram
of filter responses at different scales and orientations is not independent. In the case of
the coral (top left), this independence assumption suppresses the fact that the small spots
on the coral lie in a straight line. figure from Heeger and Bergen, Pyramid-based Texture
Analysis and Synthesis, p. figure 8, in the fervent hope, etc., figure from Heeger and
Bergen, Pyramid-based Texture Analysis and Synthesis, p. figure 7, in the fervent hope,
etc.

Histogram Equalization

We have two images — which might be layers from the oriented pyramid — and we
should like to adjust image two so that it has the same histogram as image one. The

304 Texture Chapter 11

process is known as histogram equalization. Histogram equalization is easiest for
images that are continuous functions. In this case, we record for each value of the
image the percentage of the image that takes the value less than or equal to this one-
this record is known as the cumulative histogram. The cumulative histogram is
a continuous, monotonically increasing function that maps the range of the image
to the unit interval. Because it is continuous and monotonically increasing, the
inverse exists. The inverse of the cumulative histogram takes a percentage — say
25 % — and gives the image value v such that the given percentage of the image
has value less than or equal to v — i.e. 0.3, if 25% of the image has value less than
or equal to 0.3.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Value Output Value

Pe
rc

en
ta

ge
 o

f
pi

xe
ls

Figure 11.13. Histogram equalization uses cumulative histograms to map the grey
levels of one image so that it has the same histogram as another image. The figure at the
top shows two cumulative histograms, with the relevant images inset in the graphs. To
transform the left image so that it has the same histogram as the right image, we take a
value from the left image, read off the percentage from the cumulative histogram of that
image, and obtain a new value for that grey level from the inverse cumulative histogram
of the right image. The image on the left is a linear ramp (it looks non-linear because the
relationship between brightness and lightness is not linear); the image on the right is a
cube root ramp. The result — the linear ramp, with grey levels remapped so that it has
the same histogram as the cube root ramp — is shown on the bottom row.

The easiest way to describe histogram equalisation is slightly inefficient in space.
We create a temporary image, image three. Now choose some value v from image
two. The cumulative histogram of image two yields that p percent of the image

Section 11.3. Application: Synthesizing Textures for Rendering 305

has value less than v. Now apply the inverse cumulative histogram of image one to
p, yielding a new value v′ for v. Wherever image two has the value v, insert the
value v′ in image three. If this is done for every value, image three will have the
same histogram as image one. This is because, for any value in image three, the
percentage of image three that has that value is the same as the percentage of image
one that has that value. In fact, image three isn’t necessary, as we can transform
image two in place, yielding algorithm 4.

form the cumulative histogram c1(v) for image 1

form the cumulative histogram c2(v) for image 2

form ic1(p), the inverse of c1(v)

for every value v in image 2, going from smallest to largest

obtain a new value vnew=ic1(c2(v))

replace the value v in image 2 with vnew

end

Algorithm 11.4: Histogram Equalization

Things are slightly more difficult for discrete images and images that take dis-
crete values. For example, if image one is a binary image in which every pixel but
one is black, and image two is a binary image in which half the pixels are white,
some but not all of the white pixels in image two will need to be mapped to black
— but which ones should we choose? usually the choice is made uniformly and at
random.

11.3.3 Synthesis by Sampling Conditional Densities of Filter Re-
sponses

A very successful algorithm due to DeBonet retains the idea of synthesizing a texture
by coming up with an image pyramid that looks like the pyramid associated with
an example texture. However, this approach does not assume that the layers are
independent, as the previous algorithm did.

For each location in a given layer of the pyramid, there are a set of locations in
coarser scale layers associated with it by the sampling process (as in figure 11.14).
The set of values of in these locations is called the parent structure of the location.

We can use this parent structure for synthesis. Firstly, let us make the coarsest
scale in the new pyramid the same as the coarsest scale — say the m’th level —
in the example pyramid. Now choose a location to be synthesized in the m− 1’th
level of the pyramid. We know the parent structure of this location, so we can go
to the example pyramid and collect all values in the corresponding level that have
a similar parent structure. This collection forms a probability model for the values

306 Texture Chapter 11

Figure 11.14. The values of pixels at coarse scales in a pyramid are a function of the
values in the finer scale layers. We associate a parent structure with each pixel, which
consists of the values of pixels at coarse scales which are used to predict our pixel’s value
in the Laplacian pyramid, as indicated in this schematic drawing. This parent structure
contains information about the structure of the image around our pixel for a variety of
differently sized neighbourhoods.

for our location, conditioned on the parent structure that we observed. If we choose
an element from this collection uniformly and at random, the values at the m’th
level and at the m−1’th level of the pyramid being synthesized have the same joint
histogram as the corresponding layers in the example pyramid.

This is easiest to see if we think of histograms as a representation of a proba-
bility distribution. The joint histogram is a representation of the joint probability
distribution for values at the two scales. From section ??, this joint distribution
is the product of a marginal distribution on the values at the m’th level with the
conditional distribution on values at the m− 1’th level, conditioned on the value at
the m’th level.

The m’th level layers must have the same histograms (that is, the same marginal
distributions). The sampling procedure for the m − 1’th layer means that a his-
togram of the pixels in the m− 1’th layer whose parents have some fixed value will
be the same for the pyramid being synthesized as for the example pyramid. This
histogram — which is sometimes called a conditional histogram — is a repre-
sentation of the conditional distribution on values at the m−1’th level, conditioned
on the value at the m’th level.

Nothing special is required to synthesize a third (or any other) layer. For any

Section 11.3. Application: Synthesizing Textures for Rendering 307

make a pyramid pe from the example image

make an empty pyramid pw, corresponding to the image to

be synthesized

set the coarsest scale layer of pw to be the same as the

coarsest scale level of pe; if pw is bigger than pe, then

replicate copies of pe to fill it

for each other layer l of pe, going from coarsest to finest

for each element e of the layer

obtain all elements with

the same parent structure

choose one of this collection uniformly at random

insert the value of this element into e

end

end

synthesize the texture image from the pyramid pw

Algorithm 11.5: Texture Synthesis using Conditional Histograms

location in the third layer, the parent structure involves values from the coarsest
and the next to coarsest scale. To obtain a value for a location, we collect every
element from the corresponding layer in the example pyramid with the same parent
structure, and choose from a uniformly and at random from this collection. The
fourth, fifth and other layers follow from exactly the same approach. Furthermore,
the joint histogram of all these layers in the synthesized pyramid will be the same
as that for the example pyramid, using the same argument as above.

There are two important details to address before we have a usable algorithm.

• Firstly, what does it mean for parent structures to be the same? In practice,
it is sufficient to regard the parent structures as vectors and require that
they are close together — an appropriate distance threshold should be set by
experiment.

• Secondly, how do we obtain all pixels with the same parent structure as a
given location? one strategy is to search all locations in the example image

308 Texture Chapter 11

Figure 11.15. Four examples of textures synthesized using De Bonet’s algorithm (al-
gorithm 5). In each case, the example texture is the small block on the left, and the
synthesized texture is the larger image block on the right. Note that the method has
captured apparent periodic structure in the textures; in the case of the blob with wires
(top right), it has succeeded in joining up wires. This is because the method can capture
larger scale structure in a texture in greater detail, by not assuming that responses at each
level of the pyramid are independent. figure from De Bonet, Multiresolution Sampling
Procedure for Analysis and Synthesis of Image Textures, p figure 10, in the fervent hope,
etc.

for every pixel value we wish to synthesize, but this is crude and expensive.
We explore alternate strategies in exercise ??.

11.3.4 Synthesis by Sampling Local Models

As Efros points out, it isn’t essential to use an oriented pyramid to build a probabil-
ity model. Instead, the example image itself supplies a probability model. Assume
for the moment that we have every pixel in the synthesized image, except one. To
obtain a probability model for the value of that pixel, we could match a neigh-
borhood of the pixel to the example image. Every matching neighborhood in the
example image has a possible value for the pixel of interest. This collection of values
is a conditional histogram for the pixel of interest. By drawing a sample uniformly
and at random from this collection, we obtain the value that is consistent with the

Section 11.3. Application: Synthesizing Textures for Rendering 309

Figure 11.16. Figure 11.11 showed texture synthesis by histogram equalisation failing on
the coral texture example shown on the top left here, because the independence assumption
suppresses the fact that the small spots on the coral lie in a straight line. The texture
synthesized by histogram equalization is shown on the top right. The bottom row shows
textures synthesized using algorithm 5, which doesn’t require an independence assumption.
These textures appear to have the same structure as the example. figure from De Bonet,
Multiresolution Sampling Procedure for Analysis and Synthesis of Image Textures, p figure
14, in the fervent hope, etc.

example image. Section ?? describes the details of the matching process.
Generally, we need to synthesize more than just one pixel. Usually, the values

of some pixels in the neighborhood of the pixel to be synthesized are not known —
these pixels need to be synthesized too. One way to obtain a collection of examples
for the pixel of interest is to count only the known values in computing the sum
of squared differences, and to adjust the threshold pro rata. The synthesis process
can be started by choosing a block of pixels at random from the example image,
yielding algorithm 6.

Matching Image Neighbourhoods

Efros uses a square neighborhood, centered at the pixel of interest. The size of the
neighborhood is a parameter that significantly affects the appearance of the synthe-
sized image (see figure 11.18). The similarity between two image neighbourhoods
can be measured by forming the sum of squared differences of corresponding pixel
values. This value is small when the neighbourhoods are similar, and large when

310 Texture Chapter 11

Choose a small square of pixels at random from the example image

Insert this square of values into the image to be synthesized

until each location in the image to be synthesized has a value

For each unsynthesized location on

the boundary of the block of synthesized values

Match the neighborhood of this location to the

example image, ignoring unsynthesized

locations in computing the matching score

Choose a value for this location uniformly and at random

from the set of values of the corresponding locations in the

matching neighborhoods

end

end

Algorithm 11.6: Non-parametric Texture Synthesis

they are different (it is essentially the length of the difference vector). Of course, the
value of the pixel to be synthesized is not counted in the sum of squared differences.

The set of possible values for the pixel of interest comes from any neighborhood
of the example image whose sum of squared differences with the neighborhood of
interest is smaller than some threshold. Other choices of neighbourhood, and of
matching criterion, might work well; little is known about what is best.

11.4 Shape from Texture: Planes and Isotropy

A patch of texture of viewed frontally looks very different from a same patch viewed
at a glancing angle, because foreshortening appears to make the texture elements
smaller, and move them closer together. This means that, if a surface is covered
with the same texture, we should be able to tell elements that are frontal from those
that are viewed at a glancing angle. By doing so, we can recover the shape of the
surface (figure 11.19).

To construct useful algorithms, we need to be crisp about what it means for
a texture to be the same. In the first case, let us assume that we are looking
at textured planes. There are two useful notions of similarity for this case. We
discussed homogenous textures above (section 11.3.1); an isotropic texture is one
where the probability of encountering a texture element does not depend on the
orientation of that element. This means that a probability model for an isotropic
texture need not depend on the orientation of the coordinate system on the textured

Section 11.4. Shape from Texture: Planes and Isotropy 311

Figure 11.17. Efros’ texture synthesis algorithm (algorithm 6) matches neighbourhoods
of the image being synthesized to the example image, and then chooses at random amongst
the possible values reported by matching neighbourhoods. This means that the algorithm
can reproduce complex spatial structures, as these examples indicate. The small block on
the left is the example texture; the algorithm synthesizes the block on the right. Note
that the synthesized text looks like text; it appears to be constructed of words of varying
lengths that are spaced like text; and each word looks as though it is composed of letters
(though this illusion fails as one looks closely). figure from Efros, Texture Synthesis by
Non-parametric sampling, p. figure 3, in the fervent hope, etc.

plane.
We will confine our discussion to the case of an orthographic camera. If the

camera is not orthographic, the arguments we use will go through, but require
substantially more work and more notation. Derivations for other cases appear
in [].

11.4.1 Recovering the Orientation of a Plane from an Isotropic
Texture

Now assume that we are viewing a single textured plane in an orthographic camera.
Because the camera is orthographic , there is no way to measure the depth to the
plane. However, we can think about the orientation of the plane. Let us work
in terms of the camera coordinate system. We need to know firstly, the angle
between the normal of the textured plane and the viewing direction — sometimes
called the slant — and secondly, the angle the projected normal makes in the

312 Texture Chapter 11

Figure 11.18. The size of the image neighbourhood to be matched makes a significant
difference in algorithm 6. In the figure, the textures at the right are synthesized from
the small blocks on the left, using neighbourhoods that are increasingly large as one
moves to the right. If very small neighbourhoods are matched, then the algorithm cannot
capture large scale effects easily. For example, in the case of the spotty texture, if the
neighbourhood is too small to capture the spot structure (and so sees only pieces of curve),
the algorithm synthesizes a texture consisting of curve segments. As the neighbourhood
gets larger, the algorithm can capture the spot structure, but not the even spacing. With
very large neighbourhoods, the spacing is captured as well. figure from Efros, Texture
Synthesis by Non-parametric sampling, p. figure 2, in the fervent hope, etc.

camera coordinate system — sometimes called the tilt (figure 11.20). In an image
of a plane, there is a tilt direction — the direction in the plane parallel to the
projected normal.

If we assume that the texture is isotropic, both slant and tilt can be read from
the image. We could synthesize an orthographic view of a textured plane by first
rotating the coordinate system by the tilt and then secondly contracting along
one coordinate direction by the cosine of the slant — call this process a viewing
transformation. The easiest way to see this is to assume that the texture consists
of a set of circles, scattered about the plane. In an orthographic view, these circles
will project to ellipses, whose minor axes will give the tilt, and whose aspect ratios
will give the slant (see exercise ?? and figure 11.20).

The process of contraction interferes with the isotropy of the texture, because
elements that point along the contracted direction get shorter. Furthermore, ele-
ments that have a component along the contracted direction have that component
shrunk. This yields a strategy for determining the orientation of the plane: find a

Section 11.4. Shape from Texture: Planes and Isotropy 313

0
10

20
30

40
50

0

10

20

30

40

50
0

0.2

0.4

0.6

0.8

1

Figure 11.19. Humans obtain information about the shape of surfaces in space from
the appearance of the texture on the surface. The figure on the left shows one common use
for this effect — away from the contour regions, our only source of information about the
surface depicted is the distortion of the texture on the surface. On the right, the texture
of the stones gives a clear sense of the orientation of the (roughly) plane surface leading
up to the waterhole. figure from the Calphotos collection, number. 0127, in the fervent
hope, etc.

viewing transformation that turns the image texture into an isotropic texture, and
recover the slant and tilt from that viewing transformation.

There are variety of ways to find this viewing transformation. One natural
strategy is to use the energy output of a set of oriented filters. This is the squared

314 Texture Chapter 11

Textured
plane

Image
plane

Tilt

Viewing
direction

Projected
normal

Plane
normal

Figure 11.20. The orientation of a plane with respect to the camera plane can be
given by the slant — which is the angle between the normal of the textured plane and the
viewing direction — and the tilt — which is the angle the projected normal makes with
the camera coordinate system. The figure illustrates the tilt, and shows a circle projecting
to an ellipse.

response, summed over the image. For an isotropic texture, we would expect the
energy output to be the same for each orientation at any given scale, because the
probability of encountering a pattern does not depend on its orientation. Thus, a
measure of isotropy is the standard deviation of the energy output as a function of
orientation. We could sum this measure over scales, perhaps weighting the measure
by the total energy in the scale. The smaller the measure, the more isotropic the
texture. We now find the inverse viewing transformation that makes the image
looks most isotropic by this measure, using standard methods from optimization.

Notice that this approach immediately extends to perspective projection, spheri-
cal projection, and other types of viewing transformation. We simply have to search
over a larger family of transformations for the transformation that makes the image
texture look most isotropic. One does need to be careful, however. For example,
scaling an isotropic texture will lead to another isotropic texture, meaning that it
isn’t possible to recover a scaling parameter, and it’s a bad idea to try. Notice also
that it isn’t possible to recover the configuration of a plane from an orthographic
image if one assumes the plane is homogenous — an affine transformation of a
homogenous texture is homogenous.

Section 11.5. Shape from Texture: Curved Surfaces 315

The main difficulty with using an assumption of isotropy to recover the orien-
tation of a plane is that there are very few isotropic textures in the world. Curved
surfaces have a richer geometric structure — basically, the texture at different points
is distorted in different ways— and we can recover that structure with more realistic
assumptions.

11.5 Shape from Texture: Curved Surfaces

It isn’t possible to recover the orientation of a plane in an orthographic view by
assuming that the texture is homogeneous (the definition is in section 11.3.1). This
is because the viewing transformation takes one homogeneous texture into another
homogeneous texture. However, if the texture lies on a curved surface, we can
recover information about the differential geometry of that surface.

The reasoning is as follows:

• We assume that texture is homogeneous. This means that, if we know the
configuration of one of the tangent planes on the surface, then we know what
the texture looks like frontally.

• Now we assume that we know the configuration of one of the tangent planes.

• Now we can reconstruct other tangent planes — possibly every other tangent
plane — from this information, because we know the rule by which the texture
foreshortens.

Of course, we don’t know the configuration of any of the tangent planes, so we need
to reason about relative configurations. The texture distorts from place to place
in the image, because it undergoes different projections into the image: we are
going to keep track of those distortions, and use them to reason about the shape of
the surface (figure 11.21). Shape from texture for curved surfaces tends to require
some quite substantial technical geometry; we will do only a simple example, which
involves recovering a cylinder from a single view.

11.5.1 Shape from Texture for Cylinders

All cylinders can be obtained by extruding plane curves (which need not be circles
— we are interested in cylinders with arbitrary cross-sections); this means that, in
some coordinate system, we can parametrise a cylinder as

r(u, v) = (x(u), y(u), v)T =X(u) + vV

where X(u) = (x(u), y(u), 0)T (this is called the generating curve) and V =
(0, 0, 1). Notice that every plane section perpendicular to the axis looks like the
generating curve. This means that there is a natural coordinate system for each
tangent plane on the surface — we use

(e1, e2) = (
dX
du

| dX
du
|
,T)

316 Texture Chapter 11

Image
patch 1

Image
patch 2

Rotate and
translate

ForeshorteningForeshortening

Figure 11.21. If the texture on a surface is homogenous, then the texture at each point
on the surface “looks like” the texture at other points. This means that the deformation
of the texture in the image is a cue to surface geometry. In particular, the texture around
one point in the image is related to the texture around another point by: mapping from
the image to the surface, transforming on the surface, and then mapping back to the
image. By keeping track of these transformations, we can reconstruct surfaces up to some
ambiguity.

as a coordinate system. Now we assume that the texture we are dealing with
is homogeneous. We interpret this as meaning the probability of encountering a
texture element is independent of u and of v (this definition requires much more
care for more complicated geometries).

Now consider a patch of texture around (u1, v1) in the surface. We assume
that this patch is small enough that we can represent the texture as a patch on
the tangent plane at this point, so we can measure the position of each texture
element in the (e1, e2) coordinate system at this point. We can compare this patch
of texture with one around (u2, v2) (again, small enough that we can represent it as
a patch on the tangent plane, in the (e1, e2) coordinate system on that plane). We
now ask what transformation makes the textures look “most like” one another —
and this must be the identity. We avoid discussing what “most like” means until
later (section 11.5.2).

The easiest way to see this is to consider extreme cases. For example, assume
that we have a texture process that paints the surface with elliptical blobs, whose
major axis points along e2 (i.e. the axis of the cylinder) and whose minor axis
points along e1. You should satisfy yourself that this is, in fact, a homogenous
texture (hint: homogenous is not the same as isotropic). Furthermore, it is quite
obvious that we can determine the transformation between textures at two points
— just align the long axes of the ellipses — and that this will be the identity in the
(e1, e2) coordinate system. The (e1, e2) is an example of a texture coordinate

Section 11.5. Shape from Texture: Curved Surfaces 317

e1

e2

e1

e2

Figure 11.22. There is a natural coordinate system in each tangent plane on a cylinder.
At every point we choose the direction that is parallel to the cylinder’s axis (e2) and the
direction that is tangent to the generating curve (e1). This coordinate system is well
adapted to the structure of the cylinder.

system — a coordinate system within which the texture has desirable uniformity
properties.

Now if we consider two regions of texture in the image, then one will, in general,
be more distorted than the other. This relative distortion gives us the cue to the
shape of the surface. Before we can recover any surface geometry, we need to
determine what can be recovered in general.

The Geometry of an Orthographic View of a Cylinder

Shape from texture for orthographic views of cylinders is ambiguous. You can see
this by inspecting the line of reasoning (the elliptical texture is a good example to
keep in mind). We are assuming that the relative distortion of textures informs
us about the shape of the surface, but as we move along the axis of the cylinder,
the orientation of the (e1, e2) coordinate system doesn’t change with respect to
the view. This means that we don’t have any texture distortion in this direction.
This means that we can determine the axis direction in the image (by looking for
directions in which the texture doesn’t distort).

It also means that, unless we know what a frontal texture looks like, it isn’t
possible to determine the angle between the axis of the cylinder and the plane. For
example, in the case of the texture with elliptical spots, the texture could consist of
very highly elongated ellipses viewed at an angle, or only slightly elongated ellipses
viewed frontally (figure 11.25).

This also means we can’t get the cross-section curve of the cylinder either (be-
cause we can’t determine the orientation of the cylinder). The best we can do is to
reconstruct a slice through the cylinder at some arbitrary angle to the axis. This

318 Texture Chapter 11

Image
patch 1

Image
patch 2

Identity Foreshortening

Foreshortening

Projected
axis direction

Figure 11.23. In the (e1,e2) coordinate system on a cylinder, the texture at different
patches is related by the identity. Now if we look at two image patches that lie along the
projected axis direction the surface textures are foreshortened by the same amount; this
means that they look the same already, and the transformation that makes them look
most the same is the identity. In turn, we can use this property to identify the axis of the
cylinder.

is a useful thing to do, because we can clearly tell different cylinders apart with
this information. For example, if we slice a right circular cylinder at some arbitrary
angle to the axis, the slice is an ellipse; but if we slice a cylinder with a square
cross-section at an arbitrary angle to the axis, the cross-section is quadrilateral.

All this means that we can think about this problem as a one-dimensional re-
construction problem. We set the problem up as follows:

• Obtain the direction of the projected axis in the image, by determining the
direction in which image texture transformations are the identity.

• Construct a perpendicular to that direction. We will study how texture dis-
torts along this perpendicular. This will yield a slice of the cylinder (fig-
ure 11.26).

Reconstructing the Slice

As figure 11.28 indicates, reconstructing a slice of surface can be thought of as
building up the graph of a function. We have one parameter — which we shall call

Section 11.5. Shape from Texture: Curved Surfaces 319

Figure 11.24. Left: A view of a spotted cylinder, where the spots are heavily elongated
along the axis of the cylinder. In this view we have drawn in the boundaries of the cylinder,
and shown the cylinder in 3/4 view, so that the geometry is clear. Notice that the spots
foreshorten; as the cylinder turns away from the eye, the minor axis of the ellipse (which
is oriented along the e1 direction) looks shorter. Right: a frontal view of this cylinder.
Notice that the axis direction is obvious — it’s the direction in which the texture is
unchanged.

Figure 11.25. Shape from texture for a cylinder in an orthographic view is fundamen-
tally ambiguous; we can’t recover the angle between the axis of the cylinder and the image
plane unless we know a frontal view of the texture. This is because the texture simply
repeats as we move along the axis direction in the image; and the image view could come
from (say) a long spot, slightly foreshortened (on the left) or a very long spot, heavily
foreshortened (on the right).

320 Texture Chapter 11

Axis
Direction

Figure 11.26. While we cannot recover any information about the slant of the cylinders
axis with respect to the surface, we can obtain information about a cross-section through
the cylinder. We construct an image direction perpendicular to the axis, and look at the
foreshortening along that direction; this involves reconstructing a curve (figure 11.28).

t — running along the image line; we would like to reconstruct the depth to the
surface as a function of t, which we shall write f(t).

Now assume we have some texture element on the surface at t = t1. We write
f ′(t1) for df/dt evaluated at t = t1, etc. This is foreshortened by

cos θ1 =
1√

1 + f ′(t1)

Similarly, a texture element at t = t2 is foreshortened by

cos θ2 =
1√

1 + f ′(t2)

Now if we construct the transformation that makes a patch of the image section
along the perpendicular at t = t1 look “most like” a patch of the the image section
along the perpendicular at t = t2, the transformation will have the form

γ(t1 , t2) =

√
1 + f ′(t1)2√
1 + f ′(t2)2

Section 11.5. Shape from Texture: Curved Surfaces 321

Section

Figure 11.27. There are still foreshortening cues in a section perpendicular to the axis.
We show the spotted cylinder of figure 11.24, but now with a section perpendicular to the
axis direction (as in figure 11.26); notice the width of the black components of the section
changes. This is primarily a foreshortening effect.

θ θ21

t t1 2

Figure 11.28. If we confine our attention to a plane perpendicular to the axis direction
and to the image plane (as in figure 11.26), then reconstructing the curve where the
cylinder intersects this plane is possible. We do this by regarding the curve as a function
of a coordinate on the cross-section — call this coordinate t. Now the curve is given by
(t, f(t)) and the transformation from image patch 1 to image patch 2 — which follows from
the foreshortening illustrated in figure ?? — gives us information about the derivative of
f ; from this we can integrate to get the curve.

322 Texture Chapter 11

(i.e. we “unforeshorten” the texture to get the texture on the surface at t = t1; this
texture is the same as at t = t2, which is then projected). For any values of t1 and
t2, we can measure γ(t1, t2) from the image.

Now choose some value of t to act as a reference point — call this tr. At this
point, we need to specify (1) the value of f(tr (we can’t reconstruct this, because
it’s an orthographic camera) and (2) the orientation of the section (i.e. f ′(tr)).
Once these have been specified, reconstructing the cross-section is a simple exercise
in differential equations. In particular, we form φ(t) = γ(t, tr); now we have

f ′(t) =
√
φ(t)2 − 1

Since we know f(tr) and f
′(tr), we have an initial value problem, which is easy to

solve using standard methods. If you are careful, you will worry about the sign of
the square root. We assume that the cylinder is continuous, so the only time things
get interesting is when f ′(t) = 0; in this case, we can’t tell whether f ′(t + ε) is
positive or negative using a continuity argument. Geometrically, this is a natural
ambiguity: when f ′(t) is zero, the curve is locally parallel to the viewing line — as
we move along from these points, we can’t tell whether the curve is turning towards
or away from the viewing line (figure 11.29).

Currently, we are missing a parameter in the reconstruction of the cross-section
— we supplied f ′(tr), which is the orientation at the base point of the reconstruction.
It turns out that we cannot choose this value freely. This is because foreshortening
can make texture elements look smaller, but never bigger. In turn, if we use (say)
the smallest texture elements as a base point, then we must ensure that the curve
is sufficiently foreshortened there to account for the larger texture elements.

Formally, we have γ(t, tr)
√
1 + f ′(tr)2 ≥ 1 for any value of t. We can rewrite

this inequality as

1√
1 + f ′(tr)2

≤ γ(t, tr)

for any value of t. This means that if we have chosen tr, then the value of f ′(tr)
2

that we choose for this point must have the property

max
t

{
1

γ(t, tr)

}
≤ f ′(tr)

2

You may wish to use this inequality to choose a base point, by arguing that the most
highly constrained point — the one where the lower bound on f ′(tr)

2 is highest —
is a good choice. This is actually a bad idea, because at this point the texture is
most foreshortened, and as a result difficult to measure. However, if we know that
the cross-section is a closed curve, we have that the texture is frontal at any point
where the lower bound is zero (exercises) and these points are clearly good base
points.

Section 11.5. Shape from Texture: Curved Surfaces 323

ta

Figure 11.29. The reconstruction of cross-section curves is ambiguous, because we can
obtain only f ′(t)2, and so the sign of the square root is ambiguous. If we assume that the
curve has a continuous first derivative, this ambiguity disappears exceptwherever the curve
is frontal — this corresponds to φ(t) = 1, or f ′(t)2 = 0. In this case, the reconstruction at
the next step could go up — corresponding to one sign of f ′(t) — or down — corresponding
to the other sign. The drawing shows how the two cases yield the same foreshortening.
This means that the ambiguity is fundamental; to break it, we need to make some other
assumption about the shape of surfaces.

Figure 11.30. A textured cylinder, with a representation of surface normals obtained
using a variant of the shape from texture method described in the text. figure from the
Malik and Rosenholtz, Computing Local Surface Orientation and Shape from Texture for
Curved Surfaces, p.161, in the fervent hope, etc.

324 Texture Chapter 11

11.5.2 Obtaining the Transformation between Image Patches

Since the texture is homogeneous, the translation component of the affine transfor-
mation is not interesting. In fact, we should not be able to measure it at all, and
this constrains our test of similarity. One natural test of similarity can be obtained
from a Fourier transform. We look at the lower spatial frequency components of
the magnitude spectrum — these are unaffected by translation. We look only at
the lower spatial frequency components, to avoid confusion from image noise. The
low spatial frequency components should be similar for two patches drawn from the
same homogeneous texture. From section ??, when a patch is subject to a linear
transformation, the magnitude spectrum — in fact, the whole Fourier transform —
behaves quite simply. In particular, if g(x) is some function of the image plane,
and G(ω) is the Fourier transform of that function, we have

F(g(Ax)) =
1

| A |
G(A−1ω)

This means we can obtain the transformation between the image patches by looking
for the linear transformation that makes the magnitude spectrum of one patch look
most like the magnitude spectrum of the other patch. This should be approached
as a minimization problem (exercises).

11.6 Notes

We have aggressively compressed the texture literature in this chapter. Over the
years, there have been a wide variety of techniques for representing image textures,
typically looking at the statistics of how patterns lie with respect to one another.
The disagreements are in how a pattern should be described, and what statistics to
look at. While it is a bit early to say that the approach that represents patterns
using linear filters is correct, it is currently dominant, mainly because it is very
easy to solve problems with this strategy. Readers who are seriously interested in
texture will probably most resent our omission of the Markov Random Field model,
a choice based on the amount of mathematics required to develop the model and
the absence of satisfactory inference algorithms for MRF’s. We refer the interested
reader to [].

Texture synthesis exhausted us long before we could exhaust it. The most
significant omission, apart from MRF’s, is the work of Zhu and Mumford, which
uses sophisticated entropy criteria to firstly choose filters by which to represent a
texture and secondly construct probability models for that texture.

11.6.1 Shape from Texture

We have handled shape from texture in what we believe is a completely new way;
it is certainly rather different from the traditional literature [?; ?]. We have done
so, basically, because our method is clearer (you can check this claim very easily!).
In particular, our formalism exposes the crucial role of integrability rather clearly,

Section 11.6. Notes 325

and makes ambiguities clear, too. To our knowledge, no-one has done either doubly
curved surfaces or the perspective case in this way; there appear to be no particular
difficulties in doing this. We haven’t expounded the doubly curved case here because
(a) it requires a fair amount of technical differential geometry and (b) it requires a
bit of work on partial differential equations as well. We encourage a creative and
courageous reader to do this case in our stead.

We have been slightly sloppy in the account of shape from texture for cylinders,
in that we estimated γ(t1 , t2) from a single section perpendicular to the axis. Ob-
viously, this is a bad idea; it is also unneccessary. We could have estimated it using
every section perpendicular to the axis. This is the right way to do things, but
would have cluttered up the presentation. We encourage the reader with a sense of
adventure to formulate and solve this estimation problem.

There is no really satisfactory definition of homogeneity of which we are aware.
If a surface has constant Gaussian curvature, then there is an isometry connecting
points on the surface, and this can be used to obtain a definition of homogeneity; but
this isn’t terribly satisfactory, because most interesting surfaces don’t have constant
Gaussian curvature. Furthermore, it leads to a fairly nasty formalism, because if
we really are going to assume that a surface has constant Gaussian curvature, we
should use this fact in reconstructing the surface. This means that there is some
room for a study of other assumptions about what it means for a texture to be
“constant” on a curved surface.

Most of what we have described applies only where the scale of the variation in
the surface is much larger than the scale of variation in the texture — this should
be a source of some unease, too. There is a great deal that can be done in this area,
and the tools for understanding texture are now much better than they used to be.

Assignments

Exercises

1. The texture synthesis algorithm of section 11.3.3 needs to obtain parent struc-
tures in the example image that match the parent structure of a pixel to be
synthesized. These could be obtained by blank search. An alternative is to
use a hashing process. It is essential that every parent structure that could
match a given structure is obtained by this hashing process. One strategy is
to compute a hash key from the parent structure, and then look at nearby
keys as well, to ensure that no matches are missed.

• Describe how this strategy could work.

• What savings could be obtained by using it?

2. Show that a circle appears as an ellipse in an orthographic view, and that the
minor axis of this ellipse is the tilt direction. What is the aspect ratio of this
ellipse?

326 Texture Chapter 11

3. In section 11.4.1, we stated that the configuration of a plane could not be
recovered from an assumption that its texture is homogenous: but a plane is
a cylinder. In this exercise, we explore why there is no contradiction.

• Is there a unique choice of axis direction for a plane? use your answer to
explain why the configuration cannot be recovered.

• Assume that you have obtained an axis direction in the image. Give a
closed form expression for γ(t1 , t2) for a plane.

• Now explain why this form of γ also means you cannot recover the con-
figuration of the plane.

4. Show that if a cylinder has a closed generating curve, then for any orthographic
view, there is some point such that the bound

max
t

{
1

γ(t, tr)

}
≤ f ′(tr)

2

is zero. Show that this point is viewed frontally. Is this true of every point
for which the bound is zero?

Programming Assignments

• Texture synthesis - a: Implement the texture synthesis algorithms of sec-
tion 11.3.2 and of section 11.3.3. Use the steerable filter implementation
available at http://www.cis.upenn.edu/ eero/steerpyr.html to construct
steerable pyramid representations. Use your implementation to find examples
where the independence assumption fails. Explain what is going on in these
examples.

• Texture synthesis - b: Extend the algorithms of section 11.3.2 and of
section 11.3.3 to use pyramids obtained using an analysis based on more ori-
entations; you will need to ensure that you can do synthesis for the set of
filters you choose. Does this make any difference in practice to (a) the quality
of the texture synthesis or (b) the speed of the synthesis algorithm?

• Texture synthesis - c: Implement the non-parametric texture synthesis
algorithm of section 11.3.4. Use your implementation to study:

1. the effect of window size on the synthesized texture;

2. the effect of window shape on the synthesized texture;

3. the effect of the matching criterion on the synthesized texture (i.e. using
weighted sum of squares instead of sum of squares, etc.).

