
Chapter 13

STEREOPSIS

Fusing the pictures recorded by our two eyes and exploiting the di�erence (or dis-
parity) between them allows us to gain a strong sense of depth (Figure 13.1(left)).

This chapter is concerned with the design and implementation of algorithms that

mimick our ability to perform this task, known as stereopsis. Note that a machine

(or for that matter the Martian shown in Figure 13.1(right), or an ordinary spi-

der) may be equipped with three eyes or more, and this will lead us to investigate

multi-camera approaches to stereopsis at the end of this chapter.

Figure 13.1. The sailor shown in the left picture is, like most people, able to perform

stereopsis and gain a sense of depth for the objects within his �eld of view. Reprinted

from [Navy, 1969], Figure 6-8. The right photograph is from the 1953 �lm \The War of
the Worlds", and it shows a close-up of the face of a three-eyed Martian warrior. Why

such a con�guration may prove bene�tial will be explained in Section 13.3.1.

Reliable computer programs for stereoscopic perception are of course invaluable

in visual robot navigation (Figure 13.2), cartography, aerial reconnaissance and

close-range photogrammetry. They are also of great interest in tasks such as image

segmentation for object recognition and, as will be seen in Chapter 26, the construc-

tion of three-dimensional scene models in image-based rendering, a new discipline

that ties together computer vision and computer graphics.

Stereo vision involves two processes: the binocular fusion of features observed

by the two eyes, and the reconstruction of their three-dimensional preimage. The
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(a) (b)

Figure 13.2. Mobile robot navigation is a classical application of stereo vision: (a) the

Stanford cart sports a single camera moving in discrete increments along a straight line
and providing multiple snapshots of outdoor scenes [Moravec, 1983]; the INRIA mobile

robot uses three cameras to map its environment.

latter is relatively simple: the preimage of matching points can (in principle) be

found at the intersection of the rays passing through these points and the associ-

ated pupil centers (or pinholes, see Figure 13.3(left)). Thus, when a single image

feature is observed at any given time, stereo vision is easy.1 However, each picture

consists of hundreds of thousands of pixels, with tens of thousands of image features

such as edge elements, and some method must be devised to establish the correct

correspondences and avoid erroneous depth measurements (Figure 13.3(right)).

Although human binocular fusion is e�ortless and reliabe in most situations, we

can be fooled too: the abstract single-image stereograms [Thimbley et al., 1994]

that were popular in the late nineties demonstrate this quite well: in this case,

repetitive patterns or judiciously assembled random dots are used to trick the eyes

into focussing on the wrong correspondences, producing a vivid impression of layered

planes.2 This suggests that constructing a reliable stereo vision program is di�cult,

a fact that will be attested time and again in the rest of this chapter. As should be

expected, the geometric machinery introduced in Chapter 12 will prove extremely

useful in tackling this problem. We will assume in the rest of this chapter that all

cameras have been carefully calibrated so their intrinsic and extrinsic parameters

are precisely known relative to some �xed world coordinate system. The case of

multiple uncalibrated cameras will be examined in the context of structure from

motion in Chapters 14 and 15.

1This is actually how some laser range �nders work: two cameras observe an object while a
laser beam scans its surface one point at a time. After thresholding the two pictures, the bright
laser spot is, e�ectively, the only surface point seen by the cameras. See Chapter 24 for details.

2To enjoy this e�ect without any special equipment or expensive props, you may try to sit
down in a place decorated with a repetitive tile pattern such as those often found in bathroom

oors. By letting your mind wander and your eyes unfocus, you may be able to see the 
oor jump

up by a foot or so, and even pass your hand through the \virtual" 
oor. This experiment, best
conducted late at night, is quite worth the e�ort.
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Figure 13.3. The binocular fusion problem: in the simple case of the diagram shown on
the left, there is no ambiguity and stereo reconstruction is a simple matter. In the more

usual case shown on the right, any of the four points in the left picture may, a priori, match

any of the four points in the right one. Only four of these correspondences are correct, the
other ones yielding the incorrect reconstructions shown as small grey discs.

13.1 Reconstruction

Given a calibrated stereo rig and two matching image points p and p0, it is in princi-

ple straightforward to reconstruct the corresponding scene point by intersecting the

two rays R = Op and R0 = O
0
p
0. However, the rays R and R0 will never, in practice,

actually intersect, due to calibration and feature localization errors (Figure 13.4).

In this context, various reasonable approaches to the reconstruction problem can be

adopted. For example, we may choose to construct the line segment perpendicular

to R and R0 that intersects both rays: the mid-point P of this segment is the closest

point to the two rays and can be taken as the pre-image of p and p
0. It should be

noted that a similar construction was used at the end of Chapter 12 to characterize

algebraically the geometry of multiple views in the presence of calibration or mea-

surement errors. The equations (12.4.1) and (12.4.2) derived in that chapter are

readily adapted to the calculation of the coordinates of P in the frame attached to

the �rst camera.

Alternatively, we can reconstruct a scene point using a purely algebraic ap-

proach: given the projection matricesM and M0 and the matching points p and

p
0, we can rewrite the constraints zp =MP and z

0
p
0 =MP as�

p�MP = 0

p
0 �M0

P = 0
()

�
[p

�
]M

[p0
�
]M0

�
P = 0:

This is an overconstrained system of four independent linear equations in the

homogeneous coordinates of P , that is easily solved using the linear least-squares

techniques introduced in Chapter 6. Unlike the previous approach, this reconstruc-

tion method does not have an obvious geometric interpretation, but it generalizes
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Figure 13.4. Triangulation in the presence of measurement errors. See text for details.

readily to the case of three or more cameras, each new picture simply adding two

additional constraints.

Finally, we can reconstruct the scene point associated with p and p0 as the point

Q with images q and q
0 that minimizes d2(p; q) + d

2(p0; q0) (Figure 13.4). Unlike

the two other methods presented in this section, this approach does not allow the

closed-form computation of the reconstructed point, which must be estimated via

non-linear least-squares techniques such as those introduced in Chapter 6. The

reconstruction obtained by either of the other two methods can be used as a rea-

sonable guess to initialize the optimization process. This non-linear approach also

readily generalizes to the case of multiple images.

Before moving on to studying the problem of binocular fusion, let us now say a

few words about two key components of stereo vision systems: camera calibration

and image recti�cation.

13.1.1 Camera Calibration

As noted in the introduction, we will assume throughout this chapter that all cam-

eras have been carefully calibrated (using, for example, one of the techniques intro-

duced in Chapter 6) so their intrinsic and extrinsic parameters are precisely known

relative to some �xed world coordinate system. This is of course a prerequisite for

the reconstruction methods presented in the previous section since they require that

the projection matrices associated with the two cameras be known, or, equivalently,

that a de�nite ray be associated with every image point. It should also be noted

that, once the intrinsic and extrinsic camera parameters are known, it is a simple

matter to estimate the multi-view geometry (essential matrix for two views, trifocal

tensor for three, etc.) as described in Chapter 12. This will play a fundamental role
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in the algorithms for establishing stereo correspondences presented in Sections 13.2

and 13.3.

13.1.2 Image Recti�cation

The calculations associated with stereo algorithms are often considerably simpli�ed

when the images of interest have been recti�ed, i.e., replaced by two projectively

equivalent pictures with a common image plane parallel to the baseline joining the

two optical centers (Figure 13.5). The recti�cation process can be implemented

by projecting the original pictures onto the new image plane. With an apropriate

choice of coordinate system, the recti�ed epipolar lines are scanlines of the new

images, and they are also parallel to the baseline.
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Figure 13.5. A recti�ed stereo pair: the two image planes � and �0 are reprojected onto

a common plane �� = ��0 parallel to the baseline. The epipolar lines l and l0 associated with

the points p and p0 in the two pictures map onto a common scanline �l = �l0 also parallel
to the baseline and passing through the reprojected points �p and �p0. The recti�ed images

are easily constructed by considering each input image as a polyhedral mesh and using

texture mapping to render the projection of this mesh into the plane �� = ��0.

As noted in [Faugeras, 1993], there are two degrees of freedom involved in the

choice of the recti�ed image plane: (1) the distance between this plane and the

baseline, which is essentially irrelevant since modifying it will only change the scale

of the recti�ed pictures, an e�ect easily balanced by an inverse scaling of the image

coordinate axes, and (2) the direction of the recti�ed plane normal in the plane

perpendicular to the baseline. Natural choices include picking a plane parallel to

the line where the two original retinas intersect, and minimizing the distortion

associated with the reprojection process.
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In the case of recti�ed images, the notion of disparity introduced informally

earlier takes a precise meaning: given two points p and p
0 located on the same

scanline of the left and right images, with coordinates (u; v) and (u0; v), the disparity

is de�ned as the di�erence d = u
0�u. Let us assume from now on normalized image

coordinates. If B denotes the distance between the optical centers, also called

baseline in this context, it is easy to show that the depth of P in the (normalized)

coordinate system attached to the �rst camera is z = �B=d (Figure 13.6).
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Figure 13.6. Triangulation for recti�ed images: the rays associated with two points p

and p0 on the same scanline are by construction guaranteed to intersect in some point P .

As shown in the text, the depth of P relative to the coordinate system attached to the left

camera is inversely proportional to the disparity d = u0
� u. In particular, the preimage

of all pairs of image points with constant disparity d is a frontoparallel plane �d (i.e., a

plane parallel to the camera retinas).

To show this, let us consider �rst the points q and q0 with coordinates (u; 0) and

(u0; 0), and the corresponding scene point Q. Let b and b
0 denote the respective

distances between the orthogonal projection of Q onto the baseline and the two

optical centers O and O
0. The triangles qQq0 and OQO

0 are similar, and it follows

immediately that b = zu and b
0 = �zu0. Thus B = �zd, which proves the result

for q and q
0. The general case involving p and p

0 with v 6= 0 follows immediately

from the fact that the line PQ is parallel to the two lines pq and p
0
q
0 and therefore

also parallel to the recti�ed image plane. In particuliar, the coordinate vector of

the point P in the frame attached to the �rst camera is P = �(B=d)p, where
p = (u; v; 1)T is the vector of normalized image coordinates of p. This provides yet

another reconstruction method for recti�ed stereo pairs.
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Human Vision: Stereopsis

Before moving on to algorithms for establishing binocular correspondences, let us pause

for a moment to discuss the mechanisms underlying human stereopsis. First, it should be
noted that, unlike the cameras rigidly attached to a passive stereo rig, the two eyes of a

person can rotate in their sockets. At each instant, they �xate on a particular point in

space, i.e., they rotate so that its two images form in the centers of the eyes' foveas. Figure
13.7 illustrates a simpli�ed, two-dimensional situation.

F

D

Vieth-Muller Circle

Disparate dot

Fixated dot

l

r

Figure 13.7. This diagram depicts a situation similar to that of the sailor in Figure 13.1.

The close-by dot is �xated by the eyes, and it projects onto the center of their foveas, with

no disparity. The two images of the far dot deviate from this central position by di�erent

amounts, indicating a di�erent depth.

If l and r denote the (counterclockwise) angles between the vertical planes of symmetry

of two eyes and two rays passing through the same scene point, we de�ne the corresponding
disparity as d = r � l (Figure 13.7). It is an elementary exercise in trigonometry to show

that d = D�F , where D denotes the angle between these rays, and F is the angle between

the two rays passing through the �xated point. Points with zero disparity lie on the Vieth-

M�uller circle that passes through the �xated point and the anterior nodal points of the

eyes. Points lying inside this circle have a positive (or convergent) disparity, points lying

outside it have, as in Figure 13.7, a negative (or divergent) disparity,3 and the locus of

all points having a given disparity d forms, as d varies, the pencil of all circles passing

through the two eyes' nodal points. This property is clearly su�cient to rank-order in

depth dots that are near the �xation point. However, it is also clear that the vergence

angles between the vertical median plane of symmetry of the head and the two �xation

rays must be known in order to reconstruct the absolute position of scene points.

The three-dimensional case is naturally a bit more complicated, the locus of zero-

disparity points becoming a surface, the horopter, but the general conclusion is the same,

and absolute positioning requires the vergence angles. As already demonstrated by Wundt

and Helmholtz [1909, pp. 313-314] a hundred years ago, there is strong evidence that these
angles cannot be measured very accurately by our nervous system. In fact, the human

3The terminology comes from the fact that the eyes would have to converge (resp. diverge)
to �xate on a point inside (resp. outside) the Vieth-M�uller circle. Note that the position of this
circle in space depends on the �xation point (even if the �xation angle F is preserved), since the
rotation centers of the eyes do not coincide with their anterior nodal points.
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visual system can be fooled into believing that threads that actually lie in the same vertical

plane lie instead on a convex or concave surface, depending on the distance between the

observer and this plane [Helmholtz, 1909, pp. 318-321]. Likewise, the reliefmodels used in
sculpture to mimick solids with much reduced depths are almost indistinguishable binocu-

larly from the originals (see [Helmholtz, 1909, pp. 324-326] for an analytical justi�cation).

On the other hand, relative depth, or rank-ordering of points along the line of sight, can be
judged quite accurately: for example, it is possible to decide which one of two targets near

the horopter is closer to an observer for disparities of a few seconds of arc (stereoacuity

threshold), which matches the minimum separation that can be measured with one eye
(monocular hyperacuity threshold) [Helmholtz, 1909, p. 307] (though the stereo disparity

threshold increases quickly as one gets away from the horopter, see, for example, [McKee

et al., 1990]). It can therefore reasonably be argued that the output of human stereopsis
consists mostly of a map of relative depth information, conveying a partial depth order

between scene points [Julesz, 1971, pp. 176-177].4 In that context, the main role of eye

movements in stereopsis would be to bring the images within Panum's fusional area, a
disc with a diameter of 6min of arc in the fovea center where fusion can occur [Julesz,

1971, pp. 148] (points can still be vividly perceived in depth for much larger disparities,

but they will appear as double images, a phenomenon known as diplopia).
Concerning the construction of correspondences between the left and right images,

Julesz [1960] asks the following question: is the basic mechanism for binocular fusion a

monocular process (where local brightness patterns (micropatterns) or higher organizations

of points into objects (macropatterns) are identi�ed before being fused), a binocular one

(where the two images are combined into a single �eld where all further processing takes

place), or a combination of both? Some anecdotal evidence hints at a binocular mechanism,
for example, to quote Julesz [1960, pp. 1133-1134]: \In aerial reconnaissance it is known

that objects camou
aged by a complex background are very di�cult to detect but jump

out if viewed sterescopically." But this is not conclusive: \Though the macropattern
(hidden object) is di�cult to see monocularly, it can be seen. Therefore, the evidence

is not su�cient to prove that depth can be perceived without monocular macropattern

recognition." To gather more conclusive data, Julesz [1960] introduces a new device, the
random dot stereogram, a pair of synthetic images obtained by randomly spraying black

dots on white objects, typically a small square plate 
oating over a larger one (Figure 13.8).

To quote Julesz [1960, p. 1127-1128] again: \When viewed monocularly, the images

appear completely random. But when viewed stereoscopically, the image pair gives the

impression of a square markedly in front of (or behind) the surround. ... Of course,

depth perception under these conditions takes longer to establish because of the absence

of monocular cues. Still, once depth is perceived, it is quite stable. This experiment shows

quite clearly that it is possible to perceive depth without monocular macropatterns."

By locally perturbing the stereograms in various ways, Julesz proceeds to show that the
identi�cation of monocular micropatterns is not necessary for depth perception either.

Although monocular perception is certainly also involved in most situations (e.g., making

the central region in each image visible by increasing its average brightness has the e�ect
of speeding up depth perception), the conclusion, articulated in [Julesz, 1971], is clear:

human binocular fusion cannot be explained by peripheral processes directly associated

4Frisby [1980, p. 155] goes even further, suggesting that the depth e�ect might be a secondary
advantage of stereopsis, the primary one being to give the human visual system an e�ective way
of performing grouping and segmentation.
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Figure 13.8. Creating random dot stereograms by shaking pepper over a pair of plates

observed by two cameras. In the experiments presented in [Julesz, 1960], the two images

are of course synthesized by a computer using a random-number generator to decide the dot
locations and pixel intensities, that can either be binary values as in the situation described

in the text, or more generally random values in the 0::15 range. The two pictures have the

same random background and di�er in a central region by a constant horizontal o�set.

with the physical retinas. Intead, it must involve the central nervous system and an

imaginary cyclopean retina that combines the left and right image stimuli as a single unit.

Julesz has proposed two models of human stereopsis. The �rst one represents the

binocular �eld in terms of a �nite number of di�erence �elds formed by substracting

from the �rst picture the second one shifted by various degrees of disparity [Julesz, 1960].

The matching process amounts in this case to �nding various patterns in some of the

di�erence �elds. This model has been implemented in the AUTOMAP-1 program that has

proven capable of fusing simple randon dot stereograms [Julesz, 1982]. The second model

represents each image by a rectangular array of compass needles (or dipoles) mounted on

spherical joints. A black dot will force the corresponding dipole to point north, and a white

dot will force it to point south. After the directions of all dipoles are set, they are coupled

to their four neighbors via springs. Finally, the two dipole arrays are superimposed, and
left to follow each other's magnetic attraction under various horizontal shifts.

These two models are cooperative, with neighboring matches in
uencing each other

to avoid ambiguities and promote a global analysis of the observed scene. The approach
proposed by Marr and Poggio [1976] is another instance of such a cooperative process.

Their algorithm relies on three constraints: (1) compatibility (black dots can only match

black dots, or more generally, two image features can only match if they have possibly
arisen from the same physical marking), (2) uniqueness (a black dot in one image matches

at most one black dot in the other picture), and (3) continuity (the disparity of matches

varies smoothly almost everywhere in the image). Given a number of black dots on a
pair of corresponding epipolar lines, Marr and Poggio build a graph that re
ects possible

correspondences (Figure 13.9).

The nodes of the graph are pairs of black dots within some disparity range, re
ecting
the compatibility constraint; vertical and horizontal arcs represent inhibitory connections

associated with the uniqueness constraint (any match between two dots should discourage

any other match for both the left dot {horizontal inhibition{ and the right one {vertical
inhibition{ in the pair); and diagonal arcs represent excitory connections associated with

the continuity constraint (any match should favor nearby matches with similar disparities).
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Figure 13.9. A cooperative approach to stereopsis: the Marr-Poggio algorithm [1976].

The left part of the �gure shows two intensity pro�les along the same scanline of two
images. The spikes correspond to black dots. The line segments joining the two pro�les

indicate possible matches between dots given some maximum disparity range. These

matches are also shown in the right part of the �gure, where they form the nodes of a
graph. The vertical and horizontal arcs of this graph join nodes associated with the same

dot in the left or right image. The diagonal arcs join nodes with similar disparities.

In this approach, a quality measure is associated with each node. It is initialized to 1

for every pair of potential matches within some disparity range. The matching process is

iterative and parallel, each node being assigned at each iteration a weighted combination of

its neighbors' values. Excitory connections are assigned weights equal to 1, and inhibitory

ones weights equal to 0. A node is assigned a value of 1 when the corresponding weighted

sum exceeds some threshold, and a value of 0 otherwise. This approach works quite

reliably on random dot stereograms (Figure 13.10), but not on natural images, perhaps, as

suggested by Faugeras [1993], because the constraints it enforces are not su�cient to deal
with the complexities of real pictures. Section 13.2 will present a number of algorithms

that perform better on most real images, but the original Marr-Poggio algorithm and

its implementation retain the interest of o�ering an early example of a theory of human
stereopsis that allows the fusion of random dot stereograms.

Figure 13.10. From left to right: a random dot stereogram depicting four planes at

varying depth (a \wedding cake") and the disparity map obtained after 14 iterations of

the Marr-Poggio cooperative algorithm. Reprinted from [Marr, 1982], Figure 3-7.
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13.2 Binocular Fusion

13.2.1 Correlation

Correlation methods �nd pixel-wise image correspondences by comparing intensity

pro�les in the neighborhood of potential matches, and they are amongst the �rst

techniques ever proposed to solve the binocular fusion problem [Kelly et al., 1977;
Gennery, 1980]. More precisely, let us consider a recti�ed stereo pair and a point

(u; v) in the �rst image. We associate with the window of size p = (2m+1)�(2n+1)

centered in (u; v) the vector w(u; v) 2 IRp obtained by scanning the window values

one row at a time (the order is in fact irrelevant as long as it is �xed). Now, given

a potential match (u+ d; v) in the second image, we can construct a second vector

w
0(u+ d; v) and de�ne the corresponding (normalized) correlation function as

C(d) =
1

jw � �wj
1

jw0 � �w0j (w � �w) � (w0 � �w0);

where the u, v and d indices have been omitted for the sake of conciseness and �a

denotes the vector whose coordinates are all equal to the mean of the coordinates

of a (Figure 13.11).
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Figure 13.11. Correlation of two 3�5 windows along corresponding epipolar lines. The

second window position is separated from the �rst one by an o�set d. The two windows
are encoded by vectors w and w0 in IR15, and the correlation function measures the cosine

of the angle � between the vectors w� �w and w0
� �w0 obtained by substracting from the

components of w and w0 the average intensity in the corresponding windows.
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The normalized correlation function C clearly ranges from �1 to +1, and it

reaches its maximum value when the image brightnesses of the two windows are

related by an a�ne transformation I
0 = �I + � for some constants � and � with

� > 0 (see exercises). In other words, maxima of this function correspond to image

patches separated by a constant o�set and a positive scale factor, and stereo matches

can be found by seeking the maximum of the C function over some pre-determined

range of disparities.5

At this point, let us make a few remarks about matching methods based on

correlation. First, it is easily shown (see exercises) that maximizing the correlation

function is equivalent to minimizing the norm of the di�erence between the vectors

(1=jw� �wj)(w� �w) and (1=jw0� �w0j)(w0� �w0), or equivalently the sum of the squared

di�erences between the pixel values of the normalized windows being compared.

Second, although the calculation of the normalized correlation function at every

pixel of an image for some range of disparities is computationally expensive, it can be

implemented e�ciently using recursive techniques (see exercises). Finally, a major

problem with correlation-based techniques for establishig stereo correspondences is

that they implicitly assume that the observed surface is (locally) parallel to the

two image planes (Figure 13.12). This suggests a two-pass algorithm where initial

estimates of the disparity are used to warp the correlation windows to compensate

for inequal amounts of foreshortening in the two pictures [Kass, 1987; Devernay and

Faugeras, 1994].

O’O

l’l

L

Figure 13.12. The foreshortening of non-frontoparallel surfaces is di�erent for the two

cameras: a surface segment with length L projects onto two image segments of di�erent

lengths l and l0.

Figure 13.13 shows a reconstruction example obtained by such a method [De-

vernay and Faugeras, 1994]. In this case, a warped window is associated in the

right image with each rectangle in the left image. This window is de�ned by the

5The invariance of C to a�ne transformations of the brightness function a�ords correlation-
based matching techniques some degree of robustness in situations where the observed surface is
not quite Lambertian, or the two cameras have di�erent gains or lenses with di�erent f stops.



Section 13.2. Binocular Fusion 365

disparity in the center of the rectangle and its derivatives. An optimization process

is used to �nd the values of the disparity and of its derivatives that maximize the

correlation between the left rectangle and the right window, using interpolation to

retrieve appropriate values in the right image (see exercises for more details). As

shown in Figure 13.13, the reconstruction obtained by this method is clearly better

than the reconstruction found by plain correlation.

(a) (b) (c)

Figure 13.13. Correlation-based stereo matching: (a) a pair of stereo pictures; (b)

a texture-mapped view of the reconstructed surface; (c) comparison of the regular (left)

and re�ned (right) correlation methods in the nose region. Reprinted from [Devernay and

Faugeras, 1994], Figures 5, 8 and 9.

13.2.2 Multi-Scale Edge Matching

We saw in the last section that slanted surfaces pose problems to correlation-

based matchers. Other arguments against correlation can be found in the works

of Julesz [1960, p. 1145] (\One might think that the matching of corresponding

point domains (instead of corresponding patterns)6 could be achieved by searching

for a best �t according to some similarity criterion (e.g., maximal cross-correlation).

... But such a process cannot work. If the zone [used to search for correspondences]

is small, noise can easily destroy any zone-matching; if the zone size is increased,

ambiguities arise at the boundaries of objects which are at di�erent distances.")

and Marr [1982, p. 105] (\...by and large the primitives that the processes operate

on should correspond to physical items that have identi�able physical properties

and occupy a de�nite location on a surface in the world. Thus one should not try

to carry out stereo matching between gray-level intensity arrays, precisely because

a pixel corresponds only implicitly and not explicitly to a location on a visible

surface."). These arguments suggest that correspondences should be found at a

variety of scales, and that matches between (hopefully) physically-signi�cant image

features such as edges should be prefered to matches between raw pixel intensities.

6This remark shows, by the way, that the random dot stereogram experiments of Julesz do
not dismiss, at least in his thought, the possibility of a correlation-based process as opposed to a
higher-level, pattern recognition one.
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Marr and Poggio [1979] propose an algorithm that follows these two principles. Its

overall structure is quite simple, as described below.

1. Convolve the two (recti�ed) images with r2
G� �lters of increasing standard

deviations �1 < �2 < �3 < �4.

2. Find zero crossings of the Laplacian along horizontal scanlines of the �ltered

images.

3. For each �lter scale �, match zero crossings with the same parity and roughly

equal orientations in a [�w�;+w�] disparity range, with w� = 2
p
2�.

4. Use the disparities found at larger scales to control eye vergence and cause

unmatched regions at smaller scales to come into correspondence.

Algorithm 13.1: The Marr-Poggio-Grimson multi-scale algorithm

for establishing stereo correspondences [Marr and Poggio, 1979;
Grimson, 1981a].

Note that matches are sought at each scale in the [�w�; w�] disparity range,

where w� = 2
p
2� is the width of the central negative portion of the r2

G� �lter.

This choice is motivated by psychophysical and statistical considerations. In par-

ticular, assuming that the convolved images are white Gaussian processes, Grimson
[1981a] has shown that the probability of a false match occurring in the [�w�;+w�]

disparity range of a given zero crossing is only 0:2 when the orientations of the

matched features are within 30� of each other. A simple mechanism can be used

to disambiguate the multiple potential matches that may still occur within the

matching range. See [Grimson, 1981a] for details.

Of course, limiting the search for matches to the [�w�;+w�] range prevents the

algorithm from matching correct pairs of zero crossings whose disparity falls outside
this interval. Since w� is proportional to the scale � at which matches are sought,

eye movements (or equivalently image o�sets) controlled by the disparities found

at large scales must be used to bring large-disparity pairs of zero crossings within

matchable range at a �ne scale. This process occurs in Step 4 of the algorithm, and

it is illustrated by Figure 13.14. Once matches have been found, the corresponding

disparities can be stored in a bu�er, called the 21
2
-dimensional sketch by Marr and

Nishihara [1978].

This algorithmhas been implemented by Grimson [1981a], and extensively tested

on random dot stereograms and natural images. An example appears in Figure

13.15.
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Matching zero-crossings at multiple scales

Matching zero-crossings at a single scale

Match
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Figure 13.14. Multi-scale matching of zero crossings: the eye movements (or equiv-
alently the image o�sets used in matching) are controlled by seeking image regions that

have been assigned a disparity value at a scale �0 but not at a scale � < �0. These values
are used to re�ne the eye positions and bring the corresponding regions within matchable

range. The disparity value associated with a region can be found by various methods, for

example by averaging the disparity values found at each matched zero crossing within it.

Figure 13.15. Applying the multi-scale matching algorithm of Marr and Poggio [1979]

to a pair of images: (a) one of the pictures in the stereo pair; (b)-(e) its convolution with
four r2

� �lters of increasing sizes; (f)-(i) the corresponding zero crossings; (j)-(k) two views

of the disparity map obtained after matching; (l)-(m) two views of the surface obtained by

interpolating the reconstructed dots using the algorithm described in [Grimson, 1981b].
Reprinted from [Marr, 1982], Figure 4-8.
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13.2.3 Dynamic Programming

It is reasonable to assume that the order of matching image features along a pair

of epipolar lines is the inverse of the order of the corresponding surface attributes

along the curve where the epipolar plane intersects the observed object's boundary

(Figure 13.16(left)). This is the so-called ordering constraint that has been used in

stereo circles since the early eighties [Baker and Binford, 1981; Ohta and Kanade,

1985]. Interestingly enough, this constraint may not be satis�ed by real scenes, in

particular when small solids occlude parts of larger ones (Figure 13.16(right)), or

more rarely, at least in robot vision, when transparent objects are involved.

d
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d’
c’

O’O’O
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a
b

c a’
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D

O

b’
b b’

Figure 13.16. Ordering constraints. In the (usual) case shown in the left part of the

diagram, the order of feature points along the two (oriented) epipolar lines is the same,
and it is the inverse of the order of the scene points along the curve where the observed

surface intersects the epipolar plane. In the case shown in the right part of the �gure, a

small object lies in front of a larger one. Some of the surface points are not visible in one
of the images (e.g., A is not visible in the right image), and the order of the image points

is not the same in the two pictures: b is on the right of d in the left image, but b0 is on the

left of d0 in the right image.

Despite these reservations, the ordering constraint remains a reasonable one,

and it can be used to devise e�cient algorithms relying on dynamic programming
[Forney, 1973; Aho et al., 1974] to establish stereo correspondences (Figure 13.17).

Speci�cally, let us assume that a number of feature points (say edgels) have been

found on corresponding epipolar lines. Our objective here is to match the intervals

separating those points along the two intensity pro�les (Figure 13.17(left)). Accord-

ing to the ordering constraint, the order of the feature points must be the same,

although the occasional interval in either image may be reduced to a single point

corresponding to missing correspondences associated with occlusion and/or noise.

This setting allows us to restate the matching problem as the optimization of

a path's cost over a graph whose nodes correspond to pairs of left and right im-

age features, and arcs represent matches between left and right intensity pro�le

intervals bounded by the features of the corresponding nodes (Figure 13.17(right)).

This optimization problem can be solved using dynamic programming as shown in

Algorithm 13.2 below.
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Figure 13.17. Dynamic programming and stereopsis: the left part of the �gure shows

two intensity pro�les along matching epipolar lines. The polygons joining the two pro�les
indicate matches between successive intervals (some of the matched intervals may have

zero length). The right part of the diagram represents the same information in graphical

form: an arc (thick line segment) joins two nodes (i; i0) and (j; j0) when the intervals (i; j)
and (i0; j0) of the intensity pro�les match each other.

% Loop over all nodes (k; l) in ascending order.

for k = 1 to m do

for l = 1 to n do

% Initialize optimal cost C(k; l) and backward pointer B(k; l).

C(k; l) +1;B(k; l) nil;

% Loop over all inferior neighbors (i; j) of (k; l).

for (i; j) 2 Inferior-Neighbors(k; l) do
% Compute new path cost and update backward pointer if necessary.

d C(i; j) + Arc-Cost(i; j; k; l);

if d < C(k; l) then C(k; l) d;B(k; l) (i; j) endif;

endfor;

endfor;

endfor;

% Construct optimal path by following backward pointers from (m;n).

P  f(m;n)g; (i; j) (m;n);

while B(i; j) 6= nil do (i; j) B(i; j);P  f(i; j)g [ P endwhile.

Algorithm 13.2: A dynamic-programming algorithm for establishing stereo cor-

respondences between two corresponding scanlines with m and n edge points
respectively (the endpoints of the scanlines are included for convenience). Two
auxiliary functions are used: Inferior-Neighbors(k; l) returns the list of neighbors
(i; j) of the node (k; l) such that i � k and j � l, and Arc-Cost(i; j; k; l) evaluates
and returns the cost of matching the intervals (i; k) and (j; l). For correctness,
C(1; 1) should be initialized with a value of zero.
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As given, Algorithm 13.2 has a computational complexity of O(mn), where m

and n respectively denote the number of edge points on the matched left and right

scanlines.7 Variants of this approach have been implemented by Baker and Bin-

ford [1981], who combine a coarse-to-�ne intra-scanline search procedure with a

cooperative process for enforcing inter-scanline consistency, and Ohta and Kanade
[1985], who use dynamic programming for both intra- and inter-scanline optimiza-

tion, the latter procedure being conducted in a three-dimensional search space.

Figure 13.18 shows a sample result taken from [Ohta and Kanade, 1985].

Figure 13.18. Two images of the Pentagon and an isometric plot of the disparity map

computed by the dynamic-programming algorithm of Ohta and Kanade [1985]. Reprinted

from [Ohta and Kanade, 1985], Figures 18 and 22.

13.3 Using More Cameras

13.3.1 Trinocular Stereo

Adding a third camera eliminates (in large part) the ambiguity inherent in two-

view point matching. In essence, the third image can be used to check hypothetical

matches between the �rst two pictures (Figure 13.19): the three-dimensional point

associated with such a match is �rst reconstructed then reprojected into the third

image. If no compatible point lies nearby, then the match must be wrong. In fact,

the reconstruction/reprojection process can be avoided by noting, as in Chapter 12,

that, given three weakly (and a fortiori strongly) calibrated cameras and two images

of a point, one can always predict its position in a third image by intersecting the

corresponding epipolar lines.

The trifocal tensor introduced in Chapter 12 can be used to also predict the

tangent line to some image curve in one image given the corresponding tangents

in the other images (Figure 13.20): given matching tangents l2 and l3 in images

2 and 3, we can reconstruct the tangent l1 in image number 1 using Eq. (12.2.4),

7Our version of the algorithm assumes that all edges are matched. To account for noise and
edge detection errors, it is reasonable to allow the matching algorithm to skip a bounded number
of edges, but this does not change its asymptotic complexity [Ohta and Kanade, 1985].
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Figure 13.19. The small grey discs indicate the incorrect reconstructions associated

with the left and right images of four points. The addition of a central camera removes

the matching ambiguity: none of the corresponding rays intersects any of the six discs.
Alternatively, matches between points in the �rst two images can be checked by reproject-

ing the corresponding three-dimensional point in the third image. For example, the match

between b1 and a2 is obviously wrong since there is no feature point in the third image
near the reprojection of the hypothetical reconstruction numbered 1 in the diagram.
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Figure 13.20. Given matches between the points p1 and p2 and their tangents l1 and

l2 in two images, it is possible to predict both the position of the corresponding point p3
and tangent l3 in a third image.
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Algorithms for trinocular stereo include [Milenkovic and Kanade, 1985; Yachida

et al., 1986; Ayache and Lustman, 1987; Robert and Faugeras, 1991]. An example

is shown in Figure 13.21.

Figure 13.21. Three images and the correspondences between edges found by the
algorithm of Robert and Faugeras [1991; 1995]. Reprinted from [Robert and Faugeras,

1995], Figure 9.

As shown in [Robert and Faugeras, 1991; Robert and Faugeras, 1995], it is in

fact also possible to predict the curvature at a point on some image curve given

the corresponding curvatures in the other images (see exercises). This fact can be

used to e�ectively reconstruct curves from their images [Faugeras, 1993; Robert and

Faugeras, 1995].

13.3.2 Multiple-Baseline Stereo

In most trinocular stereo algorithms, potential correspondences are hypothesized

using two of the images, then con�rmed or rejected using the third one. In contrast,

Okutami and Kanade [1993] have proposed a a multi-cameramethod where matches

are found using all pictures at the same time. The basic idea is simple but elegant:

assuming that all the images have been recti�ed, the search for the correct disparities

is replaced by a search for the correct depth, or rather its inverse. Of course, the

inverse depth is proportional to the disparity for each camera, but the disparity

varies from camera to camera, and the inverse depth can be used as a common

search index. Picking the �rst image as a reference, Okutami and Kanade add the

sums of squared di�erences associated with all other cameras into a global evaluation

function E (this is of course, as shown earlier, equivalent to adding the correlation

functions associated with the images).

Figure 13.22 plots the value of E as a function of inverse depth for various sets

of cameras. It should be noted that the corresponding images contain a repetitive

pattern and that using only two or three cameras does not yield a single, well-de�ned

minimum. On the other hand, adding more cameras provides a clear minimum

corresponding to the correct match.
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Figure 13.22. Combining multiple-baseline stereo pairs: the sum of squared di�erences

is plotted here as a function of the inverse depth for various numbers of input pictures. The

data are taken from a scanline near the top of the images shown in Figure 13.23, whose

intensity is nearly periodic. The diagram clearly shows that the mininum of the function

becomes less and less ambiguous as more images are added. Reprinted from [Okutami and
Kanade, 1993], Figure 7.

Figure 13.23 shows a sequence of ten recti�ed images and a plot of the surface

reconstructed by the algorithm.

Figure 13.23. A series of ten images and the corresponding reconstruction. The grid-

board near the top of the images is the source for the nearly periodic brightness signal
giving rise to ambiguities in Figure 13.22. Reprinted from [Okutami and Kanade, 1994],

Figure 13(c).

13.4 Notes

The fact that disparity gives rise to stereopsis in human beings was �rst demon-

strated by Wheatstone's invention of the stereoscope [Wheatstone, 1838]. The fact

that disparity is su�cient for stereopsis without eye movements was demonstrated
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shortly afterwards by Dove [1841], using illumination provided by an electric spark

and much too brief for eye vergence to take place [Helmholtz, 1909, p. 455]. Hu-

man stereo vision is further discussed in the classical works of Helmholtz [1909] and

Julesz [1971] as well as the books by Frisby [1980] and Marr [1982]. Theories of

human binocular perception not presented in this chapter for lack of space include
[Koenderink and Van Doorn, 1976a; Pollard et al., 1970; Anderson and Nayakama,

1994].

Excellent treatments of machine stereopsis can be found in the books of Grim-

son [1981b], Marr [1982], Horn [1986] and Faugeras [1993]. Marr focusses on the

computational aspects of human stereo vision, while Horn's account emphasizes the

role of photogrammetry in arti�cial stereo systems. Grimson and Faugeras empha-

size the geometric and algorithmic aspects of stereopsis. The constraints associated

with stereo matching are discussed in [Binford, 1984].

As noted earlier, image edges are often used as the basis for establishing binoc-

ular correspondences, at least in part because they can (in principle) be identi-

�ed with physical properties of the imaging process, corresponding for example to

albedo, color, or occlusion boundaries. A point rarely taken into account by stereo

matching algorithms is that binocular fusion always fails along the contours of solids
bounded by smooth surfaces (Figure 13.24). Indeed, the corresponding image edges

are in this case viewpoint dependent, and matching them yields erroneous recon-

structions.
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Figure 13.24. Stereo matching fails at smooth object boundaries: for narrow baselines,

the pairs (c;d0) and (a; b0) will be easily matched by most edge-based algorithms, yielding

the �ctitious points F and E as the corresponding three-dimensional reconstructions.

As shown in [Arbogast and Mohr, 1991; Vaillant and Faugeras, 1992; Cipolla and

Blake, 1992; Boyer and Berger, 1996] and the exercises, three cameras are su�cient

in this case to reconstruct a local second-degree surface model.

It is not quite clear at this point whether feature-based matching is preferable to
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grey-level matching. The former is accurate near surface markings but only yields a

sparse set of measurements, while the latter may give poor results in uniform regions

but provides dense correspondences in textured areas. In this context, the topic of

dense surface interpolation from sparse samples is important, although it has hardly

been mentioned in this chapter. The interested reader is refered to [Grimson, 1981b;

Terzopoulos, 1984] for more details.

A di�erent approach to stereo vision that we have also failed to discuss for

lack of space involves higher-level interpretation processes, for example predic-

tion/veri�cation methods operating on graphical image descriptions [Ayache and

Faverjon, 1997], or hierarchical techniques matching curves, surfaces and volumes

found in two images [Lim and Binford, 1988].

All of the algorithms presented in this chapter (implicitly) assume that the

images being fused are quite similar. This is equivalent to considering a short

baseline. An e�ective algorithm for dealing with wide baselines can be found in
[Pritchett and Zisserman, 1998]. Another, model-based approach will be discussed

in Chapter 26.

Finally, we have limited our attention to stereo rigs with �xed intrinsic and

extrinsic parameters. Active vision is concerned with the construction of vision

systems capable of dynamically modifying these parameters, e.g., changing camera

zoom and vergence angles, and taking advantage of these capabilities in perceptual

and robotic tasks [Aloimonos et al., 1987; Bajcsy, 1988; Ahuja and Abbott, 1993;

Brunnstr�om et al., 1996].

13.5 Assignments

Exercises

1. Use the de�nition of disparity to characterize the accuracy of stereo recon-

struction as a function of baseline and depth.

2. Give reconstruction formulas for verging eyes in the plane.

3. Give an algorithm for generating an ambiguous random dot stereogram that

can depict two di�erent planes hovering over a third one.

4. Give an algorithm for generating single-image random dot stereograms.

5. Show that the correlation function reaches its maximum value of 1 when the

image brightnesses of the two windows are related by the a�ne transform

I
0 = �I + � for some constants � and � with � > 0.

6. Prove the equivalence of correlation and sum of squared di�erences for images

with zero mean and unit Frobenius norm.

7. Recursive computation of the correlation function:
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(a) Show that

(w � �w) � (w0 � �w0) = w �w0 � (2m+ 1)(2n+ 1)�I �I0:

(b) Show that the average intensity �I can be computed recursively, and es-

timate the cost of the incremental computation.

(c) Generalize the above calculations to all elements involved in the con-

struction of the correlation function, and estimate the overall cost of

correlation over a pair of images.

8. Show how a �rst-order expansion of the disparity function for recti�ed im-

ages can be used to warp the window of the right image corresponding to

a rectangular region of the left one. Show how to compute correlation in

this case using interpolation to estimate right-image values at the locations

corresponding to the centers of the left window's pixels.

9. Show how to predict curvature in one image from curvature measurements in

two other pictures.

10. Three-camera reconstruction of smooth surfaces' occluding contours: show

that, in the planar case, three matching rays provide enough constraints to

reconstruct the circle of curvature as shown below.
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Programming Assignments

1. Implement the recti�cation process.

2. Implement the algorithm developed in Exercise 4 for generating single-image

random dot stereograms.

3. Implement a correlation-based approach to stereopsis.



Section 13.5. Assignments 377

4. Implement a multi-scale approach to stereopsis.

5. Implement a dynamic-programming approach to stereopsis.

6. Implement a trinocular approach to stereopsis.


