Chapter 21

FINDING TEMPLATES
USING CLASSIFIERS

There are a number of important object recognition problems that involve looking
for image windows which have a simple shape and stylised content. For example,
frontal faces appear as oval windows, and (at a coarse scale) all faces look pretty
much the same — a dark horizontal bar at the eyes and mouth, a light vertical
bar along the nose, and not much texture on the cheeks and forehead. As another
example, a camera mounted on the front of a car will always see relevant stop signs
as having about the same shape and appearance.

This suggests a view of object recognition where we take all image windows
of a particular shape and test them to tell if the relevant object is present. If
we don’t know how big the object will be, we can search over scale, too; if we
don’t know its orientation, we might search over orientation as well, etc. Generally,
this approach is referred to as template matching. There are some objects that
can be found very effectively with a template matcher. Faces and roadsigns are
important examples. Secondly, while many objects appear to be hard to find with
simple template matchers (it would be hard to find a person this way, because the
collection of possible image windows that represent a person is immense), there
is some evidence that reasoning about relations between many different kinds of
templates can be an effective way to find objects. In chapter ??, we explore this
line of reasoning further.

The main issue to study in template matching is how one builds a test that
can tell whether an oval represents a face or not. Ideally, this test will be obtained
using a large set of examples. The test is known as a classifier — a classifier is
anything that takes a feature set as an input and produces a class label. In this
chapter, we describe a variety of techniques for building classifiers, with examples of
their use in vision applications. We first present the key ideas and terminology used
(section 21.1); we then show two successful classifiers built using histograms (sec-
tion 21.2); for more complex classifiers, we need to choose the features a classifier
should use, and we discuss two methods in (section 21.3). Finally, we describe two
different methods for building classifiers with current applications in vision. Sec-

613

614 Finding Templates using Classifiers Chapter 21

tion ?7? is an introduction to the use of neural nets in classification; and section 21.5
describes a very useful classifier known as a support vector machine.

21.1 Classifiers

Classifiers are built by taking a set of labelled examples and using them to come
up with a rule that will assign a label to any new example. In the general problem,
we have a training data set (x;,y;); each of the x; consists of measurements of the
properties of different types of object, and the y; are labels giving the type of the
object that generated the example. We know the relative costs of mislabelling each
class, and must come up with a rule that can take any plausible and assign a
class to it.

The cost of an error significantly affects the decision that is made. In sec-
tion 21.1.1, we study this question. It will emerge that the probability of a class
label given a measurement is the key matter. In section 21.1.2, we discuss meth-
ods for building appropriate models in a general way. Finally, we discuss how to
estimate the performance of a given classifier (section 21.1.5).

21.1.1 Using Loss to Determine Decisions

The choice of classification rule must depend on the cost of making a mistake.
For example, doctors engage in classification all the time — given a patient, they
produce the name of a disease. A doctor who decided that a patient suffering from
a dangerous and easily treated disease is well, is going to have problems. It would
be better to err on the side of misclassifying healthy patients as sick even if doing
so involves treating some healthy patients unnecessarily.

The cost depends on what is misclassified to what. Generally, we write outcomes
as (i — j), meaning that an item of type i is classified as an item of type j. Each
outcome has its own cost, which is known as a loss. Hence, we have a loss function
which we shall write as L(i — j), meaning the loss incurred when an object of type
i is classified as having type j. Since losses associated with correct classification
should not affect the design of the classifier, L(i — i) must be zero; but the other
losses could be any positive numbers.

The risk function of a particular classification strategy is the expected loss
when using it, as a function of the kind of item. The total risk is the total
expected loss when using the classifier. Thus if there were two classes, the total risk
of using strategy s would be:

R(s) = Pr{l — 2|using s} L(1 — 2) + Pr{2 — 1|using s} L(2 — 1)

The desirable strategy is one that minimizes this total risk.

Building a Two Class Classifier that Minimizes Total Risk

Assume that the classifier can choose between two classes, and we have a known
loss function. There is some boundary in the feature space — which we call the

Section 21.1. Classifiers 615

decision boundary — such that points on one side belong to class one and points
on the other side to class two.

We can resort to a trick to determine where the decision boundary is. It must
be the case that, for points on the decision boundary of the optimal classifier, either
choice of class has the same expected loss — if this wasn’t so, we could obtain a
better classifier by always choosing one class (and so moving the boundary). This
means that, for measurements on the decision boundary, choosing class one yields
the same expected loss as choosing class two.

A choice of class one for a point @ at the decision boundary yields an expected
loss

P{classis 2|x} L(2 — 1) + P{class is 1|} L(1 — 1) = P{classis 2|2} L(2 > 1)+ 0
= p(2lz)L(2 = 1)

(you should watch the one’s and two’s closely here). Similarly, a choice of class two
for this point yields an expected loss

P{class is 1|&} L(1 — 2) = p(1|x)L(1 — 2)

and these two terms must be equal. This means our decision boundary consists of
the points & where
p(lj®)L(1 — 2) = p(2|@)L(2 — 1)

We can come up with an expression that is often slightly more practical, by using
Bayes’ rule. Rewrite our expression as

p(z[1)p(1)
p(z)

_ p(z|2)p(2)

L(1—2)=) L(2—1)

and clear denominators to get
p(z[1)p(1)L(1 — 2) = p(z[2)p(2)L(2 — 1)

This expression identifies points @ on a class boundary; we now need to know how
to classify points off a boundary.

At points off the boundary, we must choose the class with the lowest expected
loss. Recall that, if we choose class two for a point «, the expected loss is

p(ljz)L(1 — 2)
etc. This means that we should choose class one if
p(l]x)L(1 — 2) > p(2|®)L(2 — 1)

and class two if
p(l]x)L(1 — 2) < p(2|®)L(2 — 1)

616 Finding Templates using Classifiers Chapter 21

A Classifier for Multiple Classes

From now on, we shall assume that L(i — j) is zero for i = j and one otherwise —
that is, that each outcome has the same loss. In some problems, there is another
option, which is to refuse to decide which class an object belongs to. This option
involves some loss, too, which we shall assume to be d < 1 (if the loss involved in
refusing to decide is greater than the loss involved in any decision, then we’d never
refuse to decide).

For our loss function, the best strategy — which is known as the Bayes clas-
sifier — is given in algorithm 1. The total risk associated with this rule is known
as the Bayes risk — this is the smallest possible risk that we can have in using
a classifier. It is usually rather difficult to know what the Bayes classifier — and
hence the Bayes risk — is, because the probabilities involved are not known exactly.
In a few cases it is possible to write the rule out explicitly. One way to tell the
effectiveness of a technique for building classifiers is to study the behaviour of the
risk as the number of examples increases — for example, one might want the risk
to converge to the Bayes risk in probability if the number of examples is very large.
The Bayes risk is seldom zero, as figure 21.1 illustrates.

For a loss function
1 i#£j
L(i — j) = 0 i=j
d <1 no decision

the best strategy is
o if Pr{k|x} > Pr{i|x} for all i not equal to k, and if this proba-
bility is greater than 1 — d, choose type k

o if there are several classes ki..k; for which Pr{ki|x} =
Priks|x} = ... = Pr{k|x} > Pr{i|x} for all i not in ki, ..k;,
choose uniformly and at random between ki, ..k;

o if for all k we have Pr{k|x} > Pr{i|lx} < 1—d, refuse to decide.

Algorithm 21.1: The Bayes classifier classifies points using the posterior prob-

ability that an object belongs to a class, the loss function, and the prospect of
refusing to decide.

21.1.2 Overview: Methods for Building Classifiers

Usually, we do not know Pr {x|k} exactly — which are often called class-conditional
densities — or Pr{k}, and must determine a classifier from an example data set.
There are two rather general strategies:

e Explicit probability models: we can use the example data set to build
a probability model (of either the likelihood or the posterior, depending on

Section 21.1. Classifiers 617

A

Decision Boundary Decision Boundary

p(1]x) p(2|x)

»
>

i) ek

X X

Figure 21.1. This figure shows typical elements of a two class classification problem. We
have plotted p(class|z) as a function of the feature . Assuming that L(1 — 2) = L(2 — 1),
we have marked the classifier boundaries. In this case, the Bayes risk is the sum of the
amount of the posterior for class one in the class two region and the amount of the posterior
for class two in the class one region (the hatched area in the figures). For the case on the
left, the classes are well separated, which means that the Bayes risk will be small; for the
case on the right, the Bayes risk is rather large.

taste). There are a very wide variety of ways of doing this, some of which
we shall see in the following sections. In the very simplest case, we know
that the class-conditional densities come from some known parametric form
of distribution. In this case, we can compute estimates of the parameters
from the data set, and plug these estimates into the Bayes rule. This strategy
is often known as a “plug-in” classifier (section ?7?). This approach covers
other parametric density models and other methods of estimating parameters.
One subtlety is that the “best” estimate of a parameter may not give the best
classifier, because the parametric model may not be correct. Another subtlety
is that a good classifier may be obtained using a parametric density model that
is not a very accurate description of the data (see figure 21.2). In many cases,
it is hard to obtain a satisfactory model with a small number of parameters.
More sophisticated modelling tools (such as neural nets, which we deal with
in some detail in section 21.4) provide very flexible density models that can
be fitted using data.

Determining decision boundaries directly: Quite bad probability mod-
els can produce good classifiers, as figure 21.2 indicates. This is because the
decision boundaries are what determine the performance of a classifier, not
the details of the probability model (the main role of the probability model
in the Bayes classifier is to identify the decision boundaries). This suggests
that we might ignore the probability model, and attempt to construct good
decision boundaries directly. This approach is often extremely successful; it is

618 Finding Templates using Classifiers Chapter 21

particularly attractive when there is no reasonable prospect of modelling the
data source. One strategy assumes that the decision boundary comes from
one or another class, and constructs an extremisation problem to choose the
best element of that class. A particularly important case comes when the data
is linearly separable — which means that there exists a hyperplane with all
the positive points on one side and all the negative points on the other — and
thus that a hyperplane is all that is needed to separate the data (section ?7?).

P(2|x)

v

X

Figure 21.2. The figure shows posterior densities for two classes. The optimal decision
boundary is shown as a dashed line. Notice that, while a normal density may provide
rather a poor fit to the posteriors, the quality of the classifier it provides depends only
on how well it predicts the position of the boundaries. In this case, assuming that the
posteriors are normal may provide a fairly good classifier, because P(2|z) looks normal,
and the mean and covariance of P(1|z) look as though they would predict the boundary
in the right place.

21.1.3 Example: A Plug-in Classifier for Normal Class-conditional
Densities

An important plug-in classifier occurs when the class-conditional densities are known
to be normal. We can either assume that the priors are known, or estimate the pri-
ors by counting the number of data items from each class. Now we need to provide
the parameters for the class-conditional densities. We do this as an estimation
problem, using the data items to estimate the mean p; and covariance ¥ for each
class. Now, since loga > logb implies a > b, we can work with the logarithm of the
posterior. This yields a classifier of the form in algorithm 2.

The term §(x; py,, Xg) in this algorithm is known as the Mahalanobis dis-
tance [?]. The algorithm can be interpreted geometrically as saying that the cor-
rect class is the one whose mean is closest to the data item, taking into account
the variance. In particular, distance from a mean along a direction where there

Section 21.1. Classifiers 619

Assume we have N classes, and the k’th class contains Ny examples, of which the
1’th is written as @y ;.

For each class k, estimate the mean and standard deviation for that class-
conditional density.

1
Ky = E;“’m
L
o o o T
Y = N _1;(331“ i) (i —)

To classify an example x
Choose the class k with the smallest value of §(x; pg,) — Pr{k}

where

1 _ 1/2
006 i Ze) = 5 (6 =)" (e — i)

Algorithm 21.2: A plug-in classifier can be used to classify objects into classes if

the class-conditional densities are known to be normal

is little variance has a large weight and distance from the mean along a direction
where there is a large variance has little weight. This classifier can be simplified
by assuming that each class has the same covariance (with the advantage that we
have fewer parameters to estimate). In this case, because the term 7%~z is com-
mon to all expressions, the classifier actually involves comparing expressions that
are linear in x (exercise ?7). If there are only two classes the process boils down
to determining whether a linear expression in x is greater than or less than zero
(exercise 77).

21.1.4 Example: A Non-Parametric Classifier using Nearest Neigh-
bours

It is reasonable to assume that example points “near” an unclassified point should
indicate the class of that point. Nearest neighbours methods build classifiers
using this heuristic. We could classify a point by using the class of the nearest
example whose class is known, or use several example points, and make them vote.
It is reasonable to require that some minimum number of points vote for the class
we choose.

A (k,1) nearest neighbour classifier finds the k example points closest to the
point being considered, and classifies this point with the class that has the highest
number of votes, as long as this class has more than [votes (otherwise the point is
classified as unknown). A (k,0)-nearest neighbour classifier is usually known as a

620 Finding Templates using Classifiers Chapter 21

k-nearest neighbour classifier, and a (1, 0)-nearest neighbour classifier is usually
known as a nearest neighbour classifier.

Nearest neighbour classifiers are known to be good, in the sense that the risk of
using a nearest neighbour classifier with a sufficiently large number of examples lies
within quite good bounds of the Bayes risk. As k grows, the difference between the
Bayes risk and the risk of using a k-nearest neighbour classifier goes down as 1/ Vk;
in practice, one seldom uses more than three nearest neighbours. Furthermore, if
the Bayes risk is zero, the expected risk of using a k-nearest neighbour classifier is
also zero (see [Devroye et al., 1996] for more detail on all these points).

Nearest neighbour classifiers come with some computational subtleties, however.
The first is the question of finding the k nearest points, which is no mean task in
a high-dimensional space. This task can be simplified by noticing that some of the
example points may be superfluous. If, when we remove a point from the example
set, the set still classifies every point in the space in the same way (the decision
boundaries have not moved), then that point is redundant and can be removed. The
decision regions for (k,l)-nearest neighbour classifiers are convex polytopes; this
makes familiar algorithms available in 2D — where Voronoi diagrams implement
the nearest neighbour classifier — but leads to complications in high dimensions,
where optimal algorithms are not known as of writing.

Given an feature vector x
1. determine the k training examples that are nearest, o1, ..., ®g;

2. determine the class ¢ that has the largest number of representatives n in this
set;

3. if n > I, classify x as ¢, otherwise refuse to classify it.

Algorithm 21.3: A (k,l) nearest neighbour classifier uses the type of the nearest

training examples to classify a feature vector

A second difficulty in building such classifiers is the choice of distance. For
features that are obviously of the same type, such as lengths, the usual metric may
be good enough. But what if one feature is a length, one is a colour, and one is an
angle? One possibility is to use a covariance estimate to compute a Mahalanobis-like
distance.

21.1.5 Estimating and Improving Performance

Typically, classifiers are chosen to work well on the training set, and this can mean
that the performance of the classifier on the training set is a poor guide to its overall
performance. One example of this problem is the (silly) classifier that takes any
data point and, if it is the same as a point in the training set, emits the class of
that point and otherwise chooses randomly between the classes. This classifier has

Section 21.1. Classifiers 621

been learnt from data, and has a zero error rate on the training data set; it is likely
to be unhelpful on any other data set, though.

The difficulty occurs because classifiers are subject to overfitting effects. The
phenomenon, which is known by a variety of names (selection bias is quite widely
used), has to do with the fact that the classifier is chosen to perform well on the
training data set. The training data is a (possibly representative) subset of the
available possibilities. The term overfitting is descriptive of the source of the prob-
lem, which is that the classifier’s performance on the training data set may have to
do with quirks of that data set that don’t occur in other sets of examples. If the
classifier does this, it is quite possible that it will perform very well on the training
data and very badly on any other data set (this phenomenon is often referred to as
generalising badly).

Generally, we expect classifiers to perform somewhat better on the training set
than on the test set (for example, see figure 21.16, which shows training set and test
set errors for a classifier that is known to work very well). Overfitting can result in
a substantial difference between performance on the training set and performance
on the test set. This leaves us with the problem of predicting performance. There
are two possible approaches: we can hold back some training data to check the per-
formance of the classifier (an approach we describe below), or we can use theoretical
methods to bound the future error rate of the classifier (see, for example, []).

Estimating Total Risk with Cross-Validation

We can make direct estimates of the expected risk of using a classifier, if we split
the data set into two subsets, train the classifier on one subset and test it on the
other. This is a waste of data, particularly if we have very few data items for a
particular class, and may lead to an inferior classifier. However, if the size of the test
subset is small, the difficulty may not be significant. In particular, we could then
estimate total risk by averaging over all possible splits. This technique, known as
cross-validation, allows an estimate of the likely future performance of a classifier,
at the expense of substantial computation.

The most usual form of this algorithm involves omitting single items from the
data set, and is known as leave-one-out cross-validation. Errors are usually
estimated by simply averaging over the class, but more sophisticated estimates are
available [?]. We will not justify this tool mathematically; however, it is worth
noticing that leave-one-out cross-validation in some sense looks at the sensitivity
of the classifier to a small change in the training set. If a classifier performs well
under this test, then large subsets of the data set look similar to one another, which
suggests that a representation of the relevant probabilities derived from the data
set might be quite good.

Using Bootstrapping to Improve Performance

Generally, more training data leads to a better classifier. However, training classi-
fiers with very large data sets can be difficult, and there are diminishing returns.

622 Finding Templates using Classifiers Chapter 21

Choose some class of subsets of the training set,
for example, singletons.

For each element of that class, construct a classifier by
omitting that element in training, and compute the
classification errors (or risk) on the omitted subset.

Average these errors over the class of subsets to estimate
the risk of using the classifier trained on the entire training
data set.

Algorithm 21.4: Cross-Validation

Typically, only a relatively small number of example items are really important in
determining the behaviour of a classifier (we see this phenomenon in greater detail
in section ??). The really important examples tend to be rare cases that are quite
hard to discriminate — this is because these cases affect the position of the decision
boundary most significantly. We need a large data set to ensure that these cases
are present, but it appears inefficient to go to great effort to train on a large data
set, most of whose elements aren’t particularly important.

There is a useful trick that avoids much redundant work. We train on a subset of
the examples, run the resulting classifier on the rest of the examples, and then insert
the false positives and false negatives into the training set to retrain the classifier.
This is because the false positives and false negatives are the cases that give the
most information about errors in the configuration of the decision boundaries. This
strategy is known as bootstrapping (the name is potentially confusing, because
there is an unrelated statistical procedure known as bootstrapping; nonetheless,
we're stuck with it at this point).

21.2 Building Classifiers from Class Histograms

One simple way to build a probability model for a classifier is to use a histogram. If
a histogram is divided by the total number of pixels, we get a representation of the
class-conditional probability density function. It is a fact that, as the data set gets
larger and the histogram bins get smaller, the histogram divided by the total number
of data items will almost certainly converge to the probability density function [|. In
low dimensional problems, this approach can work quite well (section 21.2.1). It isn’t
practical for high dimensional data because the number of histogram bins required
quickly becomes intractable, unless we use strong independence assumptions to
control the complexity (section 21.5).

Section 21.2. Building Classifiers from Class Histograms 623

21.2.1 Finding Skin Pixels using a Classifier

As we indicated in section 7?7, skin-finding is useful for activities like building gesture
based interfaces. Skin has a quite characteristic range of colours, suggesting that
we can build a skin finder by classifying pixels on their colour. Jones and Rehg
construct a histogram of RGB values due to skin pixels, and a second histogram
of RGB values due to non-skin pixels. These histograms serve as models of the
class-conditional densities.

We write & for a vector containing the colour values at a pixel. We subdi-
vide this colour space into boxes, and count the percentage of skin pixels that
fall into each box — this histogram supplies p(x|skin pixel), which we can evalu-
ate by determining the box corresponding to @ and then reporting the percentage
of skin pixels in this box. Similarly, a count of the percentage of non-skin pix-
els that fall into each box supplies p(a|not skin pixel). We need p(skin pixel) and
p(not skin pixel) — or rather, we need only one of the two, as they sum to one.
Assume for the moment that the prior is known. We can now build a classifier,
using Bayes’ rule to obtain the posterior (keep in mind that p(«) is easily computed
as p(x|skin pixel) + p(x|not skin pixel)).

One way to estimate the prior is to model p(skin pixel) as the fraction of skin
pixels in some (ideally large) training set. Notice that our classifier compares

leL(skin — not skin)
p(x)
with
p(x|not skin)p(not skin)
p(x)
Now by rearranging terms and noticing that p(skin|z) = 1 — p(not skin|x), our
classifier becomes

L(not skin — skin)

o if p(skin|x) > 6, classify as skin
o if p(skin|x) < 6, classify as not skin
o if p(skin|x) = 6, choose classes uniformly and at random

where 0 is an expression that doesn’t depend on x, and encapsulates the relative
loss, etc. This yields a family of classifiers, one for each choice of 6.

Each classifier in this family has a different false-positive and false-negative rate.
These rates are functions of #, so we can plot a parametric curve that captures
the performance of the family of classifiers. This curve is known as a receiver
operating curve (or ROC for short). Figure 21.4 shows the ROC for a skin finder
built using this approach. The ROC is invariant to choice of prior (exercises)— this
means that if we change the value of p(skin), we can choose some new value of
0 to get a classifier with the same performance. This yields another approach to
estimating a prior. We choose some value rather arbitrarily, plot the loss on the
training set as a function of 8, and then select the value of # that minimizes this
loss.

624 Finding Templates using Classifiers Chapter 21

" 1

n
=

L3

Figure 21.3. The figure shows a variety of images together with the output of the
skin detector of Jones and Rehg applied to the image. Pixels marked black are skin
pixels, and white are background. Notice that this process is relatively effective, and
could certainly be used to focus attention on, say, faces and hands. figure from Jones
and Rehg, Statistical color models with application to skin detection, p.10, in the fervent
hope of receiving permission

21.2.2 Face Finding Assuming Independent Template Responses

Histogram models become impractical in high dimensions, because the number of
boxes required goes up as a power of the dimension. We can dodge this phenomenon.
Recall from chapter ?? that independence assumptions reduce the number of pa-
rameters that must be learned in a probabilistic model; by assuming that terms are
independent, we can reduce the dimension sufficiently to use histograms. While this
appears to be an aggressive oversimplification, it can result in useful systems. In
one such system, due to Schneiderman and Kanade, this model is used to find faces.
Assume that the face occurs at a fixed, known scale (we could search smoothed and
resampled versions of the image to find larger faces) and will occupy a region of

Section 21.2. Building Classifiers from Class Histograms 625

ROC curves on test set showing effact of increased bin size

in

i

Prabability of coract detection
3 g

1. 266" histogram [
—— 2. 32% histogram
3. 16" histogram

1
015 02 .25 a3 a3s o4
Probability of false detection

Figure 21.4. The receiver operating curve for the skin detector of Jones and Rehg.
This plots the detection rate against the false negative rate for a variety of values of the
parameter 6. A perfect classifier has an ROC that, on these axes, is a horizontal line at
100% detection. Notice that the ROC varies slightly with the number of boxes in the
histogram. figure from Jones and Rehg, Statistical color models with application to skin
detection, p.11, in the fervent hope of receiving permission

known shape. In the case of frontal faces, this might be an oval or a square; for a
lateral face, this might be some more complicated polygon.

We now need to model the image pattern generated by the face. This is a
likelihood model — we want a model giving P(image pattern|face). As usual, it is
helpful to think in terms of generative models — the process by which a face gives
rise to an image patch. The set of possible image patches is somewhat difficult to
deal with, because it is big, but we can avoid this by dividing the image patch into
a set of subregions, and then labelling the subregions, using a small set of labels.

An appropriate labelling can be obtained using a clustering algorithm and a
large number of example images. For example, we might cluster the subregions in a
large number of example images using k-means; now each cluster center represents a
“typical” form of subregion. The subregions in our image patch can then be labelled
with the cluster center to which they are closest. This approach has the advantage
that minor variations in the image pattern — caused perhaps by noise, or by skin
irregularities, etc. — are suppressed.

At this point, a number of models are available. The simplest practical model is
to assume that the probability of encountering each pattern is independent of the
configuration of the other patterns (but not of position) given that a face is present.
This means that our model is:

P(image|face) = P(label 1 at (z1,y1),...,label k at (xk, yr)|face)
= P(label 1 at (x1,y1)|face) ... P(label k at (zk, yx)|face)

626 Finding Templates using Classifiers ~Chapter 21

Figure 21.5. Faces found using the method of section 21.5. Image windows at various
scales are classified as frontal face, lateral face or non-face, using a likelihood model learned
from data. Subregions in the image window are classified into a set of classes learned from
data; the face model assumes that labels from these classes are emitted independently of
one another, at different positions. This likelihood model yields a posterior value for each
class and for each window, and the posterior value is used to identify the window. figure
from Schneiderman and Kanade, A Statistical Method for 8D Object Detection Applied to
Faces and Cars, p.6, in the fervent hope of receiving permission

In this case, each term of the form P(label k at (z, yx)|face) can be learned fairly
easily by labelling a large number of example images, and then forming a histogram.
Because the histograms are now two dimensional, the number of boxes is no longer
problematic. A similar line of reasoning leads to a model of P(image|no face). A
classifier follows from the line of reasoning given above. This approach has been

Section 21.3. Feature Selection 627

used successfully by Schneiderman and Kanade to build detectors for faces and cars
(figure 21.5).

21.3 Feature Selection

Assume we have a set of pixels that we believe belong together, and that should
be classified. What features should we present to a classifier? One approach is to
present all the pixel values: this gives the classifier the maximum possible amount
of information about the set of pixels, but creates a variety of problems.

Firstly, high dimensional spaces are “big” in the sense that very large numbers of
examples can be required to represent the available possibilities fairly. For example,
a face at low resolution has a fairly simple structure: it consists (rather roughly) of
some dark bars (the eyebrows and eyes) and light bars (the specular reflections from
the nose and forehead) on a textureless background. However, if we are working
with high resolution faces, it might be very difficult to supply enough examples
to make determine that this structure is significant and that minor variations in
skin texture, etc. are irrelevant. Instead, we would like to choose a feature space
that would make these properties “obvious”, typically by imposing some form of
structure on the examples.

Secondly, we may know some properties of the patterns in advance; for exam-
ple, we have models of the behaviour of illumination. Forcing a classifier to use
examples to, in essence, come up with a model that we already know is a waste
of examples. We would like to use features that are consistent with our knowledge
of the patterns. This might involve preprocessing regions (for example, to remove
the effects of illumination changes), or choosing features that are invariant to some
kinds of transformation (for example, scaling an image region to a standard size).

You should notice a similarity between feature selection and model selection
(as described in sections ?? and ?7?). In model selection, we were attempting to
obtain a model that best explains a data set; here we are attempting to a set of
features that best classifies a data set. The two are basically the same activity in
slightly distinct forms (you can view a set of features as a model, and classification
as explanation); here we will describe methods that are used mainly for feature
selection. We concentrate on two standard methods for obtaining linear features,
features which are a linear function of the initial feature set.

21.3.1 Principal Component Analysis

The core goal in feature selection is to obtain a smaller set of features that “ac-
curately represents” the original set. What this means rather depends on the ap-
plication; however, one important possibility is that the new set of features should
capture as much of the old set’s variance as possible. The easiest way to see this is
to consider an extreme example; if the value of one feature can be predicted pre-
cisely from the value of the others, then it is clearly redundant and can be dropped.
By this argument, if we are going to drop a feature, the best one to drop is the one

628 Finding Templates using Classifiers Chapter 21

whose value is most accurately predicted by the others. We can do more than drop
features: we can make new features as functions of the old features.

In principal component analysis, the new features are linear functions of
the old features. In principal component analysis, we take a set of data points and
construct a lower dimensional linear subspace that “best explains” the variation of
these data points from their mean. This method (also known as the Karhunen-
Loéve transform) is a classical technique from statistical pattern recognition [Duda
and Hart, 1973; Oja, 1983; Fukunaga, 1990).

Assume we have a set of n feature vectors @; (i = 1,...,n) in IR The mean
of this set of feature vectors is p (you should think of the mean as the center of
gravity in this case), and their covariance is ¥ (you can think of the variance as a
matrix of second moments). We use the mean as an origin, and study the offsets
from the mean, (x; — p).

Our features will be linear combinations of the original features; this means it is
natural to consider the projection of these offsets onto various different directions.
A unit vector v represents a direction in the original feature space; we can interpret
this direction as a new feature v(x). The value of u on the i’th data point is given

by v(z;) = vT(z; —). A good feature will capture as much of the variance of the
original data set as possible. Notice that v has zero mean; then the variance of v is
1 & T
var(v) = —— Y o(x;)v(x;)
n—1
n—1
1
= =3 (-)7 s —)T
i=1
n—1
=" {Z(wi — (@i — M)T} v
1=1
= vy

Now we should like to maximise v” Yo subject to the constraint that v’v = 1.
This is an eigenvalue problem; the eigenvector of ¥ corresponding to the largest
eigenvalue is the solution. Now if we were to project the data onto a space per-
pendicular to this eigenvector, we would obtain a collection of d — 1 dimensional
vectors. The highest variance feature for this collection would be the eigenvector of
3. with second largest eigenvalue; and so on.

This means that the eigenvectors of ¥ — which we write as v1,vs, . .., vq, where
the order is given by the size of the eigenvalue and v; has the largest eigenvalue —
give a set of features with the following properties:

e They are independent (because the eigenvectors are orthogonal).

e Projection onto the basis {vi,...,v;} gives the k-dimensional set of linear
features that preserves the most variance.

Section 21.3. Feature Selection 629

¥
6, -
*
*
*
41+ _
* *
ol * | * |
$* %
* *
* * ok
*
or * _
*x x
* % *
*
2+ * % -
*
*
* ¥
*
4| " j % T
*
*
6 F _
**K%K
| | | | LK | | | |
-8 -6 -4 -2 0 2 4 6 8

Figure 21.6. A data set which is well represented by a principal component analysis.
The axes represent the directions obtained using PCA; the vertical axis is the first principal
component, and is the direction in which the variance is highest.

You should notice that, depending on the data source, principal components can
give a very good or a very bad representation of a data set (see figures 21.6 and 21.7,
and figure 21.8).

21.3.2 Canonical Variates

Principal component analysis yields a set of linear features of a particular dimension
that best represents the variance in a high-dimensional dataset. There is no guaran-
tee that this set of features is good for classification. For example, figure 21.8 shows
a dataset where the first principal component would yield a very bad classifier and
the second principal component would yield quite a good one, despite not capturing
the variance of the data set.

Linear features that emphasize the distinction between classes are known as
canonical variates. To construct canonical variates, assume that we have a set of

630 Finding Templates using Classifiers ~ Chapter 21

Assume we have a set of n feature vectors @; (i = 1,...,n) in IR%. Write
1
B = n Z Z;
K3
1 T
= > (@i — p) (@i —)
n—1 >
The unit eigenvectors of ¥ — which we write as v1,vs, ..., vq, where the order is

given by the size of the eigenvalue and vy has the largest eigenvalue — give a set
of features with the following properties:

e They are independent.

e Projection onto the basis {v1,..., v} gives the k-dimensional set of linear
features that preserves the most variance.

Algorithm 21.5: Principal components analysis identifies a collection of linear

features that are independent, and capture as much variance as possible from a
dataset.

data items x;, for i € {1,...,n}. We assume that there are p features (i.e. that the
@; are p-dimensional vectors). We have g different classes, and the j’th class has
mean p;. Write v for the mean of the class means, i.e.

Write

Note that B gives the variance of the class means. In the simplest case, we assume
that each class has the same covariance ¥, and that this has full rank. We would
like to obtain a set of axes where the clusters of data points belonging to a particular
class will group together tightly, while the distinct classes will be widely separated.
This involves finding a set of features that maximises the ratio of the separation
(variance) between the class means to the variance within each class. The separation
between the class means is typically referred to as the between-class variance,
and the variance within a class is typically referred to as the within-class variance.

Now we are interested in linear functions of the features, so we concentrate on

v(x) =vTx

We should like to maximize the ratio of the between-class variances to the within-
class variances for v1.

Section 21.3. Feature Selection 631

H T
10 * ok A* 4 % 4k 8
* % Kk *
8 o
* * «
ok
* * %
6 i
* % «
*
- * -
4 % * * «
* **
2t * " -
*
* * %
*
(g |
* *
* e
2 - * * _
* £
* *
4 * 4
* * ¥ x
*x
* *
-6— ** -
koK Kk % %
* ¥ *
- — A,K -
8 * *x *
* * ¥
-10 |- * % " 4
*
*
| | ¥ | | |
-10 -5 0 5 10

Figure 21.7. Not every data set that is well represented by PCA. The principal com-
ponents of this data set will be relatively unstable, because the variance in each direction
is the same for the source. This means that we may well report significantly different
principal components for different datasets from this source. This is a secondary issue —
the main difficulty is that projecting the data set onto some axis will suppress the main
feature, its circular structure.

Using the same argument as for principal components, we can achieve this by
choosing v to maximise
vT Bv,
v Yv,

This problem is the same as maximising v7 Bv; subject to the constraint that
vT¥wv; = 1. In turn, a solution has the property that

Bvy + AXv1 =0

for some constant A. This is known as a generalised eigenvalue problem —
if 3 has full rank, we can solve it by finding the eigenvector of X~!B with largest

632 Finding Templates using Classifiers Chapter 21

081] 08f

06 1 osf

04 4 o0af

02r 4 o02b

of * * O @ %k 4O *TOO HOOK ¥ O * Ok© o @ 1 of * HEE KK KKBCG KK O X @FX OO OO ® ©® 0O 5|

02 4 02

04 4 04t

06 4 06

-08 1 -0.8 -

Figure 21.8. Principal component analysis doesn’t take into account the fact that there
may be more than one class of item in a dataset. This can lead to significant problems.
For a classifier, we would like to obtain a set of features that firstly reduces the number
of features and secondly makes the difference between classes most obvious. For the data
set on the top, one class is indicated by circles and the other by stars. PCA would
suggest projection onto a vertical axis, which captures the variance in the dataset, but
cannot be used to discriminate it, as we can see from the axes obtained by PCA, which
are overlaid on the data set. The bottom row shows the projections onto those axes.
On the bottom left, we show the projection onto the first principal component — which
has higher variance, but separates the classes poorly — and on the bottom right, we
show the projection onto the second principal component — which has significantly lower
variance (look at the axes) and gives better separation.

eigenvalue (otherwise, we use specialised routines within the relevant numerical
software environment).

Now for each vy, for 2 < [< p, we should like to find features that extremise
the criterion, and are independent of the the previous v;. These are provided by
the other eigenvectors of 3. The eigenvalues give the variance along the features
(which are independent). By choosing the m < p eigenvectors with the largest

Section 21.4. Neural Networks 633

OF ##Emx ¥ ¥ #% Bk HOGF M¥X O © O ®O 00 O o A

Figure 21.9. Canonical variates use the class of each data item as well as the features in
estimating a good set of linear features. In particular, the approach constructs axes that
separate different classes as well as possible. The data set used in figure 21.8 is shown on
the left, with the axis given by the first canonical variate overlaid. On the bottom right,
we show the projection onto that axis, where the classes are rather well separated.

eigenvalues, we obtain a set of features that reduces the dimension of the feature
space will best preserving the separation between classes. This doesn’t by any means
guarantee the best error rate for a classifier on a reduced number of features, but
it offers a good place to start, by reducing the number of features while respecting
the category structure (details and examples in [McLachlan and Krishnan, 1996),
p— or in [Ripley, 1996], p—).

If the classes don’t have the same covariance, it is still possible to construct
canonical variates. In this case, we estimate a ¥ as the covariance of all of the
offsets of each data item from its own class mean, and proceed as before. Again,
this is an approach without a guarantee of optimality, but one that can work quite
well in practice.

21.4 Neural Networks

It is commonly the case that neither simple parametric density models nor histogram
models can be used. In this case, we must either use more sophisticated density
models (an idea we explore in this section) or look for decision boundaries directly
(section ?77).

21.4.1 Key ldeas

A neural network is a parametric approximation technique that has proven useful
for building density models. Neural networks typically approximate a vector func-
tion f of some input x with a series of layers. Each layer forms a vector of outputs
each of which is obtained by applying the same non-linear function — which we

634 Finding Templates using Classifiers Chapter 21

<

reriririry

‘l'!"‘l‘ll!ﬂd“«l-hht:-ldldd L] a‘v\ﬂﬂﬂ-’lﬂddﬂﬂﬂ;)')‘l K 'J' :J V999 ‘! 4

e 1A 3 e

Y L L I YN AR AR RN
TSR SRR SN SR IR IR IR IR:

ci=4
2
%?
izt

e

4

-0.3 b
04 + 4;% |
05 | | | | | |

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Figure 21.10. Canonical variates are effective for a variety of simple template
matching problems. The figure on top shows views of 10 objects at a variety of
poses, on a black background (these images are smoothed and resampled versions of
images in the well-known COIL database, due to Nene and Nayar and available at
http://www.cs.columbia.edu/******xx). Identifying an object from one of these images
is a relatively simple matter, because there is no segmentation. We then used 60 of the
images of each object to determine a set of canonical variates. The figure below shows
the first two canonical variates for 71 images — the 60 training images and 11 others —
of each object (different symbols correspond to different objects). Note that the clusters
are tight and well separated; on these two canonical variates alone, we could probably get
quite good classification.

shall write as ¢ — to different affine functions of the inputs. We adopt the con-
venient trick of adding an extra component to the inputs and fixing the value of
this component at one, so that we obtain a linear function of this augmented input

Section 21.4. Neural Networks 635

Assume that we have a set of data items of g different classes. There are ny items
in each class, and a data item from the k’th class is @y ;, for i € {1,...,n;}. The
J'th class has mean p;. We assume that there are p features (i.e. that the x; are
p-dimensional vectors).

Write 1 for the mean of the class means, i.e.

1Y
B==) K
9=
Write
1 < -
B=——> (u;~B)(n; —)
g-14
Assume that each class has the same covariance X, which is either known or esti-
mated as
SEERE o § o RPRICI
== Tei — M) (Tei — M
N_1 , i i M
c=1 =1
The unit eigenvectors of X ~!3 — which we write as vy, vs, . .., v4, where the order

is given by the size of the eigenvalue and v; has the largest eigenvalue — give a
set of features with the following property:

e Projection onto the basis {v1,..., v} gives the k-dimensional set of linear
features that best separates the class means.

Algorithm 21.6: Canonical variates identifies a collection of linear features that

separating the classes as well as possible.

vector. This means that a layer with augmented input vector w and output vector
v can be written as

v = [p(w - u), $(ws - w), .. $(w, -)]

where the w; are parameters that can be adjusted to approve the approximation.

Typically, a neural net uses a sequence of layers to approximate a function.
Each layer will use augmented input vectors. For example, if we are approximating
a vector function g of a vector with a two layer net, we obtain

g(z) = f(z) = [p(w21 - y), (w22 - y), . . . p(wan - Y)]
where
y(2) = [p(w11 - 2), p(w12 - 2), ... p(W1p - 2),1]

and
z(m) = [1151,1172, <oy T,y 1]

636 Finding Templates using Classifiers ~ Chapter 21

Some of the elements of w1y or wsr could be clamped at zero; in this case, we
are insisting that some elements of y do not affect f(x). If this is the case, the
layer is referred to as being partially connected, otherwise it is known as a fully
connected layer. Of course, layer two could be either fully or partially connected
as well. The parameter n is fixed by the dimension of f and p is fixed by the
dimension of x, but there is no reason that m should be the same as either n or
p. Typically, m is larger than either. A similar construction yields three layer
networks (or networks with more layers, which are uncommon). Neural networks
are often drawn with circles indicating variables and arrows indicating possibly non-
zero connections; this gives a representation that exposes the basic structure of the
approximation (figure 21.11).

Figure 21.11. Neural networks are often illustrated by diagrams of the form shown
above. Each circle represents a variable, and the circles are typically labelled with the
variable. The “layers” are obvious in such a drawing. This network is the two layer network
given in the text; the arrows indicate that the coefficient coupling the two variables in the
affine function could be non-zero. This network is fully connected, because all arrows are
present. It is possible to have arrows skip layers, etc.

Choosing a Non-Linearity

There are a variety of possibilities for ¢. For example, we could use a threshold
function, which has value one when the argument is positive and zero otherwise.
It is quite easy to visualize the response of a layer of that uses a threshold function;
each component of the layer changes from zero to one along a hyperplane. This
means that the output vector takes different values in each cell of an arrangement
of hyperplanes in the input space. Networks that use layers of this form are hard

Section 21.4. Neural Networks 637

to train, because the threshold function is not differentiable.

It is more common to use a ¢ that changes smoothly (but rather quickly) from
zero to one, often called a sigmoid function or squashing function. The logistic
function is one popular example. This is a function of the form

ex/u

daiv) = T

where v controls how sharply the function changes at x = 0. It isn’t crucial that
the horizontal assymptotes are zero and one. Another popular squashing function
is

¢(x;v, A) = Atanh (v)

which has horizontal assymptotes at A and —A. Figure 21.12 illustrates these non-
linearities.

Figure 21.12. On the left, a series of squashing functions obtained using ¢(z;v) =
oz/v

14eZ /v

functions obtained using ¢(z;v, A) = Atanh (z/v) for different values of v indicated on the

figure. Generally, for x close to the center of the range, the squashing function is linear;

for small or large, it is strongly non-linear.

for different values of v indicated on the figure. On the right, a series of squashing

Producing a Classifier using a Neural Net

To produce a neural net that approximates some function g(x), we collect a series
of examples €. We construct a network that has one output for each dimension of
g. Write this network as n(x;p), where p is a parameter vector that contains all
the w;;. We supply a desired output vector o® for this input; typically, 0® = g(x°).
We now obtain p that minimizes

Brror(p) = (5) 32 Intaip) o

638 Finding Templates using Classifiers ~ Chapter 21

using appropriate optimization software (the half will simplify a little notation later
on, but is of no real consequence).

The most significant case occurs when g(x) is intended to approximate the
posterior on classes, given the data. We do not know this posterior, and so cannot
supply its value to the training procedure. Instead, we require that our network has
one output for each class. Given an example x¢, we construct a desired output o°
as a vector which contains a one in the component corresponding to that example’s
class and a zero in each other component. We now train the net as above, and
regard the output of the neural network as a model of the posterior probability.
An input @ is then classified by forming n(x; p), and then choosing the class that
corresponds to the largest component of this vector.

21.4.2 Minimizing the Error

Recall that we are training a net by minimizing the sum over the examples of the
difference between the desired output and the actual output, i.e., by minimizing

Brrortp) = (5) X Intafip) o'

as a function of the parameters p. There are a variety of strategies for obtaining p,
the set of parameters that minimize this error. One is gradient descent; from some
initial point p;, we compute a new point p;,; by

D1 = P; — €(VError)
where € is some small constant.

Stochastic Gradient Descent

Write the error for example e as Error(p;x©), so the total error is Error(p) =
> . Error(p;x°). Now if we use gradient descent, we are updating parameters
using the algorithm

P41 =Dp; —€VETTOr

(where the gradient is with respect to p and is evaluated at p,). This works, because
if € is sufficiently small, we have that

Error(p;y,) = Error(p; —eVError)
~ Error(p;) — e(VError - VError)
< Error(p;)

with equality only at an extremum. This creates a problem: evaluating the error
and its gradient is going to involve a sum over all examples, which may be a very
large number. We should like to avoid this sum; it turns out that it is possible to
do so by selecting an example at random, computing the gradient for that example

Section 21.4. Neural Networks 639

alone, and updating the parameters using that gradient. In this process, known as
stochastic gradient descent, we update the parameters using the algorithm

Diy1 =D; — eV Error(p; x°)

(where the gradient is with respect to p, is evaluated at p;, and we choose the
example uniformly at random, making a different choice at each step). In this case,
the error doesn’t necessarily go down for each particular choice, but the expected
value of the error does go down, for a sufficiently small value of €. In particular, we
have

E(Error(p;y,)) = E(Error(p; — eVError(p;x©))
E(Error(p;) — e(VError - VError(p; °))

Q

1
- E)=~ (VError-VE ¢
rror(p;) en (VError - VError(p; x°))

e

1
= Error(p;) — e(VError - (ﬁ Z V Error(p; z°)))

= Error(p;) — E(VETTOT - VError)
n

< Error(p;) if |VE|>0

By taking sufficient steps down a gradient computed using only one example (se-
lected uniformly and at random each time we take a step), we can in fact minimize
the function. This is because the expected value goes down for each step, unless
we're at the minimum.

Backpropagation

The difficulty with this problem is that V Error could be quite hard to compute.
There is an effective strategy for computing V Error called back propagation.
This approach exploits the layered structure of the neural network as a function of
a function of a ...to obtain the derivative.

Now recall the two layer neural net which we wrote as

F(z) = [p(wa1 - y), p(w2z2 - Y), - . . d(way - Y)]

where
y(2) = [p(w11 - 2), p(w12 - 2), ... p(W1p - 2),1]
and

z(m) = [1151,1172, <oy T,y 1]

We would like to compute
OFError

OWgim

640 Finding Templates using Classifiers Chapter 21

Choose p, (randomly)
Use backpropagation (algorithm ??) to compute
VError(z®;p,)
D, =D, — eVError(me;po)
Uuntil | Error(p,,) — Error(p,)| is small
or |p, — p, | is small
Algorithm 21.7:
pO = pn
Choose an example (z¢, 0¢) uniformly and
at random from the training set
Use backpropagation (algorithm ??) to compute
VError(z®p,)
D, =P, — eVError(me;po)
end

Stochastic gradient descent minimizes the error of a neural net
approximation, using backpropagation to compute the derivatives.

where wg;,m, is the m’th component of wy;. Let us deal with the coefficients of the
output layer first, so that we are interested in woj,,,, and we get

Ofk Owam

oOError 0f
Ofi Owam

> {(hie) - ot g
S (@) — o) u(um (@)
= 3 {65y @)}

e

8w21,m

OError Z OError 0Ofk
k

Here we use the notation
oy 20
21 8’&

where the derivative is evaluated at u = wo; - y, and we write
3 = (fi(x®) — of)¢

Notice that evaluating this derivative involves terms in the input of the layer — the
terms y, () — and in its output — the terms 45,.

Section 21.4. Neural Networks 641

Now consider the coeflicients of the second layer. We are interested in w1 m,
and we get

OError B Z OError 0Ofk
owim Ofk Owim

- S e
{2 o
3 {Z{m(m ot} jon |
Z{ fr(x®) — o) dapwan,} &fyl }

1l,m

{Z{ fi(x€) — of) o war,i} (ﬂuzm}

Z }52kw2k l} ¢1zzm}

e

e

In this expression,

o
! _
¢2k - 8
evaluated at u = wyy - y, and
¢/ — 8_¢
11 8’&

evaluated at u = wy; - z. Now if we write
05 =D {05, wan 1} 1,
k

we get

8wll ,m Z 611Zm

Again, this sum involves a term obtained computing the previous derivative, terms
in the derivatives within the layer, and terms in the input. You should convince
yourself that, if we had a third layer, the derivative of the error with respect to
parameters within this third layer would have a similar form — a function of terms
in the derivative of the second layer, terms in the derivatives within the third layer,
and terms in the input (all this comes from aggressive application of the chain rule).
This suggests a two pass algorithm:

642 Finding Templates using Classifiers Chapter 21

1. Evaluate the net’s output on each example. This is usually referred to as a
forward pass.

2. Evaluate the derivatives using the intermediate terms. This is usually referred
to as a backward pass.

This process yields the derivatives of the total error with respect to the parameters.
We can obtain another simplification: we adopted stochastic gradient descent to
avoid having to sum the value of the error and of its gradient over all examples.
Because computing a gradient is linear, to compute the gradient of the error on
one example alone, we simply drop the sum at the front of our expressions for the
gradient. The whole is given in algorithm ?7?.

21.4.3 When to Stop Training

Typically, gradient descent is not continued until an exact minimum is found. Sur-
prisingly, this is a source of robustness. The easiest way to understand this is to
consider the shape of the error function around the minimum. If the error function
changes sharply at the minimum, then the performance of the network is quite sen-
sitive to the choice of parameters. This suggests that the network will generalize
badly. You can see this by assuming that the training examples are one half of a
larger set; if we had trained the net on the other half, we’d have obtained slightly
different set of parameters. This means that the net with our current parameters
will perform badly on this other half, because the error changes sharply with a small
change in the parameters.

Now if the error function doesn’t change sharply at the minimum, there is no
particular point in expending effort to be at the minimum value, as long as we are
reasonably close — we know that this minimum error value won’t be attained on
a training set. It is common practice to continue with stochastic gradient descent
until (a) each example will have been visited on average rather more than once and
(b) the decrease in the value of the function goes below some threshold.

A more difficult question is how many layers to use, and how many units to
use in each layer. This question — which is one of model selection — tends to be
resolved by experiment. We refer interested readers to [].

21.4.4 Finding Faces using Neural Networks

Face finding is an application that illustrates the usefulness of classifiers. In frontal
views at a fairly coarse scale, all faces look basically the same; there are bright
regions on the forehead, the cheeks and the nose, and dark regions around the eyes,
the eyebrows, the base of the nose and the mouth. This suggests approaching face
finding as a search over all image windows of a fixed size for windows that look
like a face. Larger or smaller faces can be found by searching coarser or finer scale
images.

Because a face illuminated from the left looks very different to a face illuminated
from the right, the image windows must be corrected for illumination. Generally,

Section 21.4. Neural Networks 643

Notation:
Write the two-layer neural net as

F(x;p) = [p(wa1-y), d(waz - y), ... d(wan - yY)]
y(z) = [p(wir - 2), p(w12 - 2),... p(W1ip - 2),1]

z(m) = [1151,1112, .. .,Jip, 1]

(p is a vector containing all parameters). Write the error on a single exam-
ple as

Error® = Error(p;)
1
(3) 17(etim) o P

OFError®
OWki,m

We would like to compute

where wgi,m is the m’th component of wy;.

Forward pass: Compute f(x;p), saving all intermediate variables

Backward pass: Compute

05 = (fi(z®) —of)by
/ 09
¢9; = —— evaluated at u = wa1 -y

ou
OFError® . .
D ML)

e

Now compute

o = Z{dngQk,l}(b/ll
k

0
ol = —¢ evaluated at ©u = w1 - 2
ou
oE¢
= 0112m(x°)
8wll,m

Algorithm 21.8: Backpropagation to compute the derivative of the fitting error of

a two-layer neural net on a single example with respect to its parameters.

644 Finding Templates using Classifiers Chapter 21

illumination effects look enough like a linear ramp (one side is bright, the other
side is dark, and there is a smooth transition between them) that we can simply
fit a linear ramp to the intensity values and subtract that from the image window.
Another way to do this would be to log-transform the image, and then subtract a
linear ramp fitted to the logs. This has the advantage that (using a rather rough
model) illumination effects are additive in the log transform. There doesn’t appear
to be any evidence in the literature that the log transform makes much difference in
practice. Another approach is to histogram equalize the window to ensure that its
histogram is the same as that of a set of reference images (histogram equalisation
is described in section 77?).

Ioput lmage Pyramid ~ Extracted Window Histogram ——— Derolate
208, 20 pixcs) Exaliced u indow L‘m eed.

Network

=

)

AR\u\u\u

jninining

&
-

Preprocessing Detection Network Archirecture

Figure 2. Overview of the algorithm.

Figure 21.13. The architecture of Rowley, Baluja and Kanade’s system for finding faces.
Image windows of a fixed size are corrected to a standard illumination using histogram
equalisation; they are then passed to a neural net that estimates the orientation of the
window. The windows are reoriented, and passed to a second net that determines whether
a face is present. figure from Rowley, Baluja and Kanade, Rotation invariant neural-
network based face detection p.2, in the fervent hope of receiving permission

Once the windows have been corrected for illumination, we need to determine
whether there is a face present. The orientation isn’t known, and so we must either
determine it, or produce a classifier that is insensitive to orientation. Rowley, Baluja
and Kanade have produced a face finder that finds faces very successfully by firstly
estimating the orientation of the window, using one neural net, and then reorienting
the window so that it is frontal, and passing the frontal window onto another neural
net (see figure 21.13). The orientation finder has 36 output units, each coding for a
10° range of orientations; the window is reoriented to the orientation given by the
largest output. Examples of the output of this system are given in figure 21.14.

21.4.5 Convolutional Neural Nets

Neural networks are not confined to the architecture sketched above; there are a
wide variety of alternatives (a good start is to look at []). One architecture that has
proven useful in vision applications is the convolutional neural network. The
motivating idea here is that it appears to be useful to represent image regions with
filter outputs. Furthermore, we can obtain a compositional representation we apply

Section 21.4. Neural Networks 645

Figure 7. Result of arbitrating between two networks trained with derotated negative examples. The label in the upper
left corner of each image (D/T/F) gives the number of faces detected (D), the total number of faces in the image (T),
and the number of false detections (F). The label in the lower right corner of each image gives its size in pixels.

Figure 21.14. Typical responses for the Rowley, Baluja and Kanade system for face
finding; a mask icon is superimposed on each window that is determined to contain a
face. The orientation of the face is indicated by the configuration of the eye-holes in the
mask. figure from Rowley, Baluja and Kanade, Rotation invariant neural-network based
face detection p.6, in the fervent hope of receiving permission

filters to a representation itself obtained using filter outputs. For example, assume
that we are looking for handwritten characters; the response of oriented bar filters
is likely to be useful here. If we obtain a map of the oriented bars in the image, we

646 Finding Templates using Classifiers ~Chapter 21

can apply another filter to this map, and the output of this filter indicates spatial
relations between the bars.

These observations suggest using a system of filters to build up a set of relations
between primitives, and then using a conventional neural network to classify on
the resulting representation. There is no particular reason to specify the filters in
advance; instead, we could learn them too.

Lecun et al. have built a number of classifiers for handwritten digits using a
convolutional neural network. The basic architecture is given in figure 21.15. The
classifier is applied to a 32x32 image window. The first stage — C1 in the figure
— consists of six feature maps. The feature maps are obtained by convolving the
image with a 5x5 filter kernel, adding a constant, and applying a sigmoid function.
Each map uses a different kernel and constant, and these parameters are learned.

©1: feature maps
INPUT
32532 s

Full connaction Gaussian conneciions
Comvoiutions Subsampling Gonvolutions Subsampling Full cannection

Fig. 2. i of LeNet-5, a NN, here used for digils recognition. Each plane
is a feature map, i.c., a set of units whose weights are constrained to be identical.

Figure 21.15. The architecture of LeNet 5, a convolutional neural net used for recognis-
ing handwritten characters. The layers marked C are convolutional layers; those marked
S are subsampling layers. The general form of the classifier uses an increasing number of
features at increasingly coarse scales to represent the image window; finally, the window is
passed to a fully connected neural net, which produces a rectified output that is classified
by looking at its distance from a set of canonical templates for characters. figure from
Gradient-Based Learning Applied to Document Recognition Yann Lecun, Léon Bottou,
Yoshua Bengio, and Patrick Haffner, p.2283, in the fervent hope of receiving permission

Because the exact position of a feature should not be important, the resolution
of the feature maps is reduced, leading to a new set of six feature maps — S2 in
the figure. These maps are, essentially, subsampled versions of the previous layer;
this subsampling is achieved by averaging 2x2 neighbourhoods, multiplying by a
parameter, adding a parameter, and passing the result through a sigmoid function.
The multiplicative and additive parameters are learned. A series of pairs of layers
of this form follows, with the number of feature maps increasing as the resolution
decreases. Finally, there is a layer with 84 outputs; each of these outputs is supplied
by a unit that takes every element of the previous layer as an input.

This network is used to recognise hand printed characters; examples from the
training set are given in figure ??. The outputs are seen as a 7x12 (=84!) image
of a character that has been rectified from its hand printed version, and can now
be compared with a canonical pattern for that character. The network can rectify

Section 21.5. The Support Vector Machine 647

distorted characters very successfully (figure ?? shows some extreme cases that are
successfully recognised). The input character is given the class of the character
whose canonical pattern is closest to the rectified version. The resulting network
has a test error rate of 0.95% (figure 21.16).

3«%/7’?‘»64

Error Rate (%)

-— Test
“‘-“'—‘-o-o-o-.—-—-—.—- Training

[]

Training set lerations

SRV WK RESEF ui VN
v RN U - N
{hww..ﬂ--sjm
o N o W -0 g
LOPrNDI N
SN WP o~ e
s QO o0 g W
03 W o &] op o &

Fig. 5. Training and test error of LeNet-5 as a function of the
number of passes through the 60000 pattern training set (without
distortions). The average training error is measured on-the-fly as
training proceeds. This explains why the training error appears to

be larger than the test error initially. Convergence is attained after

Fig. 4. Size-normalized examples from the MNIST database. 10-12 passes through the training set.

SR Yo N0 R
N OO L) —~

Figure 21.16. On the left, a small subset of the MNIST database of handwritten
characters, used to train and test LeNet 5. Note the fairly wide variation in the appearance
of each character. On the right, the error rate of LeNet 5 on a training set and on a test
set, plotted as a function of the number of gradient descent passes through the entire
training set of 60,000 examples (i.e. if the horizontal axis reads six, the training has taken
360, 000 gradient descent steps). Note that at some point the training error goes down
but the test error doesn’t; this phenomenon occurs because the system’s performance
is optimised on the training data. A substantial difference would indicate overfitting.
figure from Gradient-Based Learning Applied to Document Recognition Yann Lecun, Léon
Bottou, Yoshua Bengio, and Patrick Haffner, p.2287, in the fervent hope of receiving
permission figure from Gradient-Based Learning Applied to Document Recognition Yann
Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, p.2288, in the fervent hope of
receiving permission

21.5 The Support Vector Machine

From the perspective of the vision community, classifiers are not an end in them-
selves, but a means; so when a technique that is simple, reliable and effective be-
comes available, it tends to be adopted quite widely. The support vector machine
is such a technique. This should be the first classifier you think of when you wish
to build a classifier from examples (unless the examples come from a known distri-
bution, which hardly ever happens). We give a basic introduction to the ideas, and

648 Finding Templates using Classifiers Chapter 21

show some examples where the technique has proven useful.

Assume we have a set of N points @; that belong to two classes, which we shall
indicate by 1 and —1. These points come with their class labels, which we shall
write as y;; thus, our data set can be written as

{(mla yl): s (mN7 yN)}

We should like to determine a rule that predicts the sign of y for any point a; this
rule is our classifier.

At this point, we distinguish between two cases: either the data is linearly
separable, or it isn’t. The linearly separable case is much easier, and we deal with
it first.

21.5.1 Support Vector Machines for Linearly Separable Datasets

In a linearly separable data set, there is some choice of w and b (which represent a
hyperplane) such that

yi (w-x; +b) >0

for every example point (notice the devious use of the sign of y;). There is one of
these expressions for each data point, and the set of expressions represents a set of
constraints on the choice of w and b. These constraints express the fact that all
examples with a negative y; should be on one side of the hyperplane and all with a
positive y; should be on the other side.

In fact, because the set of examples is finite, there is a family of separating
hyperplanes. Each of these hyperplanes must separate the convex hull of one set of
examples from the convex hull of the other set of examples. The most conservative
choice of hyperplane is the one that is furthest from both hulls. This is obtained by
joining the closest points on the two hulls, and constructing a hyperplane perpen-
dicular to this line, and through its midpoint. This hyperplane is as far as possible
from each set, in the sense that it maximises the minimum distance from example
points to the hyperplane (figure 21.17)

Now we can choose the scale of w and b, because scaling the two together by
a positive number doesn’t affect the validity of the constraints y; (w - x; + b) > 0.
This means that we can choose w and b such that for every data point we have

and such that equality is achieved on at least one point on each side of the hyper-
plane. Now assume that x; achieves equality and y; = 1, and x; achieves equality
and y; = —1. This means that xj is on one side of the hyperplane and ; is on the
other; furthermore, the distance from «; to the hyperplane is minimal (among the
points on the same side as @;), as is the distance from xj, to the hyperplane. Notice
that there might be several points with these properties.

Section 21.5. The Support Vector Machine 649

\

Figure 21.17. The hyperplane constructed by a support vector classifier for a plane data
set. The filled circles are data points corresponding to one class, and the empty circles
are data points corresponding to the other. We have drawn in the convex hull of each
data set. The most conservative choice of hyperplane is one that maximises the minimum
distance from each hull to the hyperplane. A hyperplane with this property is obtained by
constructing the shortest line segment between the hulls, and then obtaining a hyperplane
perpendicular to this line segment and through its midpoint. Only a subset of the data
determines the hyperplane. Of particular interest are points on each convex hull which
are associated with a minimum distance between the hulls — we will use these points to
find the hyperplane in the text.

This means that w - (&1 — ®2) = 2, so that

w b w b
; h 1 ; h | - (. 2y (. 2
dist(xy, hyperplane) + dist(x;, hyperplane) (| | Ty + | |) (| | T+ | |)
w 2
= —| . (ml —_ mQ) = ﬁ

This means that maximising the distance is the same as minimising (1/2)w-w. We
now have the constrained minimisation problem:

minimize (1/2)w - w
subject to y; (w-x; +b) > 1

where there is one constraint for each data point.

650 Finding Templates using Classifiers ~ Chapter 21

Solving for the Support Vector Machine

We can solve this problem, by introducing Lagrange multipliers «; to obtain the

Lagrangian
N

(1/2w-w =Y o (yi (w- 21 +b) — 1)
1
This Lagrangian needs to be minimised with respect to w and b and maximised
with respect to o; — these are the Karush-Kuhn-Tucker conditions []. A little
manipulation leads to the requirements that

N
> aii =0
1
and
N
w = Z Q;Y; I
1

This second expression is why the device is known as a support vector machine.
Generally, it will be the case that the hyperplane is determined by a relatively
small number of example points, and the position of other examples is irrelevant
(see figure 21.17 — everything inside the convex hull of each set of examples is
irrelevant to choosing the hyperplane, and most of the hull vertices are, too). This
means that we expect that most «; are zero, and the data points corresponding to
non-zero «; — which are the ones that determine the hyperplane — are known as
the support vectors.

Now by substituting these expressions into the original problem and manipulat-
ing, we obtain the dual problem given by

N 1 N
maximize E o — B E Oéz‘(yz'yjmi : iL'j)O‘j
4 4,j=1

subject to «; >0
N
and Z a;y; =0
i=1

You should notice that the criterion is a quadratic form in the Lagrange multipliers.
This problem is a standard numerical problem, known as quadratic program-
ming. One can use standard packages quite successfully for this problem, but it
does have special features — while there may be a very large number of variables,
most will be zero at a solution point — which can be exploited [].

21.5.2 Finding Pedestrians using Support Vector Machines

At a fairly coarse scale, pedestrians have a characteristic, “lollipop-like” appearance
— a wide torso on narrower legs. This suggests that they can be found using a

Section 21.5. The Support Vector Machine 651

Notation:
We have a training set of N examples

{(®1,91), -5 (&N, UN) }

where y; is either 1 or —1.

Solving for the SVM:
Set up and solve the dual optimization problem:

N 1 N
maximize E a; — B E ozi(yz'yjmz' : mj)aj
4 4,j=1

subject to «a; >0
N
and Z a;y; =0
i=1

We can then determine w from

N
w = Z Q;Yidi
1
Now for any example point x; where «; is non-zero, we have that

which yields the value of b.

Classifying a point:
Any new data point is classified by

f(@) = sign(w-z +b)

N
= sign ((Z QY T - m1> + b)
1

N
sign (Z (iyix - x; + b))

1

Algorithm 21.9: Finding an SVM for a Linearly Separable Problem

support vector machine. The general strategy is the same as for the face-finding
example in section ?7?: each image window of a fixed size is presented to a classifier,

652 Finding Templates using Classifiers Chapter 21

which determines whether the window contains a pedestrian or not. The number of
pixels in the window may be large, and we know that many pixels may be irrelevant.
In the case of faces, we could deal with this by cropping the image to an oval shape
which would contain the face. This is harder to do with pedestrians, because their
outline is of a rather variable shape.

(a) (b) (c) (f) (g}

Figure 21.18. On the left, averages over the training set of different wavelet coefficients
at different positions in the image. Coefficients that are above the (spatial) average value
are shown dark, and those that are below are shown light. We expect that noise has the
average value, meaning that coeflicients that are very light or very dark contain information
that could identify pedestrians. On the right, a grid showing the support domain for the
features computed. Notice that this follows the boundary of the pedestrian fairly closely.
figure from Papageorgiou, Oren and Poggio, A general framework for object detection, p.3,
in the fervent hope of receiving permission

We need to identify features that can help determine whether a window contains
a pedestrian or not. It is natural to try to obtain a set of features from a set of
examples. A variety of feature selection algorithms might be appropriate here (all
of them are variants of search). Papageorgiou, Oren and Poggio chose to look at
local features — wavelet coefficients, which are the response of specially selected
filters with local support — and to use an averaging approach. In particular, they
argue that the background in a picture of a pedestrian looks like noise, images that
don’t contain pedestrians look like noise, and the average noise response of their
filters is known. This means that attractive features are ones whose average over
many images of pedestrians is different from their noise response. If we average the
response of a particular filter in a particular position over a large number of images,
and the average is similar to a noise response, then that filter in that position is not
particularly informative.

Now that features have been chosen, training follows the lines of section 77.
Papageorgiou, Oren and Poggio use bootstrapping (section ??), which appears to
improve performance significantly.

Section 21.5. The Support Vector Machine 653

Figure 21.19. Examples of pedestrians detected using the method of Papageorgiou,
Oren and Poggio. While not all pedestrians are found, there is a fairly high detection
rate. The ROC is in figure 21.20. figure from Papageorgiou, Oren and Poggio, A general
framework for object detection, p.3, in the fervent hope of receiving permission

10 w* w0 1w 1w 10" 1w
Faise Pesiive Rals

(b) People Detection System

Figure 21.20. The receiver operating curve for the pedestrian detection system of
Papageorgiou, Oren and Poggio. figure from Papageorgiou, Oren and Poggio, A general
framework for object detection, p.4, in the fervent hope of receiving permission

654 Finding Templates using Classifiers Chapter 21

21.6 Conclusions

This topic is one on which no orthodoxy is yet established; instead, one tries to use
methods that seem likely to work on the problem in hand. For the sake of brevity,
we have omitted a vast number of useful techniques; Vapnik’s book [?], Bishop’s
book [Bishop, 1995], Ripley’s book [Ripley, 1996] and McClachlan’s book [?] are
good places to start.

Choosing a decision boundary is strictly easier than fitting a posterior model.
However, with a decision boundary there is no reliable indication of the extent
to which an example belongs to one or another class, as there is with a posterior
model. Furthermore, fitting a decision boundary requires that we know the classes
to which the example objects should be allocated. It is by no means obvious that
one can construct an unambiguous class hierarchy for the objects we encounter in
recognition problems. Both approaches can require very large numbers of examples
to build useful classifiers. Typically, the stronger the model that is applied, the
fewer examples required to build a classifier.

It is difficult to build classifiers that are really successful when objects have a
large number of degrees of freedom (though see section ??), and classifiers tend
to be difficult to use if the number of features can vary from example to example;
in both cases, some form of structural model appears to be necessary. However,
estimating, representing and manipulating probability densities in the very high
dimensional spaces that occur in vision problems is practically impossible, unless
very strong assumptions are applied. Furthermore, it is easy to build probability
models for which inference is again practically impossible; it isn’t yet known how
to build models that are easy to handle of the scale required for vision problems.

This subject is currently at the cutting edge of research in vision and learning.
It’s hard to know how to choose a method for a given problem, and opportunism
seems to be the best approach at present. The examples in this chapter and in the
next chapter illustrate a range of approaches that have been taken — some are very
successful — but don’t yet represent a clear theory.

An alternative approach is to train multiple classifiers and combine their outputs.
This strategy is usually known as boosting. Boosting is most useful for classifiers
with quite simple decision boundaries; these are usually easy to train, but have quite
poor performance. Typically, we train a classifier, and then determine the examples
in the training set that it gets wrong. These examples are then emphasized — either
by weighting errors on them more heavily, or inserting copies into the training set —
and a new classifier is trained. We now find out what the new classifier gets wrong,
and emphasize these examples and train again; this proces continues through many
iterations. Now the outputs of all the classifiers are combined using a set of weights.

Section 21.6. Conclusions 655

Assignments

Exercises

1. Assume that we are dealing with measurements & in some feature space S.
There is an open set D where any element is classified as class one, and any
element in the interior of S — D is classified as class two.

e Show that

R(s) = Pr{l — 2|using s} L(1 — 2) + Pr{2 — 1|using s} L(2 — 1)

- /p(2|m)dmL(1—>2)+/ p(1|2)dzL(2 — 1)
D S—D

e Why are we ignoring the boundary of D (which is the same as the bound-
ary of S — D) in computing the total risk?

2. In section 2, we said that, if each class-conditional density had the same covari-
ance, the classifier of algorithm 2 boiled down to comparing two expressions
that are linear in «.

e Show that this is true.

e Show that, if there are only two classes, we need only test the sign of a
linear expression in .

3. In section 21.3.1, we set up a feature u, where the value of u on the i’th data
point is given by u; = v - (&; — p). Show that u has zero mean.

4. In section 21.3.1, we set up a series of features u, where the value of u on the
7’th data point is given by u; = v - (x; — p). We then said that the v would
be eigenvectors of 3, the covariance matrix of the data items. Show that the
different features are independent, using the fact that the eigenvectors of a
symmetric matrix are orthogonal.

5. In section 7?7, we said that the ROC was invariant to choice of prior. Prove
this.

Programming Assignments
1.

656 Finding Templates using Classifiers ~ Chapter 21

Il Appendix: Support Vector Machines for Datasets that are not
Linearly Separable

In many cases, a separating hyperplane will not exist. To allow for this case, we
introduce a set of slack variables, £ > 0, which represent the amount by which
the constraint is violated. We can now write our new constraints as

and we modify the objective function to take account of the extent of the constraint
violations, to get the problem

N
1
minimize QW w +C Zl &
subject to y; (w-x1 +b)>1-¢
and fz Z 0

Here C gives the significance of the constraint violations with respect to the distance
between the points and the hyperplane. The dual problem becomes

N 1 N
maximize E o — B E Oéz‘(yz'yjmi : mj)aj
4 4,j=1

subject to C' > a«a; >0
N
and Z a;y; =0
i=1
Again, we have
N
1

but recovering b from the solution to the dual problem is slightly more interesting.
For each example where C' > «; > 0 (note that these are strict inequalities, unlike
the constraints) the slack variable &; will be zero. This means that

N
>y mj+b=y;
j=1

for these values of 4. This expression yields b. Again, the optimization problem is
a quadratic programming problem, though there is no guarantee that many points
will have «a; = 0.

Section Ill. Appendix: Using Support Vector Machines with Non-Linear Kernels 657

Il Appendix: Using Support Vector Machines with Non-Linear
Kernels

For many data sets, it is unlikely that a hyperplane will yield a good classifier.
Instead, we want a decision boundary with a more complex geometry. One way
to achieve this is to map the feature vector into some new space, and look for a
hyperplane in that new space. For example, if we had a plane data set that we were
convinced could be separated by plane conics, we might apply the map

(z,y) = (2%, zy,9%, 2, y)

to the dataset. A classifier boundary that is a hyperplane in this new feature space
is a conic in the original feature space. In this form, this idea is not particularly
useful, because we might need to map the data into a very high dimensional space
(for example, assume that we know the classifier boundary has degree two, and the
data is 10 dimensional — we would need to map the data into a 65 dimensional
space).

Write the map as @’ = ¢(x). Write out the optimisation problem for the new
points x}; you will notice that the only form in which ! appears is in the terms

which we could write as ¢(x;) - ¢(x;). Apart from always being positive, this term
doesn’t give us much information about ¢. In particular, the map doesn’t appear
explicitly in the optimisation problem. If we did solve the optimisation problem,
the final classifier would be

fz)

N
sign (Z (i’ - o, + b))

1

N
sign (Z (aiyip(x) - d(xi) + b))

1

Assume that we have a function k(x,y) which is positive for all pairs of @, y.
It can be shown that, under various technical conditions of no interest to us, there
is some ¢ such that k(x,y) = ¢(x) - ¢(y). All this allows us to adopt a clever trick
— instead of constructing ¢ explicitly, we obtain some appropriate k(x,y), and use
it in place of ¢. In particular, the dual optimisation problem becomes

N N
o 1
maximize E 041'—5 E ai(yiyjk(miymj))aj
i 4,j=1

subject to «a; >0

N
and Z a;y; =0
i=1

658 Finding Templates using Classifiers ~ Chapter 21

and the classifier becomes

N
f(z) = sign (Z (ciyik(x, ;) + b))

1

Of course, these equations assume that the dataset are separable in the new feature
space represented by k. This may not be the case, in which case the problem
becomes

N N
. 1
maximize E 041'—5 E ai(yiyjk(miymj))aj
i 4,j=1

subject to C > a; >0
N
and Z a;y; =0
i=1
and the classifier becomes

N
f(x) = sign (Z (oyik(z, ;) + b))

1

There are a variety of possible choices for k(x, y). The main issue is that it must
be positive for all values of @ and y. Some typical choices are shown in table 21.1.
There doesn’t appear to be any principled method for choosing between kernels;
one tries different forms, and uses the one that gives the best error rate, measured
using cross-validation.

Kernel form Qualitative properties of ¢ repre-
sented by this kernel

(x-y)? ¢ is all monomials of degree d

(x-y+c) ¢ is all monomials of degree d or
below

tanh(ax - y + b)
p— T p—
exp(—(m y%agm y))

Table 21.1. Some support vector kernels

