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Detection of Microcalcifications in Digital
Mammograms Using Wavelets

Ted C. Wang and Nicolaos B. Karayiannisyfember, IEEE

Abstract—This paper presents an approach for detecting micro- glandular tissues and malignant disease results in poor visu-
calcifications in digital mammograms employing wavelet-based alization in analog films [11]. This problem is accentuated
subband image decomposition. The microcalcifications appear when examining for breast cancer younger women who have

in small clusters of few pixels with relatively high intensity ; ; . .
compared with their neighboring pixels. These image features can denser breast tissues. Although microcalcifications have high

be preserved by a detection system that employs a suitable imageinherent attenuation properties, their small size also results in
transform which can localize the signal characteristics in the orig- a low subject contrast [30]. As a result, the visibility of small
inal and the transform domain. Given that the microcalcifications  tumors, and any associated microcalcifications, will always be
correspond to high-frequency components of the image spectrum, a problem in screen-film mammography.

detection of microcalcifications is achieved by decomposing the M th t difficult of radiological
mammograms into different frequency subbands, suppressing the ammograms are among the most diificult of radiologica

low-frequency subband, and, finally, reconstructing the mam- images to interpret. Mammograms are of low contrast, and
mogram from the subbands containing only high frequencies. features in mammograms indicative of breast disease, such

Preliminary experiments indicate that further studies are needed as the microcalcifications, are often very small. The large
to investigate the potential of wavelet-based subband image 5moynt of negative biopsies encountered in current practice
decomposition as a tool for detecting microcalcifications in digital . .
mammograms. could be reduce(_j if a computer system was avallgble to
help the radiologists to prescreen mammograms. With the
advent of high-resolution image digitization hardware, the
decreasing cost/performance ratio of computers, and the recent
development of digital X-ray image acquisition equipment,
I. INTRODUCTION computer-aided image analysis is becoming practical for mam-

Index Terms—Breast cancer screening, digital mammography,
microcalcification detection, wavelet image decomposition.

REEN-FILM mammography is widely recognized as bd'09rams. ,
ng the only effective imaging modality for early detection 1NiS Paper proposes a system designed to perform pre-
of breast cancer in women. Screening asymptomatic wome{€€ning of digital mammograms for the presence of micro-

using screen-film mammography has been shown to Sigrﬁ:|a_1lcific51tions based on their wavelet decomposition. This paper

icantly reduce breast cancer mortality [21]. Medical doctofS organized as follows: Section Il presents a review of existing

generally examine the breast radiographs for the presencd@gniaues for mammographical feature analysis. Section Il
malignant masses and indirect signs of malignancy, such p({gsents the mathematlgal foundatlop of wavelet analysis and
the presence of microcalcifications and skin thickening. Thifdter banks theory. Section IV describes the structure of the
the imaging performance achieved by screen-film radiograpﬁX/Stem proposed for microcalcification detection and presents
is very important. an example of the system in operation. Section V includes

During the past 20 years, there have been many Sigrﬁ:'qncluding remarks and proposes some directions for future

icant technological improvements in mammographic X-ra§/erk-
equipment and in screen-film processing systems [1]. Even
though advances in screen-film mammographical technology
have resulted in significant improvements in image resolution
and film contrast, images provided by screen-film mammog-
raphy remain very difficult to interpret. Moreover, technical This section reviews image enhancement techniques for

advances in screen-film mammography are unlikely to provi%itaﬂ mammograms and approaches attempting to detect,
good visualization in regions of interest to medical doctorgxiract, and segment clustered microcalcifications.
The minor difference in X-ray attenuation between normal

Il. ENHANCEMENT AND DETECTION
OF MAMMOGRAPHIC FEATURES
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[30]. As a result, defining the characteristics of microcalcififhen they applied local and global nonlinear operators to
cations is difficult. this multiscale representation to enhance the desired features.
Conventional image processing techniques do not perfoivtore specifically, within each level of resolution they defined

well on mammographic images. The large variation in featumultiscale edgesand used these edges as an “index” to
size and shape reduces the effectiveness of classical fixedrease the local gain of subband image coefficients in
neighborhood techniques such as unsharp masking [18]. Fixedder to emphasize the desired mammographic features. They
neighborhood or global techniques may adapt to local featumpared their results with traditional methods used for image
within a neighborhood, but do not adapt the size of thenhancement such as unsharp masking and adaptive histogram
neighborhood to local properties. Alternatively, they modifgqualization and found that the wavelet-based processing
the image depending on global properties, such as the imaggorithms were superior [13].
spatial-frequency spectrum, which may not be representativeAn alternative to contrast enhancement of digital
of a small region of interest in the image. Many imagespammograms is the removal of background noise from
including mammograms, have isolated regions which are ttieese images. For instance, a digital mammogram can be
primary feature of interest. These features can vary widetyhanced by removing background noise while preserving
in size and shape, and often cannot be enhanced by fixétk edge information of suspicious areas. This approach
neighborhood or global techniques. There are two possibi@s investigated by Laét al. [12], who used four selective
approaches to enhancing mammographic features. One isaveraging schemes and a modification of median filtering
increase the contrast of suspicious areas as stated earlier, Gaill¢d selective median filteringA selective median filter is
the other is to remove background noise. defined as follows: Given a windoW (¢, j), centered at image
Morrow et al. [18] used a “region-based image processingtoordinategs, j), the output of the selective median filter is
technique which adapts to image features and enhances these )
features with respect to their surroundings, regardless of the.; = mediafz, .: (r,s) € N(¢,7), and|z,., — i ;| <T}
shape and size of the features. In adaptive-neighborhood qr . : . . . oo .
region-based image processing, a neighborhood is defiP(gae_rexm is the image intensity dt, j), N(i, j) is the area in
about each pixel in the image, the extent of which is dependé g image covered by the windoW (¢, j), and"is a thresh-
on the characteristics of the image feature in which the giv&'] - In CO'T‘DU“”Q the me@an, the set of pixels is restricted
pixel is situated. This neighborhood of similar pixels is caIIed% those with a difference in gray level no greater than some
region If properly defined, regions should correspond to imag{} reshold_T. The amount of edg_e smearing can be contrplled
features. Then, image processing procedures can be app g&\djustlng th_e pa_rametét I T'S_ small, the_edge-pre_servmg
on an image feature basis, rather than pixel by pixel. ThehQwer of the filter is strong, but its smoothing effect is small.
are two classes of regions: nonoverlapping regions, whighT is large, the filter behaves the other way around.
are obtained using image segmentation techniques, and over- . ] o
lapping regions, obtained using region grouping techniquds. Detection of Microcalcifications
Morrow et al. considered overlapping regions, because theyComputer aided detection of microcalcifications in digital
felt that disjoint segmentation of an image with subsequemiammograms has been attempted by several researchers in the
enhancement of the segments would result in noticeable eggst. Dengleet al.[8] proposed an approach which uses a two-
artifacts and an inferior enhanced image. Their method usstage algorithm for spot detection and shape extraction. The
each pixel in the image as a seed to grow a region. Tfiest stage applies a weightatifference of GaussiafDOG)
extent and shape of the region adapt to local image gray-lefiger for the noise-invariant and size-specific detection of
variations, corresponding to an image feature. The contrastspiots, resulting in a DOG image. This DOG image represents
each region is calculated with respect to its individual backae microcalcifications if a thresholding operation is applied
ground. Contrast is then enhanced by applying an empirital it. By performing morphological opening on the original
transformation based on the seed pixel value of each regiimage, the shape of the objects is preserved. Finally, the results
its contrast, and its background. The objective of this scherakboth filters are combined via a morphological reconstruction
is to enhance the quality of “difficult” mammograms to allowoperation calleadonditional thickeningThe topology and the
the radiologists to make their diagnosis with more confidenagumber of the spots are determined by the first filter, while
In order to achieve this objective, Morroet al. used high- their shape is determined by the second filter.
resolution digitization (less than 0.1-mm square pixel size), Betal [3] also used mathematical morphology to extract
and maintained high resolution throughout their processimgicrocalcifications from digital mammograms. In this ap-
procedures. proach, an enhancement algorithm was applied on a digi-
Some researchers attempted contrast enhancement of mged mammogram to emphasize the edges and lines while
mographical features by utilizing the unique properties @moothing homogeneous areas. In the second stage, a “top-
frequency and orientation selectivity of the wavelet transforrhat” algorithm was applied to obtain unique markers for
Laineet al.[13] used three different multiscale representationeach microcalcification. This algorithm consists of three parts:
1) the dyadic wavelet transform, 2) tietransform, and 3) the iterative opening, subtraction, and thresholding. The threshold
hexagonal wavelet transform. Each of these representatideel was selected manually by a radiologist. The binary
provides a hierarchy of multiscale images which localizenage produced by thresholding provided markers for the
important image information at different spatial frequenciemorphological watershed algorithnSegmentation of the mi-
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crocalcifications was achieved by applying the watershéie skeleton using morphological operators, 3) select the
algorithm. The final stage involved a numerical analysis dfiresholding value based on the size of microcalcifications, 4)
the detected microcalcifications. Information about microcatiassify the suspicious areas based on predefined shapes and
cification areas and boundary lengths give an indication of tezes of microcalcifications, and reconstruct the gray levels
spread of microcalcification sizes. Benign microcalcificatioraround only the suspicious areas. Steps 3) and 4) need a
tend to be large structures (diametel mm), while malignant rule-base that is provided by expert radiologists.
microcalcifications tend to be smaller. An observation from these studies on microcalcification

Nishikawaet al. [19] also developed a computerized techdetection is that local filtering techniques require the fine
nigue to automatically detect clustered microcalcificationtuning of several parameters related to local image statistics
Their method consists of three stages: First the signal-@Ad they frequently result in a large number of false positives.
noise ratio of the microcalcifications is enhanced by filterin@n the other hand, the application of morphological operators
the image to reduce the normal background structure of treguiresa priori knowledge of the resolution level of the
mammogram. Second, signals (potential microcalcificationslammograms in order to determine the size and shape of the
are identified by means of global gray-level thresholdingfructuring elements to be used. Besides manual adjustment of
morphological erosion, and then a local adaptive gray-levidle detected areas, these techniques also tend to rely on many
thresholding. Third, the number of falsely detected signals astages of heuristics attempting to eliminate false positives.
reduced by 1) examining the power spectrum of individual
signals, 2) determining the spatial distribution of the signals,
and 3) examining the relationship between size, shape and’he theory of wavelets provides a common framework
background pixel value of microcalcifications. for numerous techniques developed independently for vari-

Cairnset al. [4] employed an algorithm involving severalous signal and image processing applications. For example,
stages to achieve automated detection of clusters of micrultiresolution image processing, used in computer vision,
calcifications. They first made the following assumptions teubband coding, developed for speech and image compres-
model microcalcifications in digital mammograms: microcakion, and wavelet series expansions, developed in applied
cifications are small in size, usually of linear or round shapmathematics, have been recently recognized as different views
they are usually brighter than the neighboring pixels, theif a single theory. The classical approach for the analysis
brightness value is relatively constant across their surfac#, nonstationarysignals is theshort-time Fourier transform
and they have well-defined edges. Finally, they argued tH&TFT) or Gabor transform. With the advent @favelet
microcalcifications become significant only if they occur inransform(WT), short windows at high frequencies and long
groups or clusters. Based on these assumptions, they usétdows at low frequencies can be used to provide better
an algorithm involving the following stages: edge detectiosjgnal resolution than the STFT.
contour hue generation, location of potential microcalcifica- Wavelet transform can also be seen frorsignal decom-
tions using graph searching, feature extraction, classificatipasitionview point. In this case, a signal is decomposed onto
of the potential microcalcifications, and cluster detection. Theyset of basis functions which are calledveletsand are the
were able to achieve a classification rate of 91.75% for singtere of wavelet analysis. These basis functions are obtained
microcalcifications. They also achieved 100% true-positivé®om a singlemother wavelety dilations and contractions
with 0% false positives using the re-substitution method, arfgicalings), as well as translations or shifts. Hence, the concept
98% true-positives with 0% false positives using the leavef scale is essential in wavelet analysis (compared to the
one-out method for clustered microcalcifications. concept of frequency in Fourier analysis).

Zhaoet al. [31] developed a method for adaptively thresh- There are several types of wavelet transforms that can be
olding gray-level mammographical images. This approacihosen depending on the application. Tdoatinuous wavelet
combines morphological filtering operations with a rule-bastransform(CWT) can be used for continuous signals. In this
The objective of the authors is to extract the suspicious arease, both time and scale are continuous. diserete wavelet
from a mammogram and provide location information otransform(DWT) can also be defined for discrete signals. It
certain microcalcifications of predefined shapes and sizesissshown in this section that wavelet decomposition is closely
radiologists for further examination. They derived an adaptivelated to multirate signal processing techniques. A particular
threshold function from morphological operations. The fowavelet decomposition relates to filter banks and can be the
lowing characteristic features of the microcalcifications welgasis for subband coding schemes used in speech and image
pertinent in deriving the adaptive threshold function: granulaompression. In this section, we first explore the concepts of
form, casting form, microcalcification size, and microcalcifiresolution and scale in CWT. Then we proceed to the discrete-
cation density. The threshold set is controlled by the inddidne case, where we attempt to link DWT to filter banks and
numbers in the skeleton of shapes which represent microcgitoband signal decomposition.
cifications in mammograms. The parameters of the adaptiye
threshold sets are obtained from interpreting umbra shadoév‘swhy Use Wavelets?
from an image function. These steps can be summarized a4 signal analysis, a signaf(¢) is often represented by a
follows: 1) preprocess a gray-level mammogram to smoot¥gighted sum of building blocks, drasis functions
out background noise, 2) obtain the skeleton information 10 :Zcﬂ/}i(t) 1)
of microcalcifications and determine the shadow size from ‘

T

I1l. WAVELETS AND SUBBAND DECOMPOSITION
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where v;(t) are basis functions and; are coefficients or in wavelet domain, or a wavelet decomposition, as
weights. Since the basis functions(¢) are fixed, the in-

formation about the signal is carried( t)>y the coefficients. The ft) = Z anbwab(t) (3)
simplest such representation uses translations of the impulse ot
function as its only bases, yielding a representation that revealsere ¢, (t) = 2%/24(2%¢ — b).
information only about the time domain behavior of the The coefficients:,, can be computed viaavelet transform
signal. Choosing the sinusoids as the basis functions yieldvhose implementation is closely related to a number of
Fourier representation that reveals information only about tkgchniques used in signal processing. Driven by applications
frequency domain behavior of the signal. For the purpose ®ich as speech and image compression, a method called
detecting spurious spikes, neither of the above representatighlgband codingvas first proposed by Crochiest al. [5] in

is ideal. What we would like to have is a representatioiie late 1970’s. This led to the study of perfect-reconstruction
which contains information about both the time and frequendjter banks, a problem considered in the 1980's by several
behavior of the signal. More specifically, we need to knowesearchers including Smith and Barnwell [20], Mintzer [17],
the frequency content of the signal at a particular instaMgtterli [24], [25], and Vaidyanathan [22], [23]. In a particular

in time. However, resolution in timéAt) and resolution in configuration, namely when the filter bank has octave bands,
frequency(Aw) cannot both be made arbitrary small at thene obtains a discrete-time wavelet series. Under certain
same time because their product is lower bounded by tg@nditions, such an octave-band filter bank can be used to

inequality known as theincertainty principle[2] generate wavelet bases.
Daubechies [6], [7] proposed one of the most interesting

methodologies for wavelets. This methodology relies on the
AtAw > 1/2. (2) iteration of a discrete-time filter bank which, under certain
conditions, converges to a continuous-time wavelet basis.
o . _ _ Furthermore, the multiresolution framework used in the anal-
This inequality means that we must tradeoff time resolutiqfsis of wavelet decompositions automatically associates a
for frequency resolution, or vice versa. Thus, it is possibigiscrete-time perfect-reconstruction filter bank to any wavelet
to get very good resolution in time if we are willing togecomposition. The pyramid decomposition framework is cen-
settle for low resolution in frequency. Conversely, we can gg| to wavelet decomposition and establishes conceptually the
very good resolution in frequency if we are willing to settlgink between filter banks and wavelets, as shown by Mallat
for low resolution in time. From a practical standpoint, lowf14}-[16] and Daubechies [6], [7]. This connection has led to
frequency events are usually spread out in time (nonlocad) renewed interest in filter banks, especially with the work of
and high-frequency events are usually concentrated in tim@ubechies who first constructed wavelets from filter banks
(localized). Thus, one way that we can obtain good times] and Mallat who showed that a wavelet series expansion
frequency information from a signal is to design the basiguld be implemented with filter banks [14].
functions to act like cascaded octave bandpass filters whichas can be seen from the above discussion, there are two
repeatedly split the bandwidth of the signal in half. different points of view about the advantages of wavelet
To gain insight into the design of the basis functions thagpresentation and its implementation via filter banks. One is
will properly convey information about a signal and at thene expansion of signals in terms of a structured basis, and the
same time satisfy the uncertainty principle, let us compaggher is the perfect reconstruction of signals via filter banks.
the impulse function and the sinusoids. The impulse functiaWhile the two are equivalent, the former is more related to
cannot provide information about the frequency behavior ofsignal representation, while the latter is more concerned with
signal because it has an infinitesimally small support. On tliee construction of implementable systems.
other hand, the sinusoids cannot provide information about the
time behavior of a signal because they have infinite suppd®. STFT: A Fixed-Resolution Analysis

What We_ seek, then,. IS a compromise lc.)etvye.en these Worhe goal of signal analysis is to extract relevant information
extremes: a set of basis functiofys; }, each with finite support ¢ o signal by transforming it. For a stationary signéf)™

of a different width. The different support widths allow US Qe natural “stationary transform” is the well-known Fourier
tradeoff time and frequency resolution in order to accurately, n<form

examine different regions of a signal. 00

For a wavelet representation, the basis functiong«in} X(w) = (5" z(t)) = / z(t)e It dt 4)
are scaled and translated versions of the same prototype —o0
function #(¢), known as themother wavelet The scaling which is also called the Fourier analysis formula. The inverse
is accomplished by multiplying by some scale factor; if Fourier transform is given by
we choose the scale factor to be a power of two, yielding 1 [ '
¥(2°t),a € 7, we get the cascaded octave bandpass filter we z(t) = %/ X(w)e'* dw (5)
desire. Since) has finite support, it must be translated along e
the time axis in order to cover an entire signal. This translati@d is also called the Fourier synthesis formula. Note that
is accomplished by considering all the integral shiftgiothat ¢’“* is not in the spacd.»(R) of square integrable functions,
is, ¥(2°t — b),b € Z. Therefore, a signal can be represented!Mathematically, this also means an absolutely integrable function.
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Fig. 1. Frequency tiling of (a) the STFT and (b) the WT and the corresponding basis functions. The tiles represent the concentration in time-frequency
plane covered by a given basis function.

and that the se{c’**} is not countable. As shown in (4),the windowg(t). Once this windows is chosen, then the time-

the Fourier coefficient(w) are computed as inner productdrequency resolution idixed over the entire time-frequency

of the signalz(¢) with sinusoidal basis functions of infinite plane since the same window is used at all frequencies. This

duration. Consequently, Fourier analysis works welt(if) is situation is depicted in Fig. 1(a), which shows the frequency

composed of a few harmonic components. This implies thidtng of the STFT.

any abrupt change in time in a nonstationary signgl) is

spread out over the whqle frequ.ency ax@ﬂ’r@w). Therefore, _CWT: A Multiresolution Analysis

the analysis of nonstationary signals requires more than thée

Fourier transform. To overcome the resolution limitation of the STFT men-
To achieve a “local” Fourier transform, one can define #oned previously, one would like to be able to vary the

windowed Fourier transform. This modified version of th&equency bandwidth and the time span of the analysis filter

Fourier transform, called the STFT, was formulated by Gabi order to achievenultiresolutionanalysis. More specifically,

[10] to deal with nonstationary signals as the time resolution must increase with the central frequency
of the analysis filter, and the ratio of the filter bandwidth
STFT(r,w) = /x(t)g*(t — 7)e It dt (6) to its central frequency must be constant. This requirement
corresponds to the so-callednstant-Qanalysis [25], [26]. In

Herms of filter banks, this means that instead of the frequency
responses of the analysis filters being regularly spaced over

seen through a window(t) of finite length, centered at timethe frequency axis (as for the STFT case), they are regularly

locationr. This modified transform can also be interpreted a%.os\?ﬁd Thdogarltthmtlc slc?Ie. bandwidth dition i t th
a filtering process. The signal) is filtered with a bandpass . en the constant reative bandwidin condition 1s met, the
fiter having a frequency response equal to the windowi e resolution becomes arbitrarily good at high frequencies,

function ¢(¢), and then the Fourier transform is performed o hile the irequency resolution becomes arbitrarily good at
this filtered 7signal ow frequencies. This enables the analysis of signals such

The STFT can also be seen as a measure of similarit tWO. very close S.h ort b_ursts, becquse by increasing the
between the signal and a basis function, which is a shift alysis frequency (higher time resolution) the two events can

and modulated version of an elementary window, i.e e well distinguished. This kind of multiresolution analysis
B works best if the signal under consideration has high-frequency

STFT(7,w) = (gr.u(t), 2(t)) (7) components of short duration and low-frequency components
of long duration. In fact, most images correspond to this type
whereg, ..(t) = g(t — 7)e’“*. Thus, each basis function usedf signals.
in the expansion has the same time and frequency resolutiofMultiresolution analysis [14], [15] can be accomplished
but occupies a different location in the time-frequency planasing the CWT. To define the CWT, we will not consider shifts
Although the STFT seems to be the solution for nonstationaaypd modulates of a prototype function as in STFT. Instead, we
signals, it has a major drawback: poor time and frequenyll use scaledand shiftedversions from the same prototype
resolution. The analysis depends critically on the choice af achieve the constarg-condition. Consider a real bandpass

where ¢*(¢) denotes the complex conjugate of the functio
g(t). The STFT assumes the signdl) to be stationary when
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Fig. 2. Basic two-channel filter bank structure.
filter with impulse responsé(¢) and zero mean changes in the scales of continuous-time signals do not change
o their resolution whereas this is not true for discrete-time
/ P(t) dt = 0. (8) signals. For discrete-time signals, increasing the scale involves
—00

downsampling which automatically reduces resolution.

The CWT is defined as [27]
D. Filter Banks and Subband Image Decomposition

CWT,(a,b) = %/x(tﬁ/)*(t . b) dt (9)  In the discrete-time case, two methods were developed
: independently in the late 1970's and early 1980’s which lead
where*(t) denotes the complex conjugateft),a € R, naturally to discrete-time wavelet transforms, nanmstlpband
andb € R. Equation (9) can also be written as coding[5], [28], [29] andpyramidal codingor multiresolution
signal analysis[14]-[16]. Both methods were developed for
CWT.(a,b) = ($a,(t), 2(1)) (10) coding purposes and the concept of critical sampling was of
importance. In this section, we briefly review filter banks and
their application to subband signal decomposition.
Pap(t) = iz/}(t_ b) (11) Consider the two-channel filter bank structure shown in
va a Fig. 2, where a discrete-time signaln) is applied to a system

and the factorl /+/a is used to conserve the norm. Thus, (9‘5 4 ) ,
measures the similarity between the signg) and shifts and (%) and its correspondingtransformX (z) = Z{x(n)}, we
scales of an elementary function. The functions used in tf@n obtain a lower-resolution signal by low-pass filtering with

expansion have changing time-frequency tiles because of ghRalf-band low-pass filter having impulse respohs@:) Wit_h
scaling. Fora < 1, 45, ,(¢) will be short and of high frequency. z-transform H(z). Then we can make the half-band signal

For a> 1, 1a(¢) will be long and of low frequency. This full-band again by downsampling by afacFor of two (doubling
frequency tiling of wavelet functions is illustrated in Fig. 1(b)iN€ scale by a factor of two in the analysis). Th&ransform

Since the set of basis functions are scaled versions of &%) Of the resulting signaj; (n) can be expressed as

single mother wavelet, the term “scale” is often p_referred t- (2) = %[Hl (zl/Q)X(Zl/Q) T+ H (_Zl/Q)X(_Zl/Q)]
“frequency” for the CWT. To explore the relationship of scale (13)

and resolution in the CWT, we first rewrite (9) as Compared with the original sequenagn), the filtered se-
. quencey; (n) is reduced in resolution by a factor of two

CWT.(a,b) = \/E/Rx(atw <t B 5) dt. 12) " Gue to hal(f-gand low-pass filtering, and doubled in scale, due

] ] ] o to downsampling by a factor of two. We can proceed in a

Recall that if a functionf(#) is scaled in time by a factor gimlar fashion to compute the “added detail” of the signal
of a>0, then it becomes/(at). Scaling in time means that 55 4 high-pass filtered version efn) using a filter with
the fu.nctlon is cqntracted i.>1 and expanded ifz < 1. impulse responsés(n) and z-transform Ha(z), followed by

Equation (9) implies that as the scale decreases, the f"&?{wnsampling by a factor of two as depicted in the lower

impulse response((¢ —b)/a) dilates in time and takes only pranch in Fig. 2. The-transform ofys(n) can be expressed
long-time behavior into account. Similarly, (12) indicates thajg

as the scale increases, an increasingly contracted version of
the signalz(t) is seen through a window of fixed length. Y2(z) = %[H2 (ZI/Q)X(ZI/Q) + H> (—21/2)X(—21/2)]
Hence, the scale facter has the same meaning as the scale (14)
in maps: large scales mean global views while small scalesAt the receiver end of Fig. 2, the filtegg(n) andg.(n) are
mean detailed views. used to reconstruct the signain). The inputs to these filters
On the other hand, the notion of resolution is linked to thare the decomposed signajs(n) and §2(n), respectively.
frequency content of a signal. For instance, low-pass filteriiget Y7 (=) andY>(z) be thez-transform ofg; (n) and §=(n),
a signal keeps its scale but reduces its resolution. Moreovesspectively. Since by upsamplirfg(z) andf@(z) we obtain

where

onsisting of a pair of filter banks. Given this original sequence
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V1(2?) andY2(z2), the output of the system can be expressed

as
X(2) = GL(2)Y1(#?) + Ga(2)Y2 (#2) (15)

where G;(z) and G»(z) denote thez-transform of the filters
g1(n) and ga(n).

If we assume that the encoder-decoder and the channel are

error free, that is, iff1(z) = Y1(z) and Yz(z) = Ya(z), then
the output becomes
X(z) =G1(x)1; (#%) + Ga2(2)Y2 (%)
= L[H1(2)G1(2) + Ha(2)Ga(2)| X (2)

+ LHy(=2)Gi(2) + Ha(=2)Ga(2)]X (=2).  (16)

The original signalX(z) can be reconstructed by eliminat-

ing the term of (16) which involves{(—z). This can be
accomplished by requiring that,(z) = 2H;(z), G2(2)

—2Hs(z) and Hs(z) = H1(—=2). Under these assumptions,

(16) becomes
X(2) = [H}(2) - H}(2)] X(2). (17)

The original signal can be perfectly reconstructed:(if.) =
x(n) or, equivalently, if X(z) = X(z). According to (17),
perfect reconstruction of the original signal is guaranteed

H(z) - H3(z) = 1. (18)

For simplicity, leth;(n) = h(n). Then thez-transform of
hl(TL) is

+oo oo
Hy(z)= Y hi(n)z "= > h(n)z".  (19)
Since Hs(2) = Hi(—2)
+oo +oo
Z ha(n)z™" = Z h(n)(—2)""
n=—o& n:—;ooo
= > (-1 h(n)z " (20)
which implies that
ha(n) = (=1)"h(n) + (=1)"hi(n). (21)

This filter equation indicates that if; (n) = h(n) is a low-
pass filter, theniz(n) = (—1)*h(n) is a high-pass filter.
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Magnitude

Frequency

lowpass filter response

highpass filter response

Fig. 3. Frequency response of QMF’s; each filter is a half-band filter.

If h(n) is a linear-phasefinite impulse responséFIR)
filter with an even number of coefficients, then the perfect
reconstruction condition (18) holds if

|H(w)]* + [H(w —m)* = 1. (23)
IfFilters that meet the above constraints are said to posses perfect
reconstruction properties and are often catigedrature mir-
ror filters (QMF’s) or conjugate mirror filter§CMF’s). Fig. 3
shows the magnitude of the frequency response of such filters.
The above results were proposed by Crochietrel. [5]
as a means to canceling aliasing in a two-channel filter bank.
Even though this solution ensures perfect reconstruction of a
signal without aliasing, the design of filters that meet these
requirements is a very difficult task and it has been a problem
for decades. Fortunately, wavelets can be used to construct
FIR filters with perfect reconstruction properties.

E. Wavelet Representation of Images

Wavelet-based image decomposition can be interpreted as an
image filtering process. For a given imadeof size2™ x 27,
wavelet-based subband decomposition can be performed as
follows: The wavelet filtersh; (n) and ho(n) are applied to
the rows of the imageA. The filter h1(n) is a low-pass
filter with frequency responséi;(w) and hs(n) is a high-
pass filter with frequency respondé:(w). By filtering the
image A with H,(w), we obtain low-frequency information

The relationship between these two filters becomes obvious (yckground). By filtering the image with»(w), we obtain

determining the Fourier transform ék(n). Since H;(w) =
H(w), we get

+oo

Z ho(n)e 9«m

n=—0o0

oo

S hm)(-1yreien

n=—0o0

+oo )
= Z h(n)e=i@=mn

n=—0o0

HQ(LU)

=H(w — 7). (22)

the high-frequency information (edges). After downsampling
by a factor of two, we obtain two subband?;,.A and H,,. A

(the subscriptr suggests that the filters are applied to rows
of the imageA). Since we downsample by a factor of two
in the horizontal direction of each subband, the size of these
two downsampled subbands 2§ x 2"~! (see Fig. 4). The
filters Hq(w) and Ho(w) are then applied to the columns of
the subbands{;, A and H,, A, followed by downsampling

by a factor of two, and the following four subbands are
Obtained:chleA, HQCleA, chHQTA, and Ho.H,,A.
Since we now downsample by a factor of two in the vertical
direction of each subband, the four subbands have gone
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row filtering column filtering

Hy(w 9@ Hi Hy . A

Hl(w)é®9

Hy, A

A Lo |Ho(w 9@9 My HL A

(W) —=
Hi Iy, 4

Hyp A |

zrz(w)é@é

L s |Ho(w 9@—} Hy Ho, A

Fig. 4. One level of a two-dimensional subband decomposition using wavelet functions as the analysis filter.

through downsampling by a factor of two in both directionSince G»(2) = —2H»(2), (24) gives
and the final size of each subban@fs ! x 2"~ (see Fig. 4). . : :

The subbandH;.H;,.A contains the smooth information X(2) = —Ha(2)[H2(2) X (2) + Hao(=2)X(=2)]. (29
and the background intensity of the image and the subbands ;., () be the signal produced by passing the original signal
Hi.Hi A, HooHir A, and Hi Ho, A contain the detail in- () through the high-pass filter with impulse respohsén).
formation of the image. The subbarth .H:, A corresponds f y, () denotes the-transform ofz,(n), then
to the lowest frequenciesH;.H>.A gives the horizontal
high frequencies (vertical edges¥.H1,-A gives the vertical Xn(z) = Ho(2)X (2) (26)
high frequencies (horizontal edges), afd. H>,.A the high
frequencies in both directions (corners and diagonal edges)”?nd

Xp(—2) = Ha(—2)X(-2). @7)
IV. SYSTEM DESCRIPTION Thus, (25) can also be written as
Screening of digital mammograms for clusters of microcal- X(7) = _Hy()[Xn(2) + Xn(=)] 28)
) — T4L2\< AN h\—%</]-

cifications indicating malignancy can be facilitated by a system
capable of extracting spurious spots in digital mammograngsnce 21 {X,,(—z)} = (—=1)"z(n), (28) implies that
regardless of the density of the tissue. This section presents

the structure of a system proposed to perform this task by #(n) = ha(n) * zpn(n) (29)
exploiting the frequency selectivity of wavelet-based SUbbaUﬂ\ere*

) L denotes the convolution operator and
image decomposition.

ann(n) = = [1+ (=1)"]en(n)
A. Enhancement and Detection of Spikes _ { —2x3,(n), if nis even (30)
Consider the two-channel filter bank shown in Fig. 2. Under 0, if » is odd.

the conditions summarized in Section IlI-D, this filter banky other words, the reconstructed sigrigh) is produced by
can be used to perform one level of signal decomposition agdssing the signaly,, (n) defined at (30) through the high-pass
reconstruction. Suppose that the sigméh) is reconstructed fijter with impulse responsé.(n).

by arbitrarily settinggi(n) = 0,vn € Z, which implies  The signala;,(n) is obtained by passing the original sig-
that Y1(z) = 0. If Ya(2) = Y2(2), the z-transform of the nal z(n) through a high-pass filter. High-pass filtering of

reconstructed signal(n) can be obtained from (15) as the original signalz(n) tends to suppress its homogeneous
N 5 portions and enhance the existing discontinuities and spikes.
X(2) =Ga(2)Y2(27) The signalz;,,(n) is obtained by multiplying the amplitude

=L1Gy(2)[H2(2) X (2) + Ha(—2)X(—2)]. (24) of the samples by-2 and replacing every second sample

—2
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original microcalcitication-
Mammogram detected mammogram
. . Low Frequency Image
I | Multiresolution - o » _ » E
L Subband Elimination Reconstruction
Decomposition

(wavelet analysis (wavclet synihesis

liltering) filtering)

Fig. 5. The proposed system in operation: the input to the system is a digital mammogram; the output is a mammogram with detected microcalcifications.

by zero. This guarantees that spikes will be preserved in resolution level 2 resolution level |
the signalx;,,(n) provided that their duration is larger than
one sample. The addition of zeros creates abrupt transitions
from one sample to the next and tends to introduce additional
high frequencies to the signal,,(n). High-pass filtering of
xpp(n) will further enhance the discontinuities and spikes
present. This analysis indicates that the discontinuities and
spikes present in the original sign&l») can be enhanced and
detected by setting the subband carrying the lowest frequencies
to zero. The condition for spike detection is that the resolution
of the discrete-time signal is sufficiently high so that the
duration of each spike is larger than one sample.

Image decomposition is performed by independently apmy. 6. Orthogonal subbands at different resolutions produced by two levels
plying filtering and downsampling to the rows and columng wavelet decomposition of a 5:2512 image.
of the image. Thus, the results of the above analysis can
naturally be extended to images. In other words, spikes
abrupt intensity level changes in images can be enhanced
detected by setting the subband carrying the lowest frequenc&(ﬁ?
to zero. Such an approach can be used to enhance %ﬂ§

detect microcalcifications in mammograms provided that the ppressing the subband of the wavelet-decomposed image

occupy an area larger than a window of size 2 pixels. . : .
hat carries the lowest frequencies and contains smooth
The performance of such a system would be affected by the

resolution of the digital mammograms and the behavior Oft_eackground) information, before the reconstruction of the

filters used to perform image decomposition. Due to high-paI age. . . . .
filtering, this approach is not immune to “noisy spikes” or he .proposed SVS“?”T Isdescribed in .the block d|agram
other artifacts. The elimination of “noisy spikes” and artifact§hown in Fig. 5. The original mammogram IS decomposed Into
can only be accomplished by preprocessing or postprocess{fh et of orthogonal subbands qf_ dlff_erent resolution and fre-
procedures. qguency content. The decomposition is based on wavelet anal-
ysis filtering and downsampling along the rows and columns
of the image. Fig. 6 shows the seven subbands resulting after

B. The Proposed System two levels of wavelet decomposition of a 5%¥%512 image.

The system proposed for microcalcification detection i&€ four subbands at resolution 1 are produced by the decom-
based on the hypothesis that the microcalcifications pres@fgition scheme described in Section Ill-E. The application of
in mammograms can be preserved under a transform whi¥§ same decomposition scheme to the upper-left subband that
can localize the signal characteristics in the original arf@'ries the lowest frequencies at resolution 1 results in the two-
the transform domain. In a time signal the harmonic frdevel subband decomposition shown in Fig. 6. In the wavelet-
guency components are present but theyridelen whereas decomposed image shown in Fig. 6, the upper-left subband
in its frequency spectrum the time information fisdden at resolution level 2 contains the background intensity of the
Therefore, transforms with basis functions other than tiiginal image and, thus, carries the lowest frequencies of the
complex sinusoids must be used. In addition, these bakrage spectrum. The microcalcifications, which correspond to
functions must be able to localize the signal in both spatile highest frequencies, are carried by the other subbands.
and frequency domains. A suitable transform that satisfi€§e detection of microcalcifications is accomplished by setting
the above requirements is theavelet transformThe wavelet the wavelet coefficients of the upper-left subband to zero in
transform uses basis functions that oditate in scale and order to suppress the image background information before the
translatein position according to the signal characteristics [97econstruction of the image. The reconstructed mammogram

Given that the microcalcifications correspond to highis expected to contain only high-frequency components, in-
frequency components of the image spectrum and waveletsding the microcalcifications. The final images are obtained
can localize the signal characteristics in both frequency anding subband reconstruction, which is the inverse operator of
scale, our hypothesis is that the resolution and scale of thgbband decomposition. The reconstruction consists of wavelet

resolution level 2

resolution level 1

a1'?1(i18rocalcifications in the spatial domain can be preserved if

use wavelet filters to decompose the mammogram into
rent frequency subbands. According to this hypothesis,
ocalcifications can be extracted from mammograms by
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Fig. 7. The mother wavelet of the DAUB 4 wavelets: (a) a wide and shortFig. 8. The mother wavelet of the DAUB 20 wavelets: (a) a wide and
wavelet for analyzing low-frequency characteristics and (b) a narrow and taliort wavelet for analyzing low-frequency characteristics and (b) a narrow
wavelet for analyzing high-frequency characteristics. and tall wavelet for analyzing high-frequency characteristics.

synthesis filtering and upsampling along the rows and colum@agmpact support improves the time resolution of wavelets.
of the image. Regularity relates to differentiability. Since differentiation in

The visibility of microcalcifications is improved by using agqrier domain amounts to a multiplication bjw), existence
nonlinear thresholding method to enhance the histogram of e yerivatives is related to sufficient decay of the Fourier

resulting mammograms. More specifically, the input dy”amgpectrum.

range of a mammogram is initially determined. Given the rypje | shows the filter coefficients of the two wavelets from
input range, the image is transformed through a nonlineggpechies’ family of orthonormal wavelets used in this paper,
mapping based on the arc-tangent method. This nonlingafyey the Daubechies’ 4-coefficient (DAUB 4) filter and
thresholding method is designed to improve the visibility ghaypechies's 20-coefficient (DAUB 20) filter [7]. Fig. 7 shows
microcalcifications by increasing their pixel intensity relative, o amplitude plot of the mother wavelgtfor the family of

to their background. DAUB 4 filters. Fig. 7(a) represents the “long window” used
i to analyze long-term behavior of a signal; whereas Fig. 7(b) is
C. Wavelet Filters the scaled and translated version of the same wavelet used to

In the “wavelet analysis filtering” and “wavelet synthesisinalyze the instantaneous behavior of a signal. Fig. 8 shows
filtering” stages, we have used the so-called “maximalihe amplitude plot of the mother wavelgtfor the family of
flat” wavelet filters constructed by Daubechies [7]. ThedeAUB 20 filters. In each case, note that the stretched wavelets
wavelets arecompactly supportednd regular. Wavelets are have higher amplitudes while the dilated wavelets have lower
compactly supported if they have finite support with maxamplitudes, in concordance with the const@nhtequirement
mum number of vanishing moments for their support widtldescribed in Section IlI-C.



508 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 4, AUGUST 1998

(@) (b)

Fig. 9. (a) The original mammogram. Microcalcifications extracted from the original mammogram decomposed using (b) the DAUB 4 filter and (c)
the DAUB 20 filter.

TABLE | system depends on the length of the wavelet filters used
CoEeFrICIENTS OF THEDAUB 4 AnD DAUB 20 FLTERS. GIVEN THE in the decomposition of the mammograms. This is a direct
Low-Pass FILTER go (n) THE HIGH-PASS FILTER CAN BE OBTAINED AS . .
g1(n) = (—1)"go(—n + 2N — 1), WHERE NV Is THE LenaTr oF TieFiter  CONSequence of the d|ff9rent shgpes of the corresponding
mother wavelets. According to Figs. 7 and 8, the mother
wavelet of the DAUB 4 filter is more “spike-like” compared

| DAUB 4| DAUB20

n ‘ go(n) \ go(n) with that of the smoother DAUB 20 filter. It is clear from these
o | 0482691 | 0.0%6670 images that the DAUB 4 filter_ detects more pixgls of high
Ll ossesie | o1ssi7T spatial frequency compared with the DAUB 20 filter. These
) pixels may belong to microcalcifications, breast boundary, or

2 | 0.224143 | 0.527207 . :

background noise. Thus, shorter wavelet filters are more sen-
K — C IRKRAFC . . . . . g .
3| 701294091 0.688459 sitive to existing microcalcifications but they tend to produce
4 0.281172 more false positives.
5 —0.249816
G 0.195946 V. CONCLUSIONS
7 0127369 Previous studies suggested that wavelet-based image anal-
. . ysis techniques could occupy a leading position in digital
8 0.093057 . o
X 0071301 mammography [13]. The proposed approach to microcalcifi-
‘ o e cation detection was motivated by the ability of wavelets to
10 —0.020457 discriminate different frequencies and to preserve signal details
1 0.033212 at different resolutions. In fact, this approach exploits the
12 0.003606 orientation and frequency selectivity of the wavelet transform
13 ~0.010733 to make the microcalcifications more visible. This method
14 0.001395 is robust in the sense that it does not require the use of
5 0.001992 heuristics or the prior knowledge of the size and the resolution

of the mammogram. All this is due to the “zoom in” and
16 —0.000686 . , . . .

zoom out” capability of the wavelet filters which c#ranslate
17 0000116 themselves to a location of a signal that is of interestditade
18 0.000093 themselves properly to preserve the resolution of that portion
19 —0.000013 of the signal. The preliminary experiments presented in this

paper indicate that further studies are needed to investigate
the potential of wavelet-based subband image decomposition
as a tool for microcalcification detection. These studies must

The preliminary testing of the proposed system was basegtestigate how the performance of this approach is affected
on the digital mammogram shown in Fig. 9(a). Fig. 9(b) andy: 1) the properties of the wavelet filters used for subband
(c) shows the images obtained after processing the orighage decomposition, 2) the intensity contrast between the
nal mammogram using the DAUB 4 and DAUB 20 filtershackground and breast tissue, 3) the resolution of the original
respectively. All microcalcifications present in the originatligital mammogram, and 4) artifacts present in the original
mammogram are visible in the images produced by the pnmammogram. Additional studies must also inclugeeiver
posed system, which also traced the boundary of the breasbperating characteristianalysis to account for the effect of
the original mammogram. The performance of the proposé#uk threshold on false positive and false negative rates.

D. An Example
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