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Detection of Microcalcifications in Digital
Mammograms Using Wavelets

Ted C. Wang and Nicolaos B. Karayiannis,*Member, IEEE

Abstract—This paper presents an approach for detecting micro-
calcifications in digital mammograms employing wavelet-based
subband image decomposition. The microcalcifications appear
in small clusters of few pixels with relatively high intensity
compared with their neighboring pixels. These image features can
be preserved by a detection system that employs a suitable image
transform which can localize the signal characteristics in the orig-
inal and the transform domain. Given that the microcalcifications
correspond to high-frequency components of the image spectrum,
detection of microcalcifications is achieved by decomposing the
mammograms into different frequency subbands, suppressing the
low-frequency subband, and, finally, reconstructing the mam-
mogram from the subbands containing only high frequencies.
Preliminary experiments indicate that further studies are needed
to investigate the potential of wavelet-based subband image
decomposition as a tool for detecting microcalcifications in digital
mammograms.

Index Terms—Breast cancer screening, digital mammography,
microcalcification detection, wavelet image decomposition.

I. INTRODUCTION

SCREEN-FILM mammography is widely recognized as be-
ing the only effective imaging modality for early detection

of breast cancer in women. Screening asymptomatic women
using screen-film mammography has been shown to signif-
icantly reduce breast cancer mortality [21]. Medical doctors
generally examine the breast radiographs for the presence of
malignant masses and indirect signs of malignancy, such as
the presence of microcalcifications and skin thickening. Thus,
the imaging performance achieved by screen-film radiography
is very important.

During the past 20 years, there have been many signif-
icant technological improvements in mammographic X-ray
equipment and in screen-film processing systems [1]. Even
though advances in screen-film mammographical technology
have resulted in significant improvements in image resolution
and film contrast, images provided by screen-film mammog-
raphy remain very difficult to interpret. Moreover, technical
advances in screen-film mammography are unlikely to provide
good visualization in regions of interest to medical doctors.
The minor difference in X-ray attenuation between normal
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glandular tissues and malignant disease results in poor visu-
alization in analog films [11]. This problem is accentuated
when examining for breast cancer younger women who have
denser breast tissues. Although microcalcifications have high
inherent attenuation properties, their small size also results in
a low subject contrast [30]. As a result, the visibility of small
tumors, and any associated microcalcifications, will always be
a problem in screen-film mammography.

Mammograms are among the most difficult of radiological
images to interpret. Mammograms are of low contrast, and
features in mammograms indicative of breast disease, such
as the microcalcifications, are often very small. The large
amount of negative biopsies encountered in current practice
could be reduced if a computer system was available to
help the radiologists to prescreen mammograms. With the
advent of high-resolution image digitization hardware, the
decreasing cost/performance ratio of computers, and the recent
development of digital X-ray image acquisition equipment,
computer-aided image analysis is becoming practical for mam-
mograms.

This paper proposes a system designed to perform pre-
screening of digital mammograms for the presence of micro-
calcifications based on their wavelet decomposition. This paper
is organized as follows: Section II presents a review of existing
techniques for mammographical feature analysis. Section III
presents the mathematical foundation of wavelet analysis and
filter banks theory. Section IV describes the structure of the
system proposed for microcalcification detection and presents
an example of the system in operation. Section V includes
concluding remarks and proposes some directions for future
work.

II. ENHANCEMENT AND DETECTION

OF MAMMOGRAPHIC FEATURES

This section reviews image enhancement techniques for
digital mammograms and approaches attempting to detect,
extract, and segment clustered microcalcifications.

A. Enhancement of Mammograms

The fundamental enhancement needed in mammography is
an increase in contrast, especially for dense breasts. Contrast
between malignant tissue and normal dense tissue may be
present on a mammogram but below the threshold of hu-
man perception. Similarly, microcalcifications in a sufficiently
dense mass may not be readily visible because of low contrast
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[30]. As a result, defining the characteristics of microcalcifi-
cations is difficult.

Conventional image processing techniques do not perform
well on mammographic images. The large variation in feature
size and shape reduces the effectiveness of classical fixed-
neighborhood techniques such as unsharp masking [18]. Fixed-
neighborhood or global techniques may adapt to local features
within a neighborhood, but do not adapt the size of the
neighborhood to local properties. Alternatively, they modify
the image depending on global properties, such as the image
spatial-frequency spectrum, which may not be representative
of a small region of interest in the image. Many images,
including mammograms, have isolated regions which are the
primary feature of interest. These features can vary widely
in size and shape, and often cannot be enhanced by fixed-
neighborhood or global techniques. There are two possible
approaches to enhancing mammographic features. One is to
increase the contrast of suspicious areas as stated earlier, and
the other is to remove background noise.

Morrow et al. [18] used a “region-based image processing”
technique which adapts to image features and enhances these
features with respect to their surroundings, regardless of the
shape and size of the features. In adaptive-neighborhood or
region-based image processing, a neighborhood is defined
about each pixel in the image, the extent of which is dependent
on the characteristics of the image feature in which the given
pixel is situated. This neighborhood of similar pixels is called a
region. If properly defined, regions should correspond to image
features. Then, image processing procedures can be applied
on an image feature basis, rather than pixel by pixel. There
are two classes of regions: nonoverlapping regions, which
are obtained using image segmentation techniques, and over-
lapping regions, obtained using region grouping techniques.
Morrow et al. considered overlapping regions, because they
felt that disjoint segmentation of an image with subsequent
enhancement of the segments would result in noticeable edge
artifacts and an inferior enhanced image. Their method uses
each pixel in the image as a seed to grow a region. The
extent and shape of the region adapt to local image gray-level
variations, corresponding to an image feature. The contrast of
each region is calculated with respect to its individual back-
ground. Contrast is then enhanced by applying an empirical
transformation based on the seed pixel value of each region,
its contrast, and its background. The objective of this scheme
is to enhance the quality of “difficult” mammograms to allow
the radiologists to make their diagnosis with more confidence.
In order to achieve this objective, Morrowet al. used high-
resolution digitization (less than 0.1-mm square pixel size),
and maintained high resolution throughout their processing
procedures.

Some researchers attempted contrast enhancement of mam-
mographical features by utilizing the unique properties of
frequency and orientation selectivity of the wavelet transform.
Laineet al. [13] used three different multiscale representations:
1) the dyadic wavelet transform, 2) the-transform, and 3) the
hexagonal wavelet transform. Each of these representations
provides a hierarchy of multiscale images which localize
important image information at different spatial frequencies.

Then they applied local and global nonlinear operators to
this multiscale representation to enhance the desired features.
More specifically, within each level of resolution they defined
multiscale edgesand used these edges as an “index” to
increase the local gain of subband image coefficients in
order to emphasize the desired mammographic features. They
compared their results with traditional methods used for image
enhancement such as unsharp masking and adaptive histogram
equalization and found that the wavelet-based processing
algorithms were superior [13].

An alternative to contrast enhancement of digital
mammograms is the removal of background noise from
these images. For instance, a digital mammogram can be
enhanced by removing background noise while preserving
the edge information of suspicious areas. This approach
was investigated by Laiet al. [12], who used four selective
averaging schemes and a modification of median filtering
called selective median filtering. A selective median filter is
defined as follows: Given a window , centered at image
coordinates , the output of the selective median filter is

median and

where is the image intensity at , is the area in
the image covered by the window , and is a thresh-
old. In computing the median, the set of pixels is restricted
to those with a difference in gray level no greater than some
threshold The amount of edge smearing can be controlled
by adjusting the parameter If is small, the edge-preserving
power of the filter is strong, but its smoothing effect is small.
If is large, the filter behaves the other way around.

B. Detection of Microcalcifications

Computer aided detection of microcalcifications in digital
mammograms has been attempted by several researchers in the
past. Dengleret al. [8] proposed an approach which uses a two-
stage algorithm for spot detection and shape extraction. The
first stage applies a weighteddifference of Gaussian(DOG)
filter for the noise-invariant and size-specific detection of
spots, resulting in a DOG image. This DOG image represents
the microcalcifications if a thresholding operation is applied
to it. By performing morphological opening on the original
image, the shape of the objects is preserved. Finally, the results
of both filters are combined via a morphological reconstruction
operation calledconditional thickening. The topology and the
number of the spots are determined by the first filter, while
their shape is determined by the second filter.

Betal [3] also used mathematical morphology to extract
microcalcifications from digital mammograms. In this ap-
proach, an enhancement algorithm was applied on a digi-
tized mammogram to emphasize the edges and lines while
smoothing homogeneous areas. In the second stage, a “top-
hat” algorithm was applied to obtain unique markers for
each microcalcification. This algorithm consists of three parts:
iterative opening, subtraction, and thresholding. The threshold
level was selected manually by a radiologist. The binary
image produced by thresholding provided markers for the
morphological watershed algorithm. Segmentation of the mi-
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crocalcifications was achieved by applying the watershed
algorithm. The final stage involved a numerical analysis of
the detected microcalcifications. Information about microcal-
cification areas and boundary lengths give an indication of the
spread of microcalcification sizes. Benign microcalcifications
tend to be large structures (diameter1 mm), while malignant
microcalcifications tend to be smaller.

Nishikawaet al. [19] also developed a computerized tech-
nique to automatically detect clustered microcalcifications.
Their method consists of three stages: First the signal-to-
noise ratio of the microcalcifications is enhanced by filtering
the image to reduce the normal background structure of the
mammogram. Second, signals (potential microcalcifications)
are identified by means of global gray-level thresholding,
morphological erosion, and then a local adaptive gray-level
thresholding. Third, the number of falsely detected signals are
reduced by 1) examining the power spectrum of individual
signals, 2) determining the spatial distribution of the signals,
and 3) examining the relationship between size, shape and
background pixel value of microcalcifications.

Cairnset al. [4] employed an algorithm involving several
stages to achieve automated detection of clusters of micro-
calcifications. They first made the following assumptions to
model microcalcifications in digital mammograms: microcal-
cifications are small in size, usually of linear or round shape,
they are usually brighter than the neighboring pixels, their
brightness value is relatively constant across their surface,
and they have well-defined edges. Finally, they argued that
microcalcifications become significant only if they occur in
groups or clusters. Based on these assumptions, they used
an algorithm involving the following stages: edge detection,
contour hue generation, location of potential microcalcifica-
tions using graph searching, feature extraction, classification
of the potential microcalcifications, and cluster detection. They
were able to achieve a classification rate of 91.75% for single
microcalcifications. They also achieved 100% true-positives
with 0% false positives using the re-substitution method, and
98% true-positives with 0% false positives using the leave-
one-out method for clustered microcalcifications.

Zhaoet al. [31] developed a method for adaptively thresh-
olding gray-level mammographical images. This approach
combines morphological filtering operations with a rule-base.
The objective of the authors is to extract the suspicious areas
from a mammogram and provide location information on
certain microcalcifications of predefined shapes and sizes to
radiologists for further examination. They derived an adaptive
threshold function from morphological operations. The fol-
lowing characteristic features of the microcalcifications were
pertinent in deriving the adaptive threshold function: granular
form, casting form, microcalcification size, and microcalcifi-
cation density. The threshold set is controlled by the index
numbers in the skeleton of shapes which represent microcal-
cifications in mammograms. The parameters of the adaptive
threshold sets are obtained from interpreting umbra shadows
from an image function. These steps can be summarized as
follows: 1) preprocess a gray-level mammogram to smooth
out background noise, 2) obtain the skeleton information
of microcalcifications and determine the shadow size from

the skeleton using morphological operators, 3) select the
thresholding value based on the size of microcalcifications, 4)
classify the suspicious areas based on predefined shapes and
sizes of microcalcifications, and reconstruct the gray levels
around only the suspicious areas. Steps 3) and 4) need a
rule-base that is provided by expert radiologists.

An observation from these studies on microcalcification
detection is that local filtering techniques require the fine
tuning of several parameters related to local image statistics
and they frequently result in a large number of false positives.
On the other hand, the application of morphological operators
requires a priori knowledge of the resolution level of the
mammograms in order to determine the size and shape of the
structuring elements to be used. Besides manual adjustment of
the detected areas, these techniques also tend to rely on many
stages of heuristics attempting to eliminate false positives.

III. W AVELETS AND SUBBAND DECOMPOSITION

The theory of wavelets provides a common framework
for numerous techniques developed independently for vari-
ous signal and image processing applications. For example,
multiresolution image processing, used in computer vision,
subband coding, developed for speech and image compres-
sion, and wavelet series expansions, developed in applied
mathematics, have been recently recognized as different views
of a single theory. The classical approach for the analysis
of nonstationarysignals is theshort-time Fourier transform
(STFT) or Gabor transform. With the advent ofwavelet
transform(WT), short windows at high frequencies and long
windows at low frequencies can be used to provide better
signal resolution than the STFT.

Wavelet transform can also be seen from asignal decom-
positionview point. In this case, a signal is decomposed onto
a set of basis functions which are calledwaveletsand are the
core of wavelet analysis. These basis functions are obtained
from a singlemother waveletby dilations and contractions
(scalings), as well as translations or shifts. Hence, the concept
of scale is essential in wavelet analysis (compared to the
concept of frequency in Fourier analysis).

There are several types of wavelet transforms that can be
chosen depending on the application. Thecontinuous wavelet
transform(CWT) can be used for continuous signals. In this
case, both time and scale are continuous. Thediscrete wavelet
transform (DWT) can also be defined for discrete signals. It
is shown in this section that wavelet decomposition is closely
related to multirate signal processing techniques. A particular
wavelet decomposition relates to filter banks and can be the
basis for subband coding schemes used in speech and image
compression. In this section, we first explore the concepts of
resolution and scale in CWT. Then we proceed to the discrete-
time case, where we attempt to link DWT to filter banks and
subband signal decomposition.

A. Why Use Wavelets?

In signal analysis, a signal is often represented by a
weighted sum of building blocks, orbasis functions

(1)
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where are basis functions and are coefficients or
weights. Since the basis functions are fixed, the in-
formation about the signal is carried by the coefficients. The
simplest such representation uses translations of the impulse
function as its only bases, yielding a representation that reveals
information only about the time domain behavior of the
signal. Choosing the sinusoids as the basis functions yields a
Fourier representation that reveals information only about the
frequency domain behavior of the signal. For the purpose of
detecting spurious spikes, neither of the above representations
is ideal. What we would like to have is a representation
which contains information about both the time and frequency
behavior of the signal. More specifically, we need to know
the frequency content of the signal at a particular instant
in time. However, resolution in time and resolution in
frequency cannot both be made arbitrary small at the
same time because their product is lower bounded by the
inequality known as theuncertainty principle[2]

(2)

This inequality means that we must tradeoff time resolution
for frequency resolution, or vice versa. Thus, it is possible
to get very good resolution in time if we are willing to
settle for low resolution in frequency. Conversely, we can get
very good resolution in frequency if we are willing to settle
for low resolution in time. From a practical standpoint, low-
frequency events are usually spread out in time (nonlocal),
and high-frequency events are usually concentrated in time
(localized). Thus, one way that we can obtain good time-
frequency information from a signal is to design the basis
functions to act like cascaded octave bandpass filters which
repeatedly split the bandwidth of the signal in half.

To gain insight into the design of the basis functions that
will properly convey information about a signal and at the
same time satisfy the uncertainty principle, let us compare
the impulse function and the sinusoids. The impulse function
cannot provide information about the frequency behavior of a
signal because it has an infinitesimally small support. On the
other hand, the sinusoids cannot provide information about the
time behavior of a signal because they have infinite support.
What we seek, then, is a compromise between these two
extremes: a set of basis functions , each with finite support
of a different width. The different support widths allow us to
tradeoff time and frequency resolution in order to accurately
examine different regions of a signal.

For a wavelet representation, the basis functions in
are scaled and translated versions of the same prototype
function , known as themother wavelet. The scaling
is accomplished by multiplying by some scale factor; if
we choose the scale factor to be a power of two, yielding

, we get the cascaded octave bandpass filter we
desire. Since has finite support, it must be translated along
the time axis in order to cover an entire signal. This translation
is accomplished by considering all the integral shifts of, that
is, Therefore, a signal can be represented

in wavelet domain, or a wavelet decomposition, as

(3)

where
The coefficients can be computed viawavelet transform,

whose implementation is closely related to a number of
techniques used in signal processing. Driven by applications
such as speech and image compression, a method called
subband codingwas first proposed by Crochiereet al. [5] in
the late 1970’s. This led to the study of perfect-reconstruction
filter banks, a problem considered in the 1980’s by several
researchers including Smith and Barnwell [20], Mintzer [17],
Vetterli [24], [25], and Vaidyanathan [22], [23]. In a particular
configuration, namely when the filter bank has octave bands,
one obtains a discrete-time wavelet series. Under certain
conditions, such an octave-band filter bank can be used to
generate wavelet bases.

Daubechies [6], [7] proposed one of the most interesting
methodologies for wavelets. This methodology relies on the
iteration of a discrete-time filter bank which, under certain
conditions, converges to a continuous-time wavelet basis.
Furthermore, the multiresolution framework used in the anal-
ysis of wavelet decompositions automatically associates a
discrete-time perfect-reconstruction filter bank to any wavelet
decomposition. The pyramid decomposition framework is cen-
tral to wavelet decomposition and establishes conceptually the
link between filter banks and wavelets, as shown by Mallat
[14]–[16] and Daubechies [6], [7]. This connection has led to
a renewed interest in filter banks, especially with the work of
Daubechies who first constructed wavelets from filter banks
[6] and Mallat who showed that a wavelet series expansion
could be implemented with filter banks [14].

As can be seen from the above discussion, there are two
different points of view about the advantages of wavelet
representation and its implementation via filter banks. One is
the expansion of signals in terms of a structured basis, and the
other is the perfect reconstruction of signals via filter banks.
While the two are equivalent, the former is more related to
signal representation, while the latter is more concerned with
the construction of implementable systems.

B. STFT: A Fixed-Resolution Analysis

The goal of signal analysis is to extract relevant information
from a signal by transforming it. For a stationary signal 1

the natural “stationary transform” is the well-known Fourier
transform

(4)

which is also called the Fourier analysis formula. The inverse
Fourier transform is given by

(5)

and is also called the Fourier synthesis formula. Note that
is not in the space of square integrable functions,

1Mathematically, this also means an absolutely integrable function.
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(a) (b)

Fig. 1. Frequency tiling of (a) the STFT and (b) the WT and the corresponding basis functions. The tiles represent the concentration in time-frequency
plane covered by a given basis function.

and that the set is not countable. As shown in (4),
the Fourier coefficients are computed as inner products
of the signal with sinusoidal basis functions of infinite
duration. Consequently, Fourier analysis works well if is
composed of a few harmonic components. This implies that
any abrupt change in time in a nonstationary signal is
spread out over the whole frequency axis in . Therefore,
the analysis of nonstationary signals requires more than the
Fourier transform.

To achieve a “local” Fourier transform, one can define a
windowed Fourier transform. This modified version of the
Fourier transform, called the STFT, was formulated by Gabor
[10] to deal with nonstationary signals as

STFT (6)

where denotes the complex conjugate of the function
The STFT assumes the signal to be stationary when

seen through a window of finite length, centered at time
location This modified transform can also be interpreted as
a filtering process. The signal is filtered with a bandpass
filter having a frequency response equal to the windowing
function and then the Fourier transform is performed on
this filtered signal.

The STFT can also be seen as a measure of similarity
between the signal and a basis function, which is a shifted
and modulated version of an elementary window, i.e.,

STFT (7)

where Thus, each basis function used
in the expansion has the same time and frequency resolution
but occupies a different location in the time-frequency plane.
Although the STFT seems to be the solution for nonstationary
signals, it has a major drawback: poor time and frequency
resolution. The analysis depends critically on the choice of

the window Once this windows is chosen, then the time-
frequency resolution isfixed over the entire time-frequency
plane since the same window is used at all frequencies. This
situation is depicted in Fig. 1(a), which shows the frequency
tiling of the STFT.

C. CWT: A Multiresolution Analysis

To overcome the resolution limitation of the STFT men-
tioned previously, one would like to be able to vary the
frequency bandwidth and the time span of the analysis filter
in order to achievemultiresolutionanalysis. More specifically,
the time resolution must increase with the central frequency
of the analysis filter, and the ratio of the filter bandwidth
to its central frequency must be constant. This requirement
corresponds to the so-calledconstant-Qanalysis [25], [26]. In
terms of filter banks, this means that instead of the frequency
responses of the analysis filters being regularly spaced over
the frequency axis (as for the STFT case), they are regularly
spaced in alogarithmic scale.

When the constant relative bandwidth condition is met, the
time resolution becomes arbitrarily good at high frequencies,
while the frequency resolution becomes arbitrarily good at
low frequencies. This enables the analysis of signals such
as two very close short bursts, because by increasing the
analysis frequency (higher time resolution) the two events can
be well distinguished. This kind of multiresolution analysis
works best if the signal under consideration has high-frequency
components of short duration and low-frequency components
of long duration. In fact, most images correspond to this type
of signals.

Multiresolution analysis [14], [15] can be accomplished
using the CWT. To define the CWT, we will not consider shifts
and modulates of a prototype function as in STFT. Instead, we
will use scaledandshiftedversions from the same prototype
to achieve the constant-condition. Consider a real bandpass
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Fig. 2. Basic two-channel filter bank structure.

filter with impulse response and zero mean

(8)

The CWT is defined as [27]

CWT (9)

where denotes the complex conjugate of
and Equation (9) can also be written as

CWT (10)

where

(11)

and the factor is used to conserve the norm. Thus, (9)
measures the similarity between the signal and shifts and
scales of an elementary function. The functions used in the
expansion have changing time-frequency tiles because of the
scaling. For , will be short and of high frequency.
For , will be long and of low frequency. This
frequency tiling of wavelet functions is illustrated in Fig. 1(b).

Since the set of basis functions are scaled versions of a
single mother wavelet, the term “scale” is often preferred to
“frequency” for the CWT. To explore the relationship of scale
and resolution in the CWT, we first rewrite (9) as

CWT (12)

Recall that if a function is scaled in time by a factor
of then it becomes Scaling in time means that
the function is contracted if and expanded if
Equation (9) implies that as the scale decreases, the filter
impulse response dilates in time and takes only
long-time behavior into account. Similarly, (12) indicates that
as the scale increases, an increasingly contracted version of
the signal is seen through a window of fixed length.
Hence, the scale factor has the same meaning as the scale
in maps: large scales mean global views while small scales
mean detailed views.

On the other hand, the notion of resolution is linked to the
frequency content of a signal. For instance, low-pass filtering
a signal keeps its scale but reduces its resolution. Moreover,

changes in the scales of continuous-time signals do not change
their resolution whereas this is not true for discrete-time
signals. For discrete-time signals, increasing the scale involves
downsampling which automatically reduces resolution.

D. Filter Banks and Subband Image Decomposition

In the discrete-time case, two methods were developed
independently in the late 1970’s and early 1980’s which lead
naturally to discrete-time wavelet transforms, namelysubband
coding[5], [28], [29] andpyramidal codingor multiresolution
signal analysis[14]–[16]. Both methods were developed for
coding purposes and the concept of critical sampling was of
importance. In this section, we briefly review filter banks and
their application to subband signal decomposition.

Consider the two-channel filter bank structure shown in
Fig. 2, where a discrete-time signal is applied to a system
consisting of a pair of filter banks. Given this original sequence

and its corresponding-transform , we
can obtain a lower-resolution signal by low-pass filtering with
a half-band low-pass filter having impulse response with
-transform Then we can make the half-band signal

full-band again by downsampling by a factor of two (doubling
the scale by a factor of two in the analysis). The-transform

of the resulting signal can be expressed as

(13)
Compared with the original sequence , the filtered se-
quence is reduced in resolution by a factor of two
due to half-band low-pass filtering, and doubled in scale, due
to downsampling by a factor of two. We can proceed in a
similar fashion to compute the “added detail” of the signal
as a high-pass filtered version of using a filter with
impulse response and -transform , followed by
downsampling by a factor of two as depicted in the lower
branch in Fig. 2. The -transform of can be expressed
as

(14)
At the receiver end of Fig. 2, the filters and are

used to reconstruct the signal The inputs to these filters
are the decomposed signals and , respectively.
Let and be the -transform of and ,
respectively. Since by upsampling and we obtain
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and , the output of the system can be expressed
as

(15)

where and denote the -transform of the filters
and .

If we assume that the encoder-decoder and the channel are
error free, that is, if and , then
the output becomes

(16)

The original signal can be reconstructed by eliminat-
ing the term of (16) which involves This can be
accomplished by requiring that

and Under these assumptions,
(16) becomes

(17)

The original signal can be perfectly reconstructed if
or, equivalently, if According to (17),

perfect reconstruction of the original signal is guaranteed if

(18)

For simplicity, let Then the -transform of
is

(19)

Since

(20)

which implies that

(21)

This filter equation indicates that if is a low-
pass filter, then is a high-pass filter.
The relationship between these two filters becomes obvious by
determining the Fourier transform of . Since

, we get

(22)

Fig. 3. Frequency response of QMF’s; each filter is a half-band filter.

If is a linear-phasefinite impulse response(FIR)
filter with an even number of coefficients, then the perfect
reconstruction condition (18) holds if

(23)

Filters that meet the above constraints are said to posses perfect
reconstruction properties and are often calledquadrature mir-
ror filters (QMF’s) or conjugate mirror filters(CMF’s). Fig. 3
shows the magnitude of the frequency response of such filters.

The above results were proposed by Crochiereet al. [5]
as a means to canceling aliasing in a two-channel filter bank.
Even though this solution ensures perfect reconstruction of a
signal without aliasing, the design of filters that meet these
requirements is a very difficult task and it has been a problem
for decades. Fortunately, wavelets can be used to construct
FIR filters with perfect reconstruction properties.

E. Wavelet Representation of Images

Wavelet-based image decomposition can be interpreted as an
image filtering process. For a given imageof size ,
wavelet-based subband decomposition can be performed as
follows: The wavelet filters and are applied to
the rows of the image The filter is a low-pass
filter with frequency response and is a high-
pass filter with frequency response By filtering the
image with , we obtain low-frequency information
(background). By filtering the image with , we obtain
the high-frequency information (edges). After downsampling
by a factor of two, we obtain two subbands: and
(the subscript suggests that the filters are applied to rows
of the image Since we downsample by a factor of two
in the horizontal direction of each subband, the size of these
two downsampled subbands is (see Fig. 4). The
filters and are then applied to the columns of
the subbands and , followed by downsampling
by a factor of two, and the following four subbands are
obtained: and
Since we now downsample by a factor of two in the vertical
direction of each subband, the four subbands have gone
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Fig. 4. One level of a two-dimensional subband decomposition using wavelet functions as the analysis filter.

through downsampling by a factor of two in both directions
and the final size of each subband is (see Fig. 4).

The subband contains the smooth information
and the background intensity of the image and the subbands

and contain the detail in-
formation of the image. The subband corresponds
to the lowest frequencies, gives the horizontal
high frequencies (vertical edges), gives the vertical
high frequencies (horizontal edges), and the high
frequencies in both directions (corners and diagonal edges).

IV. SYSTEM DESCRIPTION

Screening of digital mammograms for clusters of microcal-
cifications indicating malignancy can be facilitated by a system
capable of extracting spurious spots in digital mammograms
regardless of the density of the tissue. This section presents
the structure of a system proposed to perform this task by
exploiting the frequency selectivity of wavelet-based subband
image decomposition.

A. Enhancement and Detection of Spikes

Consider the two-channel filter bank shown in Fig. 2. Under
the conditions summarized in Section III-D, this filter bank
can be used to perform one level of signal decomposition and
reconstruction. Suppose that the signal is reconstructed
by arbitrarily setting , which implies
that If , the -transform of the
reconstructed signal can be obtained from (15) as

(24)

Since , (24) gives

(25)

Let be the signal produced by passing the original signal
through the high-pass filter with impulse response

If denotes the -transform of , then

(26)

and

(27)

Thus, (25) can also be written as

(28)

Since , (28) implies that

(29)

where denotes the convolution operator and

if is even
if is odd.

(30)

In other words, the reconstructed signal is produced by
passing the signal defined at (30) through the high-pass
filter with impulse response

The signal is obtained by passing the original sig-
nal through a high-pass filter. High-pass filtering of
the original signal tends to suppress its homogeneous
portions and enhance the existing discontinuities and spikes.
The signal is obtained by multiplying the amplitude
of the samples by 2 and replacing every second sample
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Fig. 5. The proposed system in operation: the input to the system is a digital mammogram; the output is a mammogram with detected microcalcifications.

by zero. This guarantees that spikes will be preserved in
the signal provided that their duration is larger than
one sample. The addition of zeros creates abrupt transitions
from one sample to the next and tends to introduce additional
high frequencies to the signal High-pass filtering of

will further enhance the discontinuities and spikes
present. This analysis indicates that the discontinuities and
spikes present in the original signal can be enhanced and
detected by setting the subband carrying the lowest frequencies
to zero. The condition for spike detection is that the resolution
of the discrete-time signal is sufficiently high so that the
duration of each spike is larger than one sample.

Image decomposition is performed by independently ap-
plying filtering and downsampling to the rows and columns
of the image. Thus, the results of the above analysis can
naturally be extended to images. In other words, spikes and
abrupt intensity level changes in images can be enhanced and
detected by setting the subband carrying the lowest frequencies
to zero. Such an approach can be used to enhance and
detect microcalcifications in mammograms provided that they
occupy an area larger than a window of size 22 pixels.
The performance of such a system would be affected by the
resolution of the digital mammograms and the behavior of the
filters used to perform image decomposition. Due to high-pass
filtering, this approach is not immune to “noisy spikes” or
other artifacts. The elimination of “noisy spikes” and artifacts
can only be accomplished by preprocessing or postprocessing
procedures.

B. The Proposed System

The system proposed for microcalcification detection is
based on the hypothesis that the microcalcifications present
in mammograms can be preserved under a transform which
can localize the signal characteristics in the original and
the transform domain. In a time signal the harmonic fre-
quency components are present but they arehidden, whereas
in its frequency spectrum the time information ishidden.
Therefore, transforms with basis functions other than the
complex sinusoids must be used. In addition, these basis
functions must be able to localize the signal in both spatial
and frequency domains. A suitable transform that satisfies
the above requirements is thewavelet transform. The wavelet
transform uses basis functions that candilate in scale and
translatein position according to the signal characteristics [9].

Given that the microcalcifications correspond to high-
frequency components of the image spectrum and wavelets
can localize the signal characteristics in both frequency and
scale, our hypothesis is that the resolution and scale of the

Fig. 6. Orthogonal subbands at different resolutions produced by two levels
of wavelet decomposition of a 512�512 image.

microcalcifications in the spatial domain can be preserved if
we use wavelet filters to decompose the mammogram into
different frequency subbands. According to this hypothesis,
microcalcifications can be extracted from mammograms by
suppressing the subband of the wavelet-decomposed image
that carries the lowest frequencies and contains smooth
(background) information, before the reconstruction of the
image.

The proposed system is described in the block diagram
shown in Fig. 5. The original mammogram is decomposed into
a set of orthogonal subbands of different resolution and fre-
quency content. The decomposition is based on wavelet anal-
ysis filtering and downsampling along the rows and columns
of the image. Fig. 6 shows the seven subbands resulting after
two levels of wavelet decomposition of a 512512 image.
The four subbands at resolution 1 are produced by the decom-
position scheme described in Section III-E. The application of
the same decomposition scheme to the upper-left subband that
carries the lowest frequencies at resolution 1 results in the two-
level subband decomposition shown in Fig. 6. In the wavelet-
decomposed image shown in Fig. 6, the upper-left subband
at resolution level 2 contains the background intensity of the
original image and, thus, carries the lowest frequencies of the
image spectrum. The microcalcifications, which correspond to
the highest frequencies, are carried by the other subbands.
The detection of microcalcifications is accomplished by setting
the wavelet coefficients of the upper-left subband to zero in
order to suppress the image background information before the
reconstruction of the image. The reconstructed mammogram
is expected to contain only high-frequency components, in-
cluding the microcalcifications. The final images are obtained
using subband reconstruction, which is the inverse operator of
subband decomposition. The reconstruction consists of wavelet
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(a)

(b)

Fig. 7. The mother wavelet of the DAUB 4 wavelets: (a) a wide and short
wavelet for analyzing low-frequency characteristics and (b) a narrow and tall
wavelet for analyzing high-frequency characteristics.

synthesis filtering and upsampling along the rows and columns
of the image.

The visibility of microcalcifications is improved by using a
nonlinear thresholding method to enhance the histogram of the
resulting mammograms. More specifically, the input dynamic
range of a mammogram is initially determined. Given the
input range, the image is transformed through a nonlinear
mapping based on the arc-tangent method. This nonlinear
thresholding method is designed to improve the visibility of
microcalcifications by increasing their pixel intensity relative
to their background.

C. Wavelet Filters

In the “wavelet analysis filtering” and “wavelet synthesis
filtering” stages, we have used the so-called “maximally
flat” wavelet filters constructed by Daubechies [7]. These
wavelets arecompactly supportedand regular. Wavelets are
compactly supported if they have finite support with maxi-
mum number of vanishing moments for their support width.

(a)

(b)

Fig. 8. The mother wavelet of the DAUB 20 wavelets: (a) a wide and
short wavelet for analyzing low-frequency characteristics and (b) a narrow
and tall wavelet for analyzing high-frequency characteristics.

Compact support improves the time resolution of wavelets.
Regularity relates to differentiability. Since differentiation in
Fourier domain amounts to a multiplication by , existence
of derivatives is related to sufficient decay of the Fourier
spectrum.

Table I shows the filter coefficients of the two wavelets from
Daubechies’ family of orthonormal wavelets used in this paper,
namely the Daubechies’ 4-coefficient (DAUB 4) filter and
Daubechies’s 20-coefficient (DAUB 20) filter [7]. Fig. 7 shows
the amplitude plot of the mother wavelet for the family of
DAUB 4 filters. Fig. 7(a) represents the “long window” used
to analyze long-term behavior of a signal; whereas Fig. 7(b) is
the scaled and translated version of the same wavelet used to
analyze the instantaneous behavior of a signal. Fig. 8 shows
the amplitude plot of the mother wavelet for the family of
DAUB 20 filters. In each case, note that the stretched wavelets
have higher amplitudes while the dilated wavelets have lower
amplitudes, in concordance with the constant-requirement
described in Section III-C.
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(a) (b) (c)

Fig. 9. (a) The original mammogram. Microcalcifications extracted from the original mammogram decomposed using (b) the DAUB 4 filter and (c)
the DAUB 20 filter.

TABLE I
COEFFICIENTS OF THEDAUB 4 AND DAUB 20 FILTERS. GIVEN THE

LOW-PASS FILTER g0(n), THE HIGH-PASS FILTER CAN BE OBTAINED AS

g1(n) = (�1)ng0(�n+ 2N � 1); WHERE N IS THE LENGTH OF THEFILTER

D. An Example

The preliminary testing of the proposed system was based
on the digital mammogram shown in Fig. 9(a). Fig. 9(b) and
(c) shows the images obtained after processing the origi-
nal mammogram using the DAUB 4 and DAUB 20 filters,
respectively. All microcalcifications present in the original
mammogram are visible in the images produced by the pro-
posed system, which also traced the boundary of the breast in
the original mammogram. The performance of the proposed

system depends on the length of the wavelet filters used
in the decomposition of the mammograms. This is a direct
consequence of the different shapes of the corresponding
mother wavelets. According to Figs. 7 and 8, the mother
wavelet of the DAUB 4 filter is more “spike-like” compared
with that of the smoother DAUB 20 filter. It is clear from these
images that the DAUB 4 filter detects more pixels of high
spatial frequency compared with the DAUB 20 filter. These
pixels may belong to microcalcifications, breast boundary, or
background noise. Thus, shorter wavelet filters are more sen-
sitive to existing microcalcifications but they tend to produce
more false positives.

V. CONCLUSIONS

Previous studies suggested that wavelet-based image anal-
ysis techniques could occupy a leading position in digital
mammography [13]. The proposed approach to microcalcifi-
cation detection was motivated by the ability of wavelets to
discriminate different frequencies and to preserve signal details
at different resolutions. In fact, this approach exploits the
orientation and frequency selectivity of the wavelet transform
to make the microcalcifications more visible. This method
is robust in the sense that it does not require the use of
heuristics or the prior knowledge of the size and the resolution
of the mammogram. All this is due to the “zoom in” and
“zoom out” capability of the wavelet filters which cantranslate
themselves to a location of a signal that is of interest anddilate
themselves properly to preserve the resolution of that portion
of the signal. The preliminary experiments presented in this
paper indicate that further studies are needed to investigate
the potential of wavelet-based subband image decomposition
as a tool for microcalcification detection. These studies must
investigate how the performance of this approach is affected
by: 1) the properties of the wavelet filters used for subband
image decomposition, 2) the intensity contrast between the
background and breast tissue, 3) the resolution of the original
digital mammogram, and 4) artifacts present in the original
mammogram. Additional studies must also includereceiver
operating characteristicanalysis to account for the effect of
the threshold on false positive and false negative rates.
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