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ABSTRACT 
 
The purpose of this work was to develop an automatic boundary 
detection method for mammographic masses and to observe the 
method’s performance on different four of the five margin groups 
as defined by the ACR, namely, spiculated, ill-defined, 
circumscribed, and obscured. The segmentation method utilized a 
maximum likelihood steep change analysis technique that is 
capable of delineating ill-defined borders of the masses.  Previous 
investigators have shown that the maximum likelihood function 
can be utilized to determine the border of the mass body.  The 
method was tested on 122 digitized mammograms selected from 
the University of South Florida’s Digital Database for Screening 
Mammography (DDSM).  The segmentation results were 
validated using overlap and accuracy statistics, where the gold 
standards were manual traces provided by two expert 
radiologists.  We have concluded that the intensity threshold that 
produces the best contour corresponds to a particular steep 
change location within the likelihood function.  
 

1. INTRODUCTION 
 
In a CADx system, segmentation is arguably one of the most 
important aspects – particularly for masses – because strong 
diagnostic predictors for masses are shape and margin type [2,9].  
The margin of a mass is defined as the interface between the mass 
and surrounding tissue [2].  Furthermore, breast masses can have 
unclear borders and are sometimes obscured by glandular tissue 
in mammograms. A spiculated mass consists of a central mass 
body surrounded by fibrous projections, hence the resulting 
stellate shape.  For the aforementioned reasons, proper 
segmentation - to include the body and periphery - is extremely 
important and is essential for the computer to analyze, and in 
turn, determine the malignancy of the mass in mammographic 
CADx systems.    
Over the years researchers have used many methods to segment 
masses in mammograms.  Petrick [7] et al. developed the Density 
Weighted Contrast Enhancement (DWCE) method, in which 
series of filters are applied to the image in an attempt to extract 
masses.  Comer et al. [1] segmented digitized mammograms into 

homogeneous texture regions by assigning each pixel to one of a 
set of classes such that the number incorrectly classified pixels 
was minimized via Maximum Likelihood (ML) analysis. Li [5] 
developed a method that employs k-means classification to 
classify pixels as belonging to the region of interest (ROI) or 
background. 
Kupinski and Giger developed a method [4], which uses ML 
analysis to determine final segmentation.  In their method, the 
likelihood function is formed from likelihood values determined 
by a set of image contours produced by the region growing 
method.  This method is a highly effective one that was also 
implemented by Te Brake and Karssemeijer in their comparison 
between the discrete dynamic contour model and the likelihood 
method [9].  For this reason we chose to investigate its use as a 
possible starting point from which a second method could be 
developed.  Consequently in our implementation of this work we 
discovered an important result, i.e., the maximum likelihood steep 
change.  It appears that in many cases this method produces 
contour choices that encapsulate important borders such as mass 
spiculations and ill-defined borders.   
 

2. METHODS 
 

2.1 Initial Contours 
As an initial segmentation step, we followed the overall region 
similarity concept to aggregate the area of interest [1, 4].  Used 
alone, a sequence of contours representing the mass is generated; 
however, the computer is not able to choose the contour that is 
most closely correlated with the experts’ delineations.  
Furthermore, we have devised an ML function steep change 
analysis method that chooses the best contour that delineates the 
mass body as well as its extended borders, i.e., extensions into 
spiculations and areas in which the borders are ill-defined or 
obscured.  This method is an extension of the method developed 
by Kupinski and Giger [4] that uses ML function analysis to 
select the contour which best represents the mass, as compared to 
expert radiologist traces.  We have determined that this technique 
can select the contour that accurately represents the mass body 
contour for a given set of parameters; however, further analysis 
of the likelihood function revealed that the computer could 
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choose a set of three segmentation contour choices from the 
entire set of contour choices, and then make a final decision from 
these three choices.    
The algorithm can be summarized in several steps.  Initially, we 
use an intensity based thresholding scheme to generate a 
sequence of grown contours (Si), where gray value is the 
similarity criterion.  The image is also multiplied by a 2D 
trapezoidal membership function (2D shadow), whose upper base 
measures 40 pixels and lower base measures 250 pixels (1 pixel = 
50 microns). The image to which the shadow has been applied is 
henceforth referred to as the "fuzzy" image.  The original image 
and its fuzzy version were used to compute the likelihood of the 
mass’s boundaries.   The computation method is comprised of 
two components for a given boundary: (1) formulation of the 
composite probability and (2) evaluation of likelihood.   
In addition, we chose to aggregate contours using the original 
image. This accounts for the major difference from that 
implemented by the previous investigators. Since smoother 
contours were not used, the likelihood function showed greater 
variations.  In many situations, the greatest variations occurred 
when there was a sudden increase of the likelihood, and this was 
strongly correlated with the end of the mass border growth.  This 
phenomenon would be suppressed if the fuzzy image was used to 
generate the contours.  The fuzzy image was used mainly to 
construct the likelihood function.   
 
2.2 Composite Probability Formation 
For a contour (Si), the composite probability (Ci) is calculated:                  
                 ( )( ) ( )( )iiiiii SyxmpSyxfpSC ,, ×=          (1) 

The quantity fi(x,y) is the area to which the 2D shadow has been 
multiplied, p(fi(x,y)|Si) is the probability density function of the 
pixels inside Si where ‘i’ is the region growing step associated 
with a given intensity threshold.  The quantity mi(x,y) is the area 
outside Si (non-fuzzy), and p(mi(x,y)|Si) is the probability density 
function of the pixels outside Si.  Next we find the logarithm of 
the composite probability of the two regions, Ci: 

( ) ( )( )( ) ( )( )( )iiiiii SyxmpSyxfpSCLog ,log,log +=     (2) 

 
2.3 Evaluation of Likelihood Function 
The likelihood that the contour represents the fibrous portion of 
the mass, i.e., mass body is determined by assessing the maximum 
likelihood function: 

( )( ) niSSCLog iii ,...1,;maxarg =           (3)                                                

Equation (3) intends to find the maximum value of the 
aforementioned likelihood values as a function of intensity 
threshold.  It has been assessed (also by other investigators [4]) 
that the intensity value corresponding to this maximum likelihood 
value is the optimal intensity needed to delineate the mass body 
contour.  However, in our implementation it was discovered that 
the intensity threshold corresponding to the maximum likelihood 
value confines the contour to the mass body.   In our study many 
of these contours did not include the extended borders.  We, 
therefore, hypothesize that the contour represents the mass’s 
extended borders may well be determined by assessing the 
maximum changes of the likelihood function, i.e., locate the 
steepest likelihood value changes within the function:    

( )( ) niSSCLog
di

d
iii ,,1,; K=               (4) 

Based on this assumption, we have carefully analyzed the 
behavior of maximum likelihood function. The analysis reveals 
that we have successfully discovered that the most accurate mass 
delineation is usually obtained by using the intensity value 
corresponding to the first or second steep change locations within 
the likelihood function immediately following the maximum 
likelihood value on the likelihood function. 
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Figure 1:  A likelihood function with steep change indicators 

 
2.4 Steep change definition 
The term "steep change" is rather subjective and can defined as a 
location between two or more points in the function where the 
likelihood values experience a significant change.  In some cases 
the likelihood function increases at a slow rate. The algorithm 
design accounts for this issue by calculating the difference 
between likelihood values in steps over several values and 
comparing the results to two thresholds.  The difference equation 
is given by:   

( ) ( ) ( )( ) Nttwzfwtzfth ,,0,1 K=+−−−=      (5) 

where f is the likelihood function, z is the maximum intensity, w is 
the width of the interval over which the likelihood differences are 
calculated (e.g. – for w=7 differences are calculated every 7 
points), and N is the total number of points in the searchable area 
divided by w.  If the calculation in question yields a value greater 
than or equal to a given threshold, then the intensity 
corresponding to this location is considered to be a steep change 
location.  The threshold algorithm occurs as follows: 
 
If (h(t)ML > MLT1);  t=0,…,m 
Then choice 1 = intensity where that condition is satisfied 
If (h(t)ML > MLT2);  t=m,…,z 
Then choice 2 = intensity where that condition is satisfied 
 
where h(t)ML is the steep change value given by equation (5), 
MLT1 and MLT2 are pre-defined threshold values, m is the 
location in the function where the choice 1 condition is satisfied, 
and z is the location in the function where the choice 2 condition 
is satisfied.  Once the condition is satisfied for the first threshold 
value (MLT1) then its corresponding intensity value is used to 
produce the segmentation contour for the first steep change 
location.  Once the condition is satisfied for MLT2 then its 
corresponding intensity value is used to produce the segmentation 
contour for the second steep change location. 
 
2.5 Validation 
The segmentation method was validated on the basis of overlap 
and accuracy [8,10]: 
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(first steep change location) 
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(max likelihood location) 

Group 3 
(second steep change location) 
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where NTP is the true positive fraction, NTN true negative fraction, 
NFP is the false positive fraction, and NFN is the false negative 
fraction.  The gold standards used for the validation study were 
mass contours, which have been traced by expert radiologists.   
Our experiments produced contours for the intensity values 
resulting from three locations within the likelihood functions:  (1) 
The intensity for which a value within the likelihood function is 
maximum (group 1 contour) (2) The intensity for which the 
likelihood function experiences its first steep change (group 2 
contour) and (3) The intensity for which the likelihood function 
experiences its second steep change (group 3 contour).  We have 
observed that the intensity for which the likelihood function 
experiences its first steep change produces the contour trace that 
is most highly correlated with the gold standard traces, regarding 
overlap and accuracy.     

 
3. EXPERIMENTS AND RESULTS 

 
Here we describe the database used, describe the experiments, 
provide visual results obtained by the algorithm, as well as report 
the results obtained by the ANOVA test.   
 
3.1 Database  
For this study, a total of 122 masses were chosen from the 
University of South Florida's Digital Database for Screening 
Mammography (DDSM) [3].  The films were digitized at 
resolutions of 43.5 or 50 µm's using either the Howtek or 
Lumisys digitizers, respectively.  The DDSM cases have been 
ranked by expert radiologists on a scale from 1 to 5, where 1 
represents the most subtle masses and 5 represents the most 
obvious masses.  The images were of varying subtlety ratings.  
The first set of expert traces was provided by an attending 
physician of the GUMC, and is hereafter referred to as the Expert 
A traces.  The second set of expert traces was provided by the 
DDSM, and is hereafter referred to as the Expert B traces.  
 
3.2 Experiments and Results 
As mentioned previously, the term “steep change” is very 
subjective and therefore a set of thresholds needed to be set in an 
effort to define a particular location within the likelihood function 
as a “steep change location”.  For this study the following 
thresholds were experimentally chosen: MLT1=1800, 
MLT2=1300, where MLT1= threshold for steep change location 1 
for the likelihood function, and MLT2 = threshold for steep 
change location 2 for the likelihood function.  We performed a 
number of experiments in an effort to prove that the intensity for 
which the likelihood function experiences the first steep change 
location produces the contour trace, which is most highly 
correlated with the gold standard traces regarding overlap and 
accuracy.   
First we present segmentation results for two malignant cases 
followed segmentation results for two benign cases.  Each figure 
contains an original image, traces for Experts A and B, and 
computer segmentation results for groups 1, 2, and 3.  Second, 
we present data that plots the mean values for various margin 
groups for both overlap and accuracy measurements.  The plots 

present data for the spiculated and ill-defined groups of malignant 
masses, and ill-defined and circumscribed groups of benign 
masses.  Data was not presented for the other categories because 
there was not a sufficient amount of cases.  
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Figure 2:  Segmentation Results:  Spiculated Malignant Mass 
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Figure 3:  Segmentation Results:  Ill-defined Malignant Mass 
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Figure 4:  Segmentation Results:  Obscured Malignant Mass 
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Figure 5:  Segmentation Results:  Ill-defined Benign Mass 
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Figure 6:  Segmentation Results:  Circumscribed Benign Mass 
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Figure 7:  Mean Measurement Values (Malignant Masses) 
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Figure 8:  Mean Measurement Values (Benign Masses) 

 
4. DISCUSSION AND CONCLUSION 

 
The visual results (see Figures 2-6) reveal that the group 2 trace 
appears to delineate the masses better than the group 1 and group 
3 contours in most cases.  Visually, it appears that the method 
has performed equally well on all margin groups.  This is an 
encouraging result because some of the more difficult masses to 
segment are typically those that are spiculated, obscured, and 
those that have ill-defined borders.  The plots shown in Figures 7-
8 confirm that the group 2 trace performs better than the other 

groups on the basis of overlap and accuracy for all margin 
groups, therefore supporting our visual observations.    
In future work, a worthwhile study would be to test gather more 
data for all margin groups in an effort to see if the various groups 
require different parameter values to maximize the algorithm’s 
robustness. Our ultimate goal is to optimize its performance for 
those masses falling in the ill-defined and obscured margin groups 
because segmentation of masses falling into those categories is 
exceedingly difficult.      
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