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Useful interpretation in mammography depends on the quality of the mammographic
images and the ability of the radiologists who interpret them. Improvements in radio-
graphic technique, as well as mandatory accreditation programs, have made the early
signs of breast cancer more apparent on mammograms. However, radiologists still
sometimes miss cancer on a mammogram. One approach to improving performance is
replicated interpretations, in which more than one observer reviews the images. For ex-
ample, investigators have shown that detection of early breast cancer can be increased
with double reading by two radiologists (1). In addition, results of studies have shown
that interpretation performance varies greatly among radiologists (2–4).

An alternate approach is to use a computer as the second reader. Use of output from
a computerized analysis of an image by radiologists may help them in the tasks of de-
tection or diagnosis and potentially improve the overall interpretation of breast images
and the subsequent patient care. Many factors motivate the attempts to aid or auto-
mate radiologic diagnosis. Inadequacies in interpretation performance may be due to
the presence of image noise or normal anatomic structures, as well as to known limita-
tions in the human search and perception process. Ultimately, computer-aided diagno-
sis (CAD) may become an integrated tool in the diagnostic work-up of suspect breast
lesions by using multimodality images.

This chapter reviews various CAD methods in breast imaging (mammography, ultra-
sound [US], and magnetic resonance [MR] imaging), which are focused on the charac-
terization of lesions and the estimation of the probability of malignancy for use in the
diagnostic work-up of suspect lesions. CAD systems in diagnostic work-up usually in-
volve having the computer extract the margin of the lesion from the surrounding pa-
renchyma, extract characteristics (features) of the lesions, merge these computer-ex-
tracted features into an estimate of the probability of malignancy, and, as an option,
automatically retrieve similar lesions from an online reference library. The aim of CAD
in diagnostic work-up is to increase classification sensitivity and specificity, as well as
to reduce intra- and interobserver variability. Various reviews have been written about
CAD in breast imaging (5–11).
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Computer-aided detection has already been incor-
porated into clinical screening mammography, and its
status is reviewed elsewhere in this RSNA syllabus (see
chapter by Chan et al). There are currently computer-
aided detection systems approved by the Food and
Drug Administration, with many insurance carriers,
including Medicare, providing coverage for such tech-
nology. Development of promising computer-aided
diagnosis prototypes is also underway, and aspects of
these future systems are reviewed in this chapter.

The general techniques employed in the computer
analysis of images can be broadly categorized as com-
puter vision and artificial intelligence (12,13). Com-
puter vision involves having a computer extract from a
digital image features that may or may not be other-
wise perceived by a human reader. The development
of computer vision schemes requires a priori informa-
tion about the medical image (eg, the mammogram)
and knowledge of various computer processing tech-
niques and decision analysis methods. The required
a priori knowledge includes the physical imaging
properties of the digital image acquisition system and
morphologic information concerning the abnormality
(eg, mass lesion or cluster of microcalcifications),
along with its associated anatomic background. That
is, a sufficient database is needed to cover the entire
range of abnormal and normal findings. Computer vi-
sion techniques include, in general, image processing,
image segmentation, and feature extraction (12,13).

Computer vision algorithms can be initially used
(a) to isolate, or segment, the breast from the remain-
der of the image and so limit the computer search re-

gion or (b) to enhance the peripheral breast border re-
gion to compensate for reduced breast thickness at the
edge. For example, investigators have described meth-
ods that use computer-defined unexposed and direct-
exposure image regions to generate a border around
the breast region (14,15). Next, segmentation tech-
niques can be employed to separate the image into re-
gions with similar attributes (eg, regions exhibiting
high contrast that might reflect the presence of calcifi-
cations) or to isolate a lesion from its surrounding pa-
renchymal background, as demonstrated in Figure 1
(16). Once segmented, each region is then further
analyzed with feature extraction and feature analysis
techniques, which yield mathematical descriptors of
the radiographic features.

Radiologists seem to extract and interpret simulta-
neously many radiographic image features correspond-
ing to signs of malignancy. For example, a high degree
of spiculation exhibited by a mass is a strong sign of
malignancy, and many computerized methods have
been developed to quantitate spiculation (17–21).
Thus, computer vision methods involve determining
the mathematical descriptors of image features, along
with the selection of which individual computer-ex-
tracted features are clinically important (7,22).

Much as the radiologist weighs different aspects of
a mammographic finding, artificial intelligence tech-
niques can be used to merge and/or select image fea-
tures obtained with computer vision into a diagnostic
decision (22–32). Various classifiers have been ex-
plored as means to merge the computer-extracted fea-
tures, including rule-based methods, discriminant

Figure 1. (a) Segmentation contours resulting from region growing by using radial gradient index segmentation and (b) segmenta-
tion result. (Reprinted, with permission, from reference 16.)
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analysis, artificial neural networks, Bayesian classifi-
ers, fuzzy logic, and combination methods, and these
are summarized elsewhere (7). Analogous to radiolo-
gist training, classifiers are “trained” on cases in which
the actual disease status is known. This training deter-
mines the setting internal to the computer algorithm
in a way that provides output that reflects the possible
disease status most accurately.

It should be noted that some of the limitations of
the human visual system that are based on image
quality would also limit computerized image analyses
(33). One should not expect computer image analysis
systems to “interpret” poor-quality mammograms
having low signal levels or high noise levels. However,
the analysis of mammograms by computers is expected
to improve if the mammograms are of high quality.

Validation ultimately requires assessment of the
performance of a computerized method for a specific
task on an independent set of cases. The assessed per-
formance of a computer system can be based on the
system’s performance alone, or it can be based on ra-
diologists’ performances when they are using the com-
puter output as an aid in their interpretations (34).

The output of the various detection and classifica-
tion methods varies depending on the details of the
specific methods that are available, the database em-
ployed to evaluate the computerized approach, and
the level of expertise of the human user. It is also im-
portant to note that it is not possible to compare dif-
ferent computerized methods because of the use of
different databases. That is, it cannot be assumed that
a computerized scheme that achieves a high sensitivity
with one database of mammograms will achieve a
similar performance level with another database or
with an actual patient population. In addition to the
database, the method of evaluation will influence per-
formance and expectations of a specific computerized
scheme. Some of the computerized schemes have
been tested, or merely demonstrated, with only a few
images, whereas others have been tested with moder-
ate-sized databases and statistical testing methods.
Performance levels in the latter situations are usually
given for the detection schemes in terms of the sensi-
tivity (true-positive rate) for detection and the number
of false-positive detections per image and are given for
the classification schemes in terms of the sensitivity
for classification and the specificity (ie, 1 − the false-
positive fraction).

CAD IN SCREENING MAMMOGRAPHY:
OVERVIEW

For completeness, CAD in screening mammography
will be briefly mentioned here. In screening mam-
mography, radiologists are limited in their detection
ability by quantum noise and the presence of overlap-
ping structures, that is, “structured noise.” Although

mammography is currently the best method for the
detection of breast cancer, radiologists may still fail to
detect cancer that is evident retrospectively. The
missed detections may be due to the subtle nature of
the radiographic findings (ie, low conspicuity of the
lesion), poor image quality, eye fatigue, or oversight
by the radiologist. Humans also routinely incur over-
sight errors because of nonsystematic search patterns
and lapses in perception. Such oversight error is exac-
erbated in mammographic screening, in which more
than 99.5% of the cases are normal.

In addition, it has been suggested that double read-
ing (by two radiologists) may increase sensitivity (1).
Thus, one aim of CAD is to increase the efficiency and
effectiveness of screening procedures by using a com-
puter system, as a “second reader” (like a spell-
checker), to aid radiologists by directing their atten-
tion to regions on mammograms that the computer
deems to have features associated with cancer. Note
that the final decision regarding the likelihood of the
presence of a cancer and patient management is left to
the radiologist. Because mammography is a high-vol-
ume x-ray procedure routinely interpreted by radiolo-
gists and because radiologists do not detect all cancers
that are visible on images in retrospect, it is expected
that the efficiency and effectiveness of screening will
be increased with CAD.

Computer detection systems identify locations of
suspect abnormalities and convey this information
to radiologists by means of marks on display moni-
tors, hard-copy film, or paper. The computer output
for the detection of potential lesions indicates both
actual lesions and false-positive findings. During the
years, investigators have worked to increase detection
sensitivity while decreasing the number of false
marks per image.

The ultimate test of a CAD system is its additive
value, that is, the improved performance of radiolo-
gists when the system is used in the clinical interpreta-
tion process. The clinical usefulness of computer-
aided detection for screening mammography has been
studied with various laboratory observer studies (35–
37), retrospective analysis of cases of “missed” lesions
(38–41), and, more recently, actual prospective clini-
cal usage of commercially available systems (42–44).
Studies are also being conducted to determine the
necessary sensitivity and false mark rate for computer-
ized detection methods to allow for improvement in
radiologists’ performance levels (45). If the sensitivity
is too low or if there are too many false marks per im-
age, the computer aid may be either not useful or det-
rimental to observer performance. Most recently, stud-
ies are being performed to assess the performance of
computer detection methods for full-field digital
mammography systems, for which computer analysis
becomes a “push-button” implementation without
the need for film digitization.
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CAD IN DIAGNOSTIC BREAST IMAGING:
OVERVIEW

Once a possible abnormality is detected, its character-
istics are simultaneously extracted and assessed by a
radiologist to decide if the abnormality is likely to be
malignant or benign and to recommend the subse-
quent patient management (eg, return to screening,
short-term follow-up, additional images, biopsy). Al-
though some lesions may show obvious signs of ma-
lignancy or the lack thereof, many lesions present con-
fusing findings. Many patients are referred for surgical
biopsy on the basis of a radiographically detected
mass lesion or cluster of microcalcifications. Although
there are general rules for differentiating between be-
nign and malignant breast lesions (46), radiologists’
interpretations of lesions with current radiographic
techniques vary considerably (47). Thus, an aim of
CAD is to extract and analyze objectively the charac-
teristics of benign and malignant lesions seen on im-
ages, aiding radiologists by increasing their diagnostic
accuracy and reducing false-positive diagnoses of ma-
lignancies and thereby decreasing patient morbidity as
well as the number of surgical biopsies performed and
their associated complications.

Characteristics of a lesion can also be assessed further
with multiple imaging techniques, including special-
view mammography, US, and MR imaging. Incorrect
management decisions resulting from inaccurate image
interpretation will typically decrease the positive pre-
dictive value for biopsy recommendations. The advent
of more multimodality analyses of the breast furthers
the role of CAD, both for computerized image analysis
of the suspect lesion with different modalities and for
the merging of multimodality information.

CAD systems in diagnostic work-up are expected to
extract the margin of the lesion from the surrounding
parenchyma, extract characteristics (features) of the le-
sions, merge these computer-extracted features into an
estimate of the probability of malignancy, and, as an
option, retrieve similar lesions automatically from an
online reference library (7). The aim of CAD in diag-
nostic work-up is to increase classification sensitivity
and specificity and to reduce intra- and interobserver
variability. It is important to restate that one of the
aims of computerized classification is to reduce the
number of benign cases sent for biopsy. Such a reduc-
tion, however, will be clinically acceptable only if it
does not result in malignant cases not being sent for
biopsy, because the “cost” of a missed cancer is much
greater than misclassification of a benign case. Thus,
computer classification schemes should be developed
to improve specificity, but not at the loss of sensitivity.

Computerized image analysis schemes to aid in di-
agnosis may use features that are extracted either by
computers or by radiologists. The benefit of com-
puter-extracted features is the objectivity and repro-

ducibility of the measurement of the specific feature.
However, radiologists employ many radiographic im-
age features, which they seem to extract and interpret
simultaneously and instantaneously. Thus, as dis-
cussed earlier with computer detection methods, the
development of computer diagnostic methods that
use computer-extracted features requires both the de-
termination of which individual features are clinically
important and the computerized means for the extrac-
tion of each such feature (22–32). Computer vision
and artificial intelligence techniques are presently be-
ing developed for the full range of modalities encoun-
tered in diagnostic breast imaging: diagnostic mam-
mography, US, and MR imaging.

CAD in Diagnostic Mammography

The initial investigations into the use of computers
in diagnostic mammography involved artificial intel-
ligence techniques to merge observations of image
features made by radiologists into useful diagnostic
predictions (48–50). Such methods are dependent on
the subjective identification and interpretation of the
mammographic data by human observers. Recently,
BI-RADS ratings provided by human readers have
been analyzed by computers for lesion characteriza-
tion (51). However, to eliminate the subjectivity of
human ratings and to automate lesion classification
more fully, features extracted with computer vision
have been investigated as computerized diagnostic
aids. Such mathematical descriptors may be based on
those visually used by radiologists, such as mass
spiculation or the spatial distribution of microcalcifi-
cations, or they may be features that are not visually
apparent to a human observer.

One of the earliest investigations into using com-
puters to extract mammographic features and merge
them into a decision on malignancy was in 1972,
when Ackerman and Gose (52) evaluated the use of
digital xeroradiographs and the computer extraction
of four measures of malignancy (calcification, spicula-
tion, roughness, and shape) from radiologist-identi-
fied suspicious regions. Calcification was character-
ized by using a derivative histogram of the suspect re-
gion. Spiculation was measured by examining the
lines tangent to the edges of lesions. Roughness con-
sisted of the sum of the absolute differences between
points along a vertical line, whereas shape was deter-
mined by using a perimeter-to-area ratio. The features
were then merged into a decision on malignancy. The
results, expressed in terms of receiver operating char-
acteristic (ROC) curves, were obtained with a database
of 60 images (30 having malignant and 30 having be-
nign lesions) and indicated that the computer per-
formed as well as an expert radiologist.

Various reviews of computer-extracted features of
mammographic lesions have been written elsewhere
(5–11), and only some will be presented here for
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illustration. Various investigators have characterized
lesions by using mass features, such as size, degree of
spiculation, average gray level, contrast, smoothness
of the interior, and texture, and microcalcification fea-
tures, such as the shape of individual calcifications
and their distribution within a cluster (7,17,18,53–
66). These features were subsequently merged by us-
ing discriminant functions to establish a probability
that a region contained malignant, benign, or normal
tissue.

For example, in the late 1980s, a characterization
method was developed that was based on the degree
of spiculation exhibited by a mass, because malignant
masses often can be distinguished from benign
masses by their more spiculated appearance at mam-

mography (17,18). In the classification scheme for
mass lesions (18,53), the mass is first extracted from
the anatomic background of the mammogram with
automatic region-growing techniques. Features ex-
tracted are then obtained by using cumulative edge-
gradient histogram analysis, in which the gradient is
analyzed relative to the radial angle. In the cumulative
edge-gradient analysis, the maximum gradient and
angle of this gradient relative to the radial direction
are calculated.

Figure 2 (18) illustrates the calculation of the full
width at half maximum from the cumulative gradi-
ent orientation histogram for a smooth mass and a
spiculated mass. Other features include gray-level
and geometric measures. In the associated classifier,

Figure 2. Examples of (a) a mammographic spiculated mass and its corresponding cumulated edge-gradient-orientation distribution
and (b) a mammographic circular smooth mass and its corresponding cumulated edge-gradient-orientation distribution. FWHM = full
width at half maximum. (Reprinted, with permission, from reference 18.)
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spiculation was shown to dominate the learning,
thus leading to the use of a combined rule-based/ar-
tificial-neural-network classifier (54). In addition,
the effects of variations in both case mix and film
digitization technique on the performance of the
method were assessed (55). Computer categorization
of lesions as malignant or benign achieved an Az
value (area under the ROC curve) of 0.90 for a prior
training database (one commercial scanner’s digitiza-
tion) in a round-robin evaluation and Az values of
0.82 and 0.81 for an independent database analyzed
with two other commercial digitization formats. In
the statistical comparison of these performances,
however, the investigators failed to show a signifi-
cant difference between the performances with the
training database and the independent validation da-
tabase (P > .10). Thus, the computer-based method
for the classification of lesions on mammograms was
shown to be robust to variations in case mix and
film digitization technique (55).

The analysis of robustness was extended when the in-
vestigators applied their algorithm to special-view mam-
mography, which resulted in a substantial improve-
ment in computer performance, as demonstrated in
Figure 3 (56). In a result that parallels human observer
performance, the investigators demonstrated improved
computer performance in diagnosing lesions on special-
view mammograms compared with that on standard
views (craniocaudal and mediolateral oblique views).

In 1991, in one of the earliest investigations of com-
puter characterization of microcalcifications, Patrick et

al (60) reported on a network of trained expert learn-
ing systems. The network included three systems—one
for features of individual microcalcifications, one for
features of the clusters, and one for clinical presenta-
tions—that classify clusters of calcifications as benign
or malignant. Calculated geometric parameters in-
cluded center of gravity, length, breadth, orientation,
area, perimeter, moments, and convex perimeter. Fea-
tures were then constructed from these measurements.
With 25 clusters of calcifications that had been re-
ferred for biopsy, the system had a classification sensi-
tivity of 90% (nine of the 10 cancers were correctly
recognized) and a specificity of 60% (nine of the 15
benign cases were correctly recognized), for an overall
classification accuracy of 72%.

Various other methods for characterizing clustered
microcalcifications have been reviewed elsewhere (7).
For example, in the mid-1990s, a computerized meth-
od for classifying clustered microcalcifications was de-
veloped; it involved extracting features that correlate
qualitatively with radiologists’ experience (61,62). The
computerized classification system estimated the like-
lihood of malignancy on the basis of the appearance
of clustered microcalcifications on mammograms. The
computer automatically extracted features of the mi-
crocalcifications that were related to their size, shape,
quantity, and spatial distribution and then used an ar-
tificial neural network to merge the features to pro-
duce an estimate of the likelihood of malignancy.
This likelihood can then be used by a radiologist to
help decide whether the microcalcifications are malig-

Figure 3. (a) Example of a malignant mass lesion, including the conventional mammograms (four-on-one view), the region of inter-
est (ROI) for the craniocaudal (CC) view, the ROI for the mediolateral oblique (MLO) view, and the special-view ROI. (b) ROC curves
obtained for the computer analysis of single-view mammographic images, that is, the CC, MLO, and special views. (Reprinted, with
permission, from reference 56.)
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nant or benign. Further studies on the classifier used
in the computerized diagnosis method demonstrated
the variability in the outputs of multiple neural net-
works that are trained and “optimized” from the same
training set (63). This is demonstrated in Figure 4
(63), which shows the standard deviation in the out-
put of eight artificial neural networks as a function of
the average artificial neural network output. Interest-
ingly, the largest variations were when the case was
difficult to interpret, as indicated by the midrange out-
put.

In laboratory observer studies, computerized diag-
nostic methods have been shown to aid radiologists in
distinguishing between malignant and benign lesions
(62,64,65). Use of a computer diagnostic aid therefore
has the potential to increase sensitivity, specificity, or
both in the work-up of breast lesions. Investigators
have demonstrated that radiologists showed an in-
crease in both sensitivity and specificity in the charac-
terization of clustered microcalcifications and in the as-
sociated recommendation for biopsy (62). In addition,
it has been shown that improved performance can be
obtained by both expert mammographers and commu-
nity-based radiologists who use CAD information, with
the increase greater for the nonexperts (64). However,
methods for combining radiologist interpretations and
computer outputs are still being investigated, and these
methods will depend on the performances of the com-
puter and the radiologist alone, as well as on the meth-
od by which the radiologist can incorporate computer
output into his or her final decision-making process.
However, early studies show the potential for using
computer output to reduce the variability between radi-
ologists’ interpretations (66).

Future directions for CAD in diagnostic mammog-
raphy include connecting the computerized image

analysis for diagnosis to the output of computerized
mammographic detection methods. Toward this end,
Edwards et al (67) have investigated methods for
three-way classification to incorporate computer clas-
sification methods with computer detection output
and thus distinguish between malignant lesions, be-
nign lesions, and false-positive detections.

CAD in Breast Ultrasound

The diagnostic work-up of a suspected breast lesion
may also include imaging with multiple modalities,
such as US and MR imaging. Breast US is used as an
important adjunct to diagnostic mammography and
is typically performed to evaluate palpable and mam-
mographically identified masses and determine
whether they are cystic or solid. Although US is used
by many radiologists to distinguish between solid le-
sions and cysts, it is difficult to distinguish between
benign and cancerous solid lesions. Stavros et al (68)
used various features to characterize masses as benign,
indeterminate, and malignant. Their classification
scheme had a sensitivity of 98.4% and a negative pre-
dictive value of 99.5%.

US is a digital modality that is amenable to the ap-
plication of CAD techniques that ultimately could be
used in a real time, at the time of examination, to im-
prove diagnostic accuracy. Given that US interpreta-
tion is a subjective process and that criteria have been
developed that may allow differentiation between be-
nign and malignant solid breast masses, it is reason-
able to assume that CAD techniques applied to US
images would improve radiologists’ performance,
particularly when combined with corresponding
mammographic data.

CAD methods in breast US are being explored by
various researchers (69–74). As with mammographic
lesions, the lesion is first extracted from the breast back-
ground (72), and lesion features are then extracted.
Figure 5 demonstrates lesions extracted from US images
by means of gradient information (16,72,75). Assum-
ing that lesions are roughly spherical, lesion extraction
is possible even in the presence of acoustic shadowing.
Mass lesions visible at US can be classified with a com-
puter by using a variety of mathematical descriptors of
texture, margin, shape, and acoustic shadowing criteria
(69–76).

As with CAD systems for mammography, the effect
on radiologists’ performance must also be assessed to
determine the additive value of CAD systems for char-
acterizing breast lesions at US. In one study, investiga-
tors demonstrated that the use of computer classifica-
tion schemes to distinguish between benign and ma-
lignant masses helped inexperienced operators avoid
misdiagnosis (71). In another study, involving six
expert mammographers and six community-based
radiologists, investigators demonstrated that the use
of computer-estimated probabilities of malignancy

Figure 4. Standard deviation in the output of eight artificial
neural networks (ANNs) as a function of the average ANN out-
put. The ANNs were trained with a single training data set and
identical network parameters except for an arbitrary but different
seed value to a random number generator. (Reprinted, with per-
mission, from reference 63.)
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significantly improved radiologists’ performance in
interpreting breast US images (76). Interestingly, the
performance of the computer alone was similar to
that of the radiologists (76).

Current research trends in US CAD include classifica-
tion of multiple lesion types (malignant, solid benign,
and cysts) and incorporation of three-dimensional US
imaging. For US CAD, a computerized characterization
method needs to be evaluated for its ability to distin-
guish between malignant lesions, solid benign lesions,
and cysts; there is a three-way classification problem
(67,77). The advent of three-dimensional US allows
breast masses to be characterized on the basis of three-
dimensional US volumes. Investigators have used two-
and three-dimensional active contour models for the
automated segmentation of mass volumes (74). On a
data set of three-dimensional volumes of 102 mass le-
sions subjected to biopsy, investigators evaluated their
two- and three-dimensional segmentation methods,
reporting Az values of 0.87 and 0.92, respectively.

Future directions in breast US CAD also include
(a) further development and evaluation in three-dimen-
sional US, (b) assessment of the role of CAD as an aid to
radiologists, and (c) studies of the robustness of US
CAD. US is quite an operator-dependent modality, and
computer performance must therefore be assessed with
databases from different institutions and across acquisi-
tion platforms. Drukker et al (75,78) developed a meth-
od for detecting and characterizing masses with two-di-
mensional breast US. Results from independent valida-
tion tests indicated that the methods for distinguishing
actual lesions from false-positive detections and distin-
guishing between malignant and benign lesions were ro-
bust across different institutions and across two different
manufacturers’ acquisition platforms.

CAD in Breast MR Imaging

MR imaging may aid in the diagnosis of breast can-
cer as a complement to mammography. MR imaging
has the benefit of yielding three-dimensional spatial

information on the breast as well as temporal infor-
mation. MR imaging of the breast with contrast mate-
rial enhancement is used to indicate differences be-
tween lesions and normal tissue caused by the in-
creased vascularity and capillary permeability of
tumors. Computerized analysis of MR images has po-
tential benefits because radiologists vary in their as-
sessment of lesions at MR imaging and lack standard
imaging protocols for breast MR imaging. Mussurakis
et al (79) reported that there is considerable variabil-
ity in human assessment of lesions on MR images.
With the variation in criteria and the absence of guide-
lines for interpretation being major obstacles to ap-
plying MR imaging in routine clinical practice, investi-
gators aim to develop CAD for breast MR imaging in
order to increase the objectivity and reproducibility of
interpretation. With MR imaging, both temporal and
spatial features of lesions, as well as combined fea-
tures, may be useful in the discrimination task.

One computerized method employed a decision-tree
approach to interpreting mammographic architectural
features (80), with lesion margin being the primary de-
terminant of malignancy. Others have investigated use
of the fractal dimension of the mass boundary to char-
acterize margin roughness (81). Combining fractal
analysis with prior architectural features (81) substan-
tially improved lesion characterization.

At the initial stage, quantitative analyses of MR le-
sions involve manual or automatic lesion segmenta-
tion, which can be performed in either two or three
dimensions. In one study, examples of temporal fea-
tures included maximum uptake of contrast material
(82). Spatial features included lesion contrast with re-
spect to surrounding background, inhomogeneity of
voxel values in the lesion, mean sharpness and varia-
tion of sharpness along the lesion margins, circularity
and irregularity of the lesion, texture, and directional
analysis of the gradients in the lesion. To take full ad-
vantage of the data, the spatial features can be com-
puted in three dimensions.

Figure 5. Manual (yellow) and computer (blue) segmentation of three lesions at US. (Courtesy of K. Horsch and K. Drukker, Univer-
sity of Chicago, Chicago, Ill.)
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In an initial study, the performance of a radial gra-
dient analysis and margin sharpness (combined by
means of a linear discriminant function) were used to
distinguish between malignant and benign lesions,
yielding an Az of 0.96 in round-robin ROC analysis
(83). Additional studies involved the investigation of
three categories of features: morphology, enhance-
ment kinetics, and variance dynamics over the lesion
(84). In a database of 121 cases (77 malignant and 44
benign), stepwise feature selection was employed to
select an effective subset of features. These were then
combined by means of linear discriminant analysis
into a discriminant score, which was related to the
likelihood of malignancy. With radiologist-delineated
lesion contours, stepwise feature selection yielded
four features and an Az of 0.80 for the linear discrimi-
nant analysis in leave-one-out cross-validation testing,
compared with six features and an Az of 0.86 for auto-
matically computer-segmented lesion volumes.

CAD in Multimodality Breast Imaging

Although some features encountered in breast imag-
ing, such as margin sharpness, can be seen across mo-
dalities, others are particular to the imaging modality,
such as the computer characterization of the posterior
acoustic behavior at US and the inhomogeneity of
contrast material uptake in breast MR imaging. Radi-
ologists, for example, rarely interpret a US image
without a corresponding mammogram, and thus it is
important to assess the usefulness of CAD on multi-
modality images in combination. Combining com-
puter analyses from multiple views or modalities re-
quires (a) additional computer intelligence to deter-
mine the correspondence of lesions across views and
modalities (85) and (b) an efficient means of convey-
ing multimodality information to the radiologist, as
discussed in the next section.

Human-Computer Interface for CAD and Indexes
of Similarity

For diagnostic output, a computer-determined esti-
mate of the probability of malignancy for a specific
case can be given to the radiologist. This estimated
probability could then be used by the radiologist in
deciding on the next step in patient management.
Swett and Miller (86) reported on an expert system
that used a critiquing approach combined with an ex-
pert system to control the image display. Sklansky et
al (87) designed a mapped database diagnostic system
in which two-dimensional relation maps of known
cases are accessible for comparison to the feature val-
ues of some unknown case. Giger et al (88,89) pre-
sented a CAD system with output in the form in three
modes: a numerical mode giving values correspond-
ing to the probability of malignancy, a pictorial mode
displaying similar images of known diagnoses, and a
graphic mode that indicates on a distribution plot the

unknown lesion relative to all lesions in a known li-
brary (an online atlas).

Output from multimodality computer image analy-
ses parallels the interpretations of radiologists who in-
terpret whole cases rather than individual images. Such
multimodality output, however, requires effective and
efficient displays to communicate the output to the ra-
diologist. For example, Figure 6 shows an interface for
the output of a CAD system that is presented for differ-
ent imaging modalities in terms of (a) computer-esti-
mated probabilities of malignancy, (b) the display of
similar images of known diagnoses, and (c) a graphic
representation of the unknown lesion relative to all le-
sions in a known database (an online atlas) (88–90).

A known image atlas can be searched according to
individual features or the likelihood of malignancy.
The similarity index used in such a search can be se-
lected by the radiologist from a variety of possibilities,
such as the computer-estimated probability of malig-
nancy or computer-extracted features (eg, margin defi-
nition, spiculation, contrast). Note that in Figure 6,
color coding is used to expedite the extraction of in-
formation from the interface, with the malignant le-
sions from the online reference library outlined in red
and the benign lesions outlined in green. The similar-
ity index used in the search can be chosen by the radi-
ologist to be based on a single feature, multiple fea-
tures, or the computer estimate of the likelihood of
malignancy. The probability distributions of the ma-
lignant and benign cases in the known database are
shown along with the “location” of the unknown case
relative to the two distributions. The intelligent search
workstation combines the benefit of CAD with prior
knowledge obtained from confirmed cases. The po-
tential of this interface has been demonstrated as an
aid in the diagnostic interpretation of lesions by radi-
ologists for both mammography alone (90) and com-
bined display of mammography and US (91).

In summary, the potential for improved diagnostic
performance by radiologists in the task of interpreting
mammograms provides strong motivation for CAD
methods. The performance of computer algorithms
continues to improve, and attention is now also di-
rected to integrating computers in the clinical arena.
Careful evaluation of system performance will require
(a) comparisons of sensitivity and specificity across
similar databases, (b) ultimate improvement in clini-
cal practice, and (c) ease of integration into the breast
imaging practices (92). Although the roles of comput-
ers in mammographic detection and diagnosis are still
being clarified and validated, the ultimate effect on
practice may one day be both substantial and com-
monplace. While the breadth and depth of CAD in
breast cancer imaging are increasing, continued and
expanded efforts are needed for establishing and con-
firming databases and providing means for clinical
validation.
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