
Parameter tuning:
Parameter tuning refers to finding optimal values for hyperparameters that can yield best model
performance.There are many techniques such as grid search cv in which we go over every
combination of values for hyperparameters and report combination which yields best
performance. However, in deep learning it might be time consuming to do so. We discuss
hyperparameter tuning techniques that are specifically targeted for neural networks.
Number of hidden layers:

According to [1], as we increase the number of layers inside a neural network, the model
is able to learn more complex representations. For instance, 1 hidden layer can be used for
simple regression where one continuous value maps to another continuous value. Two hidden
layers can be used to learn decision boundaries for classification. With more than 2 hidden
layers, models can actually learn complex representations such as high level features in an
image (like white patch in a blood cell image which indicates Malaria infection).

Let’s look at the following relationship between accuracy and epochs as we increase the
number of hidden layers.

Fig 1. Training accuracy

Fig 2. Validation accuracy

We trained Cat dog classification models by varying hidden convolutional layers between the
range 1 to 3 with each of them consisting of 16 units. As we can see, model with 1 hidden layer
learns quickly but does not perform well on the validation data. On the other hand, a model with
3 hidden layers learns slowly and fits significantly better on validation data than a model with 1
hidden layer.

From another perspective, shallower layers in the CNN generally represent raw pixels but as we
go deeper, more class-dependent abstract and compact features are extracted. Please refer to
the following diagram which shows CNN activations for the cat image.

Number of units in each layers
We experimented with 4 different configurations of hidden units:
[8,8,8]
[8,16,16]
[8,16,32]
[32,16,32]

As we can see, using too few neurons can cause underfitting and too many neurons can cause
overfitting. According to [1], following are some thumb rules to consider while deciding number
of hidden neurons:

1. The number of hidden neurons should be between the size of the input layer and the
size of the output layer.

2. The number of hidden neurons should be 2/3 the size of the input layer, plus the size of
the output layer.

3. The number of hidden neurons should be less than twice the size of the input layer.

G. Batch size

Batch size is the number of examples from the training dataset used in the estimation of the
error gradient and is an important hyperparameter that influences the dynamics of the learning
algorithm.

For example, A batch size of 32 means that 32 samples from the training dataset will be used to
estimate the error gradient before the model weights are updated.

● Batch Gradient Descent. Batch size is set to the total number of examples in the
training dataset.

● Stochastic Gradient Descent. Batch size is set to one.
● Minibatch Gradient Descent. Batch size is set to more than one and less than the total

number of examples in the training dataset.

In the below graph we will see the effect of batch size on training/testing accuracy and loss:

Where,

Orange curves : 64 batch size
Blue curves : 256 batch size
Purple curves : 1024 batch size

As we can see 64 is the optimal batch size. The accuracy is more and loss is less when a batch
size of 64 is used.
It is generally accepted that there is some “sweet spot” for batch size between 1 and the entire
training dataset that will provide the best generalization. This “sweet spot” usually depends on
the dataset and the model at question.

Effects of larger batch size:

● Larger batch size to train model allows computational speedups from the parallelism of
GPUs.

● Too large of a batch size will lead to poor generalization
● Using a batch equal to the entire dataset guarantees convergence to the global optima.

Effects of smaller batch size:

● Using smaller batch sizes leads faster convergence to “good” solutions.
● Smaller batch sizes allow the model to “start learning before having to see all the data.”
● The downside of using a smaller batch size is that the model is not guaranteed to

converge to the global optima.
● Smaller batch sizes make it easier to fit one batch worth of training data in memory (i.e.

when using a GPU).

Learning rates: (Naveen Kumar)

Learning rate is one of the hyperparameters used in Gradient descent algorithm for
backtracking and updating the weights of the neural networks. While learning the weights of the
model the gradient descent tries to update the weights in order to reduce the error. The
hyperparameter learning rate is the factor by which the weights are updated at each epoch.
Selecting the right learning rate for gradient descent is important to ensure that the algorithm
converges at an optimal solution. Having too large a learning rate poses the risk of exploding
gradients and the algorithm may never converge.

However, there is no one optimal value for learning rate. Although, having a small learning rate
can ensure that gradient descent converges, it can also slow down the learning as the algorithm
makes little progress with each epoch and can take longer to converge. It is often best practice
to come up with a range of smaller learning rates and perform training and validation to see
which learning rate gives the best results.

Below graph shows the impact of different learning rates on the convergence of gradient
descent [2].

Another graph shows the range of learning rates and their respective effect on performance
training and test data. The graph shows training performance using blue lines and test
performance using orange lines [3].

Here the large learning rate 1 shows the model never converges for both training and test data
and keeps oscillating. However the learning rate of 0.01 gives the optimal performance where it
converges for both training and test data. Although, a very small learning rate shows down the
learning curve.

The graph also shows for extremely small learning rate the model doesn’t learn much and
although the performance on training data looks good it does not perform well on the test data.

Below is a graph showing the performance on training and test data for different learning rates.

Epoch (Savankumar Patel)

The number of epochs is a hyperparameter that defines the number times that the
learning algorithm will work through the entire training dataset. One epoch means that
each sample in the training dataset has had an opportunity to update the internal model
parameters. An epoch is comprised of one or more batches.

You can think of a for-loop over the number of epochs where each loop proceeds over
the training dataset. Within this for-loop is another nested for-loop that iterates over

each batch of samples, where one batch has the specified “batch size” number of
samples.

The number of epochs is traditionally large, often hundreds or thousands, allowing the
learning algorithm to run until the error from the model has been sufficiently minimized.
You may see examples of the number of epochs in the literature and in tutorials set to
10, 100, 500, 1000, and larger.

It is common to create line plots that show epochs along the x-axis as time and the error
or skill of the model on the y-axis. These plots are sometimes called learning curves.
These plots can help to diagnose whether the model has over learned, under learned,
or is suitably fit to the training dataset.

If our training dataset has 1000 records, we could decide to split it into 10 batches (100
records per batch — Batch size of 100). Thus, 10 steps will be required to complete
one learning cycle. Also if we decide to split the 1000 training set into 100 batches, we
would then need 100 steps per each learning cycle. (10 records per batch — Batch
size of 10).

The 10 or 100 steps are Iterations. And by the End of the 10th or 100th step, we
would have completed one Epoch, which is a complete learning cycle. By the end of an
Epoch, the learning algorithm is able to compare or review actual outputs from the
training data and optimize or make adjustments to its parameters in order to make
better predictions in the next cycle. There is no guarantee that the Gradient Descent will
be globally optimized or reach its best optimization by the end of the first optimization
cycle(Epoch). Because of this, more than a few Epochs are often needed to achieve an
ideal or high model accuracy. There is no set number of Epochs for optimizing a
particular learning algorithm.

Just one Epoch can result to underfitting. However, too many Epochs after reaching
global minimum can cause learning model to overfit. Ideally, the right number of epoch
is one that results to the highest accuracy of the learning model.

Underfitting fit overfitting

While the concept of Epoch remains fundamental to optimization of a learning algorithm,
its specific application to learning models such as Artificial Neural networks or
Reinforcement learning can differ in terms of how the model is modified to perform
better after each cycle.

References:
[1]. https://www.heatonresearch.com/2017/06/01/hidden-layers.html
[2].https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performa
nce-in-deep-learning-d0d4059c1c10
[3].https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-lear
ning-neural-networks/

https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/

