
Shivali Choudhary, Dikshant Jain, Emmanuel Gallegos
Computer Vision
CSU East Bay
29 October 2020

Exercise Explore: Overtraining and the Importance of Checkpoints

What is Overtraining?

“​In [the case of overfitting], rather than ‘learning’ to generalize from a trend, an overfitting
model may ‘memorize’ non-predictive features of the training data” (Bilbao). Essentially,
overfitting or overtraining occurs when a supervised classifier becomes too closely attuned to a
training dataset, and loses the generality that is sought when constructing classifiers. In the
case of overtraining, while the training error might approach zero, the validation error will not,
and may possibly begin to increase instead. This signifies that the classifier will perform poorly
when exposed to unseen data because it is too attuned to classifying the features of the training
set which may not be representative of the true sample possibility space.

In the case of ANN’s, often the term ‘overtraining’ is used as opposed to overfitting,
though the basic underlying concept between the two terms is similar. The model, whether it is a
complex neural network, or a simple polynomial regression, is fitted to minimize training error at
the cost of potential increased complexity and poorer validation error. The ultimate result is a
model that is less robust.

To visualize the concept of overfitting, examine the following regression diagrams:

Fig 1: 1st Order Polynomial Fig 2: 3rd Order Polynomial

Fig 3: 6th Order Polynomial Fig 4: 20th Order Polynomial

In these diagrams, from Bilbao et al, we see examples of a polynomial regression on a
training dataset with various order polynomial functions. The objective of the regression is to
return a model, in this case a polynomial function, that can be used to predict the value of a new
data point. As the order of the polynomial function increases, we can see that the model begins
to more tightly hug the training data set and the training error should consequently go down as
the complexity increases. However, looking in particular at the 20th order polynomial in figure 4,
we can see an example of extreme overfitting, where the training error has approached zero,
but the resulting model is extremely complex and will likely lead to high test errors when
exposed to data not a part of the original training set.

Fig 5: Underfitting vs Overfitting

Figure 5, from ​Dive Into Deep Learning​, illustrates an example of under and over fitting. In this
case, the figure refers to another regression based model, and thus the x-axis is labelled model
complexity. For an object detection neural network, this axis might instead be labelled “time”,
“steps”, or “epochs”, depending on the training schema. As the model is trained, eventually its
generalization / validation / test loss will begin to increase at a certain point, while the training
loss continues to decrease. Beyond this point, the model is considered overfit or overtrained on
the dataset. Before that point, it is underfit or undertrained. This gives some intuition into why
checkpoints are so important in training, as after training, one can look at validation loss during
training and find a prior checkpoint closest to the ‘optimum’ location, where the derivative of loss
becomes positive. But we will elaborate more on this later.

Unless the dataset is literally a perfect representation of the variety that is contained in
the sample possibility space, the model will instead become attuned to the unique features of
the sample data and lose the ability to generalize its predictions. While one should always try to
train on a large enough dataset that appropriately represents the possibility space, overfitting is
still a danger.

How to identify if overtraining has occurred: 2 (shivali)

During training, the model is evaluated on a holdout validation dataset after each epoch. If the
performance of the model on the validation dataset starts to degrade (e.g. loss begins to
increase or accuracy begins to decrease), then the training process is stopped.

Monitoring Performance
The performance of the model must be monitored during training.
This requires the choice of a dataset that is used to evaluate the model and a metric used to
evaluate the model.
It is common to split the training dataset and use a subset, such as 30%, as a validation dataset
used to monitor performance of the model during training. This validation set is not used to train
the model. It is also common to use the loss on a validation dataset as the metric to monitor,
although you may also use prediction error in the case of regression, or accuracy in the case of
classification.
The loss of the model on the training dataset will also be available as part of the training
procedure, and additional metrics may also be calculated and monitored on the training dataset.
Performance of the model is evaluated on the validation set at the end of each epoch, which
adds an additional computational cost during training. This can be reduced by evaluating the
model less frequently, such as every 2, 5, or 10 training epochs.
Early Stopping Trigger
Once a scheme for evaluating the model is selected, a trigger for stopping the training process
must be chosen.
The trigger will use a monitored performance metric to decide when to stop training. This is
often the performance of the model on the holdout dataset, such as the loss.
In the simplest case, training is stopped as soon as the performance on the validation dataset
decreases as compared to the performance on the validation dataset at the prior training epoch
(e.g. an increase in loss).
More elaborate triggers may be required in practice. This is because the training of a neural
network is stochastic and can be noisy. Plotted on a graph, the performance of a model on a
validation dataset may go up and down many times. This means that the first sign of overfitting
may not be a good place to stop training.

How to avoid overtraining: 2 (dikshant)

● Use a Train/Validation/Test Partition
If there is an ample amount of data available, the data can be partitioned into three sets.
The training set is used to train the model. The model is tested on the validation set
during training to determine error on unseen data. That is, data that was not used to
train the model. This method will save the model at the point where validation error is
lowest. Finally, the test set is used to verify generalization performance of the model.

● Regularization
Adding a penalty training error depending on the magnitude of weights. Larger
magnitude weights may be a sign of overtraining where the network is trying to learn
noisy features of the training data set. Regularization steers the model toward smaller
weights while minimizing error. The lambda constant is a multiplier on the penalty.

L1: total error = training error + λΣ|weight|
L2: total error = training error + λΣ weight²

● Bagging
Bagging (bootstrap aggregating) is an ensemble method that combines multiple models
into a meta-model. For each model, the training data is randomly sampled with
replacement from all data flagged as training. This means that some data points can be
represented in the “bag” more than once for a model. Other training data may not be
represented at all in a model. This sampling method creates different training sets for
each model which increases model diversity and helps avoid overtraining.

● Early Stopping with Cross-validation
Early stopping could be used with k-fold cross-validation, although it is not
recommended.The k-fold cross-validation procedure is designed to estimate the
generalization error of a model by repeatedly refitting and evaluating it on different
subsets of a dataset. Early stopping is designed to monitor the generalization error of
one model and stop training when generalization error begins to degrade.

They are at odds because cross-validation assumes you don’t know the generalization
error and early stopping is trying to give you the best model based on knowledge of
generalization error.

It may be desirable to use cross-validation to estimate the performance of models with
different hyperparameter values, such as learning rate or network structure, whilst also
using early stopping.

In this case, if you have the resources to repeatedly evaluate the performance of the
model, then perhaps the number of training epochs may also be treated as a
hyperparameter to be optimized, instead of using early stopping. Instead of using
cross-validation with early stopping, early stopping may be used directly without
repeated evaluation when evaluating different hyperparameter values for the model (e.g.
different learning rates). One possible point of confusion is that early stopping is
sometimes referred to as “cross-validated training.” Further, research into early stopping
that compares triggers may use cross-validation to compare the impact of different
triggers.

Why checkpoints are important: (shivali)
Checkpointing is a technique that provides ​fault tolerance​ for ​computing​ systems. It basically
consists of saving a snapshot of the ​application​'s state, so that applications can restart from that
point in case of ​failure​. This is particularly important for the long running applications that are
executed in the failure-prone computing systems.

What is Checkpoint

1. The architecture of the model, allowing you to re-create the model
2. The weights of the model

https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Failure

3. The training configuration (loss, optimizer, epochs, and other meta-information)
4. The state of the optimizer, allowing you to resume training exactly where you left off.

Need of Checkpoint

● A good use of checkpointing is to output the model weights each time an improvement is
observed during training.

● Resilience​: If you are training for a very long time, or doing distributed training on many
machines, the likelihood of machine failure increases. If a machine fails, TensorFlow can
resume from the last saved checkpoint instead of having to start from scratch. This
behavior is automatic — TensorFlow looks for checkpoints and resumes from the last
checkpoint.

● Generalization​: In general, the longer you train, the lower the loss on the training
dataset. However, at some point, the error on the held-out, evaluation dataset might stop
decreasing. If you have a very large model, and you are not doing sufficient
regularization, the error on the evaluation dataset might even start to increase. If this
happens, it can be helpful to go back and export the model that had the best validation
error. This is also called early stopping because you could stop if you see the validation
error start to increase. (A better idea is, of course, to decrease model complexity or
increase the regularization so that this scenario doesn’t happen). The only way you can
go back to the best validation error or do early stopping is if you have been periodically
evaluating and checkpointing the model.

● Tunability​: In a well-behaved training loop, gradient descent behaves such that you get
to the neighborhood of the optimal error quickly on the basis of the majority of your data
and then slowly converge towards the lowest error by optimizing on the corner cases.
Now, imagine that you need to periodically retrain the model on fresh data. You typically
want to emphasize the fresh data, not the corner cases from last month.

Citations:

I. Bilbao and J. Bilbao, "Overfitting problem and the over-training in the era of data: Particularly

for Artificial Neural Networks," 2017 Eighth International Conference on Intelligent
Computing and Information Systems (ICICIS), Cairo, 2017, pp. 173-177, doi:
10.1109/INTELCIS.2017.8260032.

Zhang, A., Lipton, Z., Li, M., & Smola, A. (2020). 4.4 Model Selection, Underfitting, and
Overfitting. In ​Dive Into Deep Learning​ (0.15.0 ed.).

https://ieeexplore-ieee-org.proxylib.csueastbay.edu/stamp/stamp.jsp?tp=&arnumber=488180

https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models
/

https://vortarus.com/machine-learning-overtraining/

https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/
https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/
https://vortarus.com/machine-learning-overtraining/

https://blog.floydhub.com/checkpointing-tutorial-for-tensorflow-keras-and-pytorch/#:~:text=Chec
kpoints%20in%20machine%20learning%20and,from%20where%20you%20left%20off​.

https://machinelearningmastery.com/check-point-deep-learning-models-keras/
https://towardsdatascience.com/ml-design-pattern-2-checkpoints-e6ca25a4c5fe

https://blog.floydhub.com/checkpointing-tutorial-for-tensorflow-keras-and-pytorch/#:~:text=Checkpoints%20in%20machine%20learning%20and,from%20where%20you%20left%20off
https://blog.floydhub.com/checkpointing-tutorial-for-tensorflow-keras-and-pytorch/#:~:text=Checkpoints%20in%20machine%20learning%20and,from%20where%20you%20left%20off
https://machinelearningmastery.com/check-point-deep-learning-models-keras/

