
Chapter 12

THE GEOMETRY OF
MULTIPLE VIEWS

Despite the wealth of information contained in a photograph, the depth of a scene
point along the corresponding projection ray is not directly accessible in a single
image. With at least two pictures, on the other hand, depth can be measured
through triangulation. This is of course one of the reasons why most animals have
at least two eyes and/or move their head when looking for friend or foe, as well
as the motivation for equipping autonomous robots with stereo or motion analysis
systems. Before building such a program, we must understand how several views of
the same scene constrain its three-dimensional structure as well as the corresponding
camera configurations. This is the goal of this chapter.

In particular, we will elucidate the geometric and algebraic constraints that hold
among two, three, or more views of the same scene. In the familiar setting of binoc-
ular stereo vision, we will show that the first image of any point must lie in the plane
formed by its second image and the optical centers of the two cameras. This epipo-
lar constraint can be represented algebraically by a 3×3 matrix called the essential
matrix when the intrinsic parameters of the cameras are known, and the funda-
mental matrix otherwise. Three pictures of the same line will introduce a different
constraint, namely that the intersection of the planes formed by their preimages
be degenerate. Algebraically, this geometric relationship can be represented by a
3 × 3 × 3 trifocal tensor. More images will introduce additional constraints, for
example four projections of the same point will satisfy certain quadrilinear rela-
tions whose coefficients are captured by the quadrifocal tensor, etc. Remarkably,
the equations satisfied by multiple pictures of the same scene feature can be set up
without any knowledge of the cameras and the scene they observe, and a number of
methods for estimating their parameters directly from image data will be presented
in this chapter.

Computer vision is not the only scientific field concerned with the geometry
of multiple views: the goal of photogrammetry, already mentioned in Chapter 6,
is precisely to recover quantitative geometric information from multiple pictures.
Applications of the epipolar and trifocal constraints to the classical photogrammetry
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330 The Geometry of Multiple Views Chapter 12

problem of transfer (i.e., the prediction of the position of a point in an image given its
position in a number of reference pictures) will be briefly discussed in this chapter,
along with some examples. Many more applications in the domains of stereo and
motion analysis will be presented in latter chapters.

12.1 Two Views

12.1.1 Epipolar Geometry

Consider the images p and p′ of a point P observed by two cameras with optical
centers O and O′. These five points all belong to the epipolar plane defined by the
two intersecting rays OP and O′P (Figure 12.1). In particular, the point p′ lies
on the line l′ where this plane and the retina Π′ of the second camera intersect.
The line l′ is the epipolar line associated with the point p, and it passes through
the point e′ where the baseline joining the optical centers O and O′ intersects Π′.
Likewise, the point p lies on the epipolar line l associated with the point p′, and
this line passes through the intersection e of the baseline with the plane Π.
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Figure 12.1. Epipolar geometry: the point P , the optical centers O and O′ of the two
cameras, and the two images p and p′ of P all lie in the same plane.

The points e and e′ are called the epipoles of the two cameras. The epipole e′ is
the (virtual) image of the optical center O of the first camera in the image observed
by the second camera, and vice versa. As noted before, if p and p′ are images of the
same point, then p′ must lie on the epipolar line associated with p. This epipolar
constraint plays a fundamental role in stereo vision and motion analysis.

Let us assume for example that we know the intrinsic and extrinsic parameters
of the two cameras of a stereo rig. We will see in Chapter 13 that the most difficult
part of stereo data analysis is establishing correspondences between the two images,
i.e., deciding which points in the right picture match the points in the left one.
The epipolar constraint greatly limits the search for these correspondences: indeed,
since we assume that the rig is calibrated, the coordinates of the point p completely
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determine the ray joining O and p, and thus the associated epipolar plane OO′p
and epipolar line. The search for matches can be restricted to this line instead of
the whole image (Figure 12.2). In two-frame motion analysis on the other hand,
each camera may be internally calibrated, but the rigid transformation separating
the two camera coordinate systems is unknown. In this case, the epipolar geometry
obviously constrains the set of possible motions. The next sections explore several
variants of this situation.
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Figure 12.2. Epipolar constraint: given a calibrated stereo rig, the set of possible
matches for the point p is constrained to lie on the associated epipolar line l′.

12.1.2 The Calibrated Case

Here we assume that the intrinsic parameters of each camera are known, so p = p̂.

Clearly, the epipolar constraint implies that the three vectors
−→
Op,
−−→
O′p′, and

−−→
OO′

are coplanar. Equivalently, one of them must lie in the plane spanned by the other
two, or

−→
Op · [

−−→
OO′ ×

−−→
O′p′] = 0.

We can rewrite this coordinate-independent equation in the coordinate frame
associated to the first camera as

p · [t× (Rp′)], (12.1.1)

where p = (u, v, 1)T and p′ = (u′, v′, 1)T denote the homogenous image coordinate

vectors of p and p′, t is the coordinate vector of the translation
−−→
OO′ separating the

two coordinate systems, and R is the rotation matrix such that a free vector with
coordinates w′ in the second coordinate system has coordinates Rw′ in the first
one (in this case the two projection matrices are given in the coordinate system
attached to the first camera by ( Id 0 ) and (RT ,−RT t )).

Equation (12.1.1) can finally be rewritten as

pT Ep′ = 0, (12.1.2)
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where E = [t×]R, and [a×] denotes the skew-symmetric matrix such that [a×]x =
a×x is the cross-product of the vectors a and x. The matrix E is called the essential
matrix, and it was first introduced by Longuet-Higgins [1981]. Its nine coefficients
are only defined up to scale, and they can be parameterized by the three degrees
of freedom of the rotation matrix R and the two degrees of freedom defining the
direction of the translation vector t.

Note that Ep′ can be interpreted as the coordinate vector representing the epipo-
lar line associated with the point p′ in the first image: indeed, an image line l can
be defined by its equation au+ bv + c = 0, where (u, v) denote the coordinates of a
point on the line, (a, b) is the unit normal to the line, and −c is the (signed) distance
between the origin and l. Alternatively, we can define the line equation in terms
of the homogeneous coordinate vector p = (u, v, 1)T of a point on the line and the
vector l = (a, b, c)T by l · p = 0, in which case the constraint a2 + b2 = 1 is relaxed
since the equation holds independently of any scale change applied to l. In this con-
text, (12.1.2) expresses the fact that the point p lies on the epipolar line associated
with the vector Ep′. By symmetry, it is also clear that ETp is the coordinate vector
representing the epipolar line associated with p in the second image.

It is obvious that essential matrices are singular since t is parallel to the coordi-
nate vector e of the left epipole, so that ETe = −RT [t×]e = 0. Likewise, it is easy
to show that e′ is a zero eigenvector of E . As shown by Huang and Faugeras [1989],
essential matrices are in fact characterized by the fact that they are singular with
two equal non-zero singular values (see exercises).

12.1.3 Small Motions

Let us now turn our attention to infinitesimal displacements. We consider a moving
camera with translational velocity v and rotational velocity ω and rewrite (12.1.2)
for two frames separated by a small time interval δt. Let us denote by ṗ = (u̇, v̇, 0)T

the velocity of the point p, or motion field. Using the exponential representation of
rotations,1 we have (to first order):


t = δtv,
R = Id + δt [ω×],
p′ = p+ δt ṗ.

Substituting in (12.1.2) yields

pT [v×](Id + δt [ω×])(p+ δt ṗ) = 0,

and neglecting all terms of order two or greater in δt yields:

pT ([v×][ω×])p− (p× ṗ) · v = 0. (12.1.3)

1The matrix associated with the rotation whose axis is the unit vector a and whose angle is θ

can be shown to be equal to eθ[a×] def
=
∑+∞

i=0
1
i!
(θ[a×])i.
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Equation (12.1.3) is simply the instantaneous form of the Longuet-Higgins rela-
tion (12.1.2) which captures the epipolar geometry in the discrete case. Note that
in the case of pure translation we have ω = 0, thus (p× ṗ) · v = 0. In other words,
the three vectors p = −→op, ṗ and v must be coplanar. If e denotes the infinitesimal
epipole, or focus of expansion, i.e., the point where the line passing through the op-
tical center and parallel to the velocity vector v pierces the image plane, we obtain
the well known result that the motion field points toward the focus of expansion
under pure translational motion (Figure 12.3).
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Figure 12.3. Focus of expansion: under pure translation, the motion field at every point
in the image points toward the focus of expansion.

12.1.4 The Uncalibrated Case

The Longuet-Higgins relation holds for internally calibrated cameras, whose intrin-
sic parameters are known so that image positions can be expressed in normalized
coordinates. When these parameters are unknown (uncalibrated cameras), we can
write p = Kp̂ and p′ = K′p̂′, where K and K′ are 3 × 3 calibration matrices, and
p̂ and p̂′ are normalized image coordinate vectors. The Longuet-Higgins relation
holds for these vectors, and we obtain

pTFp′ = 0, (12.1.4)

where the matrix F = K−TEK′−1, called the fundamental matrix, is not, in general,
an essential matrix.2 It has again rank two, and the eigenvector of F (resp. FT )
corresponding to its zero eigenvalue is as before the position e′ (resp. e) of the
epipole. Note that Fp′ (resp. FTp) represents the epipolar line corresponding to
the point p′ (resp. p) in the first (resp. second) image.

2Small motions can also be handled in the uncalibrated setting. In particular, Viéville and
Faugeras [1995] have derived an equation similar to (12.1.3) that characterizes the motion field of
a camera with varying intrinsic parameters.
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The rank-two constraint means that the fundamental matrix only admits seven
independent parameters. Several choices of parameterization are possible, but the
most natural one is in terms of the coordinate vectors e = (α, β)T and e′ = (α′, β′)T

of the two epipoles, and of the so-called epipolar transformation that maps one set
of epipolar lines onto the other one. We will examine the properties of the epipolar
transformation in Chapter 15 in the context of structure from motion. For the time
being, let us just note (without proof) that this transformation is parameterized by
four numbers a, b, c, d, and that the fundamental matrix can be written as

F =


 b a −aβ − bα

−d −c cβ + dα
dβ′ − bα′ cβ′ − aα′ −cββ′ − dβ′α+ aβα′ + bαα′


 . (12.1.5)

12.1.5 Weak Calibration

As mentioned earlier, the essential matrix is defined up to scale by five indepen-
dent parameters. It is therefore possible (at least in principle), to calculate it by
writing (12.1.2) for five point correspondences. Likewise, the fundamental matrix
is defined by seven independent coefficients (the parameters a, b, c, d in (12.1.5) are
only defined up to scale) and can in principle be estimated from seven point corre-
spondences. Methods for estimating the essential and fundamental matrices from
a minimal number of parameters indeed exist (see [Faugeras, 1993] and Section
12.4), but they are far too involved to be described here. This section addresses
the simpler problem of estimating the epipolar geometry from a redundant set of
point correspondences between two images taken by cameras with unknown intrinsic
parameters, a process known as weak calibration.

Note that the epipolar constraint (12.1.4) is a linear equation in the nine coeffi-
cients of the fundamental matrix F :

(u, v, 1)

(
F11 F12 F13

F21 F22 F23

F31 F32 F33

)(
u′

v′

1

)
= 0⇔ (uu′, uv′, u, vu′, vv′, v, u′, v′, 1)




F11

F12

F13

F21

F22

F23

F31

F32

F33




= 0.

(12.1.6)

Since (12.1.6) is homogeneous in the coefficients of F , we can for example set
F33 = 1 and use eight point correspondences pi ↔ p′i (i = 1, .., 8) to set up an 8× 8
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system of non-homogeneous linear equations:




u1u
′
1 u1v

′
1 u1 v1u

′
1 v1v

′
1 v1 u′1 v′1

u2u
′
2 u2v

′
2 u2 v2u

′
2 v2v

′
2 v2 u′2 v′2

u3u
′
3 u3v

′
3 u3 v3u

′
3 v3v

′
3 v3 u′3 v′3

u4u
′
4 u4v

′
4 u4 v4u

′
4 v4v

′
4 v4 u′4 v′4

u5u
′
5 u5v

′
5 u5 v5u

′
5 v5v

′
5 v5 u′5 v′5

u6u
′
6 u6v

′
6 u6 v6u

′
6 v6v

′
6 v6 u′6 v′6

u7u
′
7 u7v

′
7 u7 v7u

′
7 v7v

′
7 v7 u′7 v′7

u8u
′
8 u8v

′
8 u8 v8u

′
8 v8v

′
8 v8 u′8 v′8







F11

F12

F13

F21

F22

F23

F31

F32




= −




1
1
1
1
1
1
1
1



,

which is sufficient for estimating the fundamental matrix. This is the eight-point
algorithm proposed by Longuet-Higgins [1981] in the case of calibrated cameras. It
will fail when the associated 8× 8 matrix is singular. As shown in [Faugeras, 1993]

and the exercises, this will only happen, however, when the eight points and the
two optical centers lie on a quadric surface. Fortunately, this is quite unlikely since
a quadric surface is completely determined by nine points, which means that there
is in general no quadric that passes through ten arbitrary points.

When n > 8 correspondences are available,F can be estimated using linear least
squares by minimizing

n∑
i=1

(pTi Fp
′
i)

2 (12.1.7)

with respect to the coefficients of F under the constraint that the vector formed by
these coefficients has unit norm.

Note that both the eight-point algorithm and its least-squares version ignore
the rank-two property of fundamental matrices.3 To enforce this constraint, Luong
et al. [1993; 1995] have proposed to use the matrix F output by the eight-point
algorithm as the basis for a two-step estimation process: first, use linear least
squares to compute the position of the epipoles e and e′ that minimize |FTe|2 and
|Fe′|2; second, substitute the coordinates of these points in (12.1.5): this yields a
linear parameterization of the fundamental matrix by the coefficients of the epipolar
transformation, which can now be estimated by minimizing (12.1.7) via linear least
squares.

The least-squares version of the eight-point algorithm minimizes the mean-
squared algebraic distance associated with the epipolar constraint, i.e., the mean-
squared value of e(p,p′) = pTFp′ calculated over all point correspondences. This
error function admits a geometric interpretation: in particular, we have

e(p,p′) = λd(p,Fp′) = λ′d(p′,FTp),

where d(p, l) denotes the (signed) Euclidean distance between the point p and the
line l, and Fp and FTp′ are the epipolar lines associated with p and p′. The

3The original algorithm proposed by Longuet-Higgins ignores the fact that essential matrices
have rank two and two equal singular values as well.
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scale factors λ and λ′ are simply the norms of the vectors formed by the first two
components of Fp′ and FTp, and their dependence on the pair of data points
observed may bias the estimation process.

It is of course possible to get rid of the scale factors and directly minimize the
mean-squared distance between the image points and the corresponding epipolar
lines, i.e.,

n∑
i=1

[d2(pi,Fp
′
i) + d2(p′i,F

Tpi)].

This is a non-linear problem, regardless of the parameterization chosen for the
fundamental matrix, but the minimization can be initialized with the result of the
eight-point algorithm. This method was first proposed by Luong et al. [1993], and
it has been shown to provide results vastly superior to those obtained using the
eight-point method.

Recently, Hartley [1995] has proposed a normalized eight-point algorithm and
has also reported excellent results. His approach is based on the observation that
the poor performance of the plain eight-point method is due, for the most part, to
poor numerical conditioning. Thus Hartley has proposed to translate and scale the
data so it is centered at the origin and the average distance to the origin is

√
2 pixel.

This dramatically improves the conditioning of the linear least-squares estimation
process. Accordingly, his method is divided into four steps: first, transform the
image coordinates using appropriate translation and scaling operators T : pi → p̃i
and T ′ : p′i → p̃′i. Second, use linear least squares to compute the matrix F̃
minimizing

n∑
i=1

(p̃Ti F̃ p̃
′
i)

2.

Third, enforce the rank-two constraint; this can be done using the two-step method
of Luong et al. described earlier, but Hartley uses instead a technique, suggested by
Tsai and Huang [1984] in the calibrated case, which constructs the singular value
decomposition F̃ = USVT of F̃ . Here, S = diag(r, s, t) is a diagonal 3 × 3 matrix
with entries r ≥ s ≥ t, and U ,V are orthogonal 3 × 3 matrices.4 The rank-two
matrix F̄ minimizing the Frobenius norm of F̃ − F̄ is simply F̄ = Udiag(r, s, 0)VT

[Tsai and Huang, 1984]. Fourth, set F = T T F̄T ′. This is the final estimate of the
fundamental matrix.

Figure 12.4 shows weak calibration experiments using as input data a set of 37
point correspondences between two images of a toy house. The data points are
shown in the figure as small discs, and the recovered epipolar lines are shown as
short line segments. The top of the figure shows the output of the least-squares
version of the plain eight-point algorithm, and the bottom part of the figure shows
the results obtained using Hartley’s variant of this method. As expected, the results
are much better in the second case, and in fact extremely close to those obtained
using the distance minimization criterion of Luong et al. [1993; 1995].

4Singular value decomposition will be discussed in detail in Chapter 14.
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(a)

(b)
Linear Least Squares [Hartley, 1995] [Luong et al., 1993]

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel

Figure 12.4. Weak calibration experiments using 37 point correspondences between two
images of a toy house. The figure shows the epipolar lines found by (a) the least-squares
version of the 8-point algorithm, and (b) the “normalized” variant of this method proposed
by Hartley [1995]. Note for example the much larger error in (a) for the feature point close
to the bottom of the mug. Quantitative comparisons are given in the table, where the
average distances between the data points and corresponding epipolar lines are shown for
both techniques as well as the non-linear distance minimization algorithm of Luong et
al. [1993].

12.2 Three Views

Let us now go back to the calibrated case where p = p̂ as we study the geometric
constraints associated with three views of the same scene. Consider three perspec-
tive cameras observing the same point P , whose images are denoted by p1, p2 and
p3 (Figure 12.5). The optical centers O1, O2 and O3 of the cameras define a trifocal
plane T that intersects their retinas along three trifocal lines t1, t2 and t3. Each
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one of these lines passes through the associated epipoles, e.g., the line t2 associated
with the second camera passes through the projections e12 and e32 of the optical
centers of the two other cameras.
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Figure 12.5. Trinocular epipolar geometry.

Each pair of cameras defines an epipolar constraint, i.e.,

pT1 E12p2 = 0,
pT2 E23p3 = 0,
pT3 E31p1 = 0,

(12.2.1)

where Eij denotes the essential matrix associated with the image pairs i↔ j. These
three constraints are not independent since we must have eT31E12e32 = e

T
12E23e13 =

eT23E31e21 = 0 (to see why, consider for example the epipoles e31 and e32: they are
the first and second images of the optical center O3 of the third camera, and are
therefore in epipolar correspondence).

Any two of the equations in (12.2.1) are, on the other hand, independent. In
particular, when the essential matrices are known, it is possible to predict the
position of the point p1 from the positions of the two corresponding points p2 and
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p3: indeed, the first and third constraints in (12.2.1) form a system of two linear
equations in the two unknown coordinates of p1. Geometrically, p1 is found as the
intersection of the epipolar lines associated with p2 and p3 (Figure 12.5). Thus the
trinocular epipolar geometry offers a solution to the problem of transfer mentioned
in the introduction.

12.2.1 Trifocal Geometry

A second set of constraints can be obtained by considering three images of a line
instead of a point: as shown in Chapter 5, the set of points that project onto an
image line is the plane that contains the line and the pinhole. We can characterize
this plane as follows: ifM denotes a 3×4 projection matrix, then a point P projects
onto p when zp =MP , or

lTMP = 0, (12.2.2)

where P = (x, y, z, 1)T is the 4-vector of homogeneous coordinates of P . Equation
(12.2.2) is of course the equation of the plane L that contains both the optical center
O of the camera and the line l, and L =MT l is the coordinate vector of this plane.

Two images l1 and l2 of the same line do not constrain the relative position
and orientation of the associated cameras since the corresponding planes L1 and L2

always intersect (possibly at infinity). Let us now consider three images li, l2 and l3
of the same line l and denote by L1, L2 and L3 the associated planes (Figure 12.6).
The intersection of these planes forms a line instead of being reduced to a point in
the generic case. Algebraically, this means that the system of three equations in
three unknowns 

LT1LT2
LT3


P = 0

must be degenerate, or, equivalently, the rank of the 3× 4 matrix

L
def
=


 lT1M1

lT2M2

lT3M3




must be two, which in turn implies that the determinants of all its 3×3 minors must
be zero. These determinants are clearly trilinear combinations of the coordinates
vectors l1, l2 and l3. As shown below, only two of the four determinants are
independent.

12.2.2 The Calibrated Case

To obtain an explicit formula for the trilinear constraints, we pick the coordinate
system attached to the first camera as the world reference frame, which allows us
to write the projection matrices as

M1 = ( Id 0 ) , M2 = (R2 t2 ) and M3 = (R3 t3 ) ,
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Figure 12.6. Three images of a line define it as the intersection of three planes in the
same pencil.

and to rewrite L as

L =


 lT1 0
lT2R2 lT2 t2
lT3R3 lT3 t3


 . (12.2.3)

As shown in the exercises, three of the minor determinants can be written to-
gether as

l1 ×


 lT2 G1

1l3
lT2 G

2
1l3

lT2 G
3
1l3


 = 0, (12.2.4)

where

Gi1 = t2R
iT
3 −R

i
2t
T
3 for i = 1, 2, 3, (12.2.5)

and Ri
2 and Ri

3 (i = 1, 2, 3) denote the columns of R2 and R3.
The fourth determinant is equal to |l1 R2l2 R3l3|, and it is zero when the nor-

mals to the plane L1, L2 and L3 are coplanar. The corresponding equation can be
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written as a linear combination of the three equations in (12.2.4) (see exercises).
Only two of those are linearly independent of course.

Equation (12.2.4) can finally be rewritten as

l1 ≈


 lT2 G1

1 l3
lT2 G

2
1 l3

lT2 G
3
1 l3


 (12.2.6)

where we use a ≈ b to denote that a and b are equal except for an unknown scale
factor.

The three 3×3 matrices Gi1 define the 3×3×3 trifocal tensor with 27 coefficients
(or 26 up to scale). (A tensor is the multi-dimensional array of coefficients associated
with a multilinear form, in the same way that matrices are associated with bilinear
forms.)

Since O1 is the origin of the coordinate system in which all projection equations
are expressed, the vectors t2 and t3 can be interpreted as the homogeneous image
coordinates of the epipoles e12 and e13. In particular it follows from (12.2.5) that
lT2 G

i
1l3 = 0 for any pair of matching epipolar lines l2 and l3.
The trifocal tensor also constrains the positions of three corresponding points.

Indeed, suppose that P is a point on l. Its first image lies on l1, so p
T
1 l1 = 0 (Figure

12.7). In particular,

pT1


 lT2 G1

1 l3
lT2 G

2
1 l3

lT2 G
3
1 l3


 = 0. (12.2.7)

Given three point correspondences p1 ↔ p2 ↔ p3, we obtain four independent
constraints by rewriting (12.2.7) for independent pairs of lines passing through p2

an p3, e.g., l
′
i = (1, 0,−ui) and l

′′
i = (0, 1,−vi) (i = 2, 3). These constraints are

trilinear in the coordinates of the points p1, p2 and p3.

12.2.3 The Uncalibrated Case

We can still derive trilinear constraints in the image line coordinates when the
intrinsic parameters of the three cameras are unknown. Since in this case p = Kp̂,
and since the image line associated with the vector l is defined by lTp = 0, we
obtain immediately l = K−T l̂, or equivalently l̂ = KT l.

In particular, (12.2.3) holds when pi = p̂i and li = l̂i. In the general case we
have

L =


 lT1K1 0
lT2K2R2 lT2K2t2
lT3K3R3 lT3K3t3


 ,

and

Rank(L) = 2⇐⇒ Rank(L

(
K−1

1 0
0 1

)
) = Rank


 lT1 0
lT2A2 lT2 a2

lT3A3 lT3 a3


 = 2,
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Figure 12.7. Given three images p1, p2 and p3 of the same point P , and two arbitrary
images l2 and l3 passing through the points p2 and p3, the ray passing through O1 and
p1 must intersect the line where the planes L2 and L3 projecting onto l2 and l3 meet in
space.

where Ai
def
= KiRiK

−1
1 and ai

def
= Kiti for i = 2, 3. Note that the projection matrices

associated with our three cameras are now M1 = (K1 0 ), M2 = (A2K1 a2 ),
and M3 = (A3K1 a3 ). In particular a2 and a3 can still be interpreted as the
homogeneous image coordinates of the epipoles e12 and e13, and the trilinear con-
straints (12.2.6) and (12.2.7) still hold when, this time,

Gi1 = a2A
iT
3 −A

i
2a

T
3 ,

where Ai
2 and A

i
3 (i = 1, 2, 3) denote the columns of A2 and A3. As before, we will

have lT2 G
i
1l3 = 0 for any pair of matching epipolar lines l2 and l3.

12.2.4 Estimation of the Trifocal Tensor

We now address the problem of estimating the trifocal tensor from point and line
correspondences established across triples of pictures. The equations (12.2.5) defin-
ing the tensor are linear in its coefficients and depend only on image measurements.
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As in the case of weak calibration, we can therefore use linear methods to estimate
these 26 parameters. Each triple of matching points provides four independent
linear equations, and every triple of matching lines provides two additional linear
constraints. Thus the tensor coefficients can be computed from p points and l lines
granted that 2p+ l ≥ 13. For example, 7 triples of points or 13 triples of lines will
do the trick, as will 3 triples of points and 7 triples of lines, etc.

Once the tensor has been estimated, it can be used to predict the position
of a point in one image from its positions in the other two. As noted before,
the epipolar constraints associated with the camera pairs 1 ↔ 2 and 1 ↔ 3 can
also be used to perform this task. Figure 12.8 shows experimental results using
point correspondences found in three images of a sports shoe [Shashua, 1995]. It
compares the results obtained from the fundamental matrices estimated by the
method of Luong et al. [1993] (Figure 12.8(a)) and by a different weak-calibration
technique that takes advantage of the coplanarity of correspondences lying in the
ground plane supporting the shoe (see [Shashua, 1995] and Figure 12.8(b)) with
the results obtained using the trifocal tensor estimated from a minimal set of seven
points (Figure 12.8(c)) and a redundant set of ten correspondences (Figure 12.8(d)).
In this example, the trifocal tensor clearly gives better results than the fundamental
matrices.

As in the case of weak calibration, it is possible to improve the numerical stability
of the tensor estimation process by normalizing the image coordinates so the data
points are centered at the origin with an average distance from the origin of

√
2

pixel. See [Hartley, 1995] for details.
The methods outlined so far ignore the fact that the 26 parameters of the trifocal

tensor are not independent. This should not come as a surprise: the essential ma-
trix only has five independent coefficients (the associated rotation and translation
parameters, the latter being only defined up to scale) and that the fundamental
matrix only has seven. Likewise, the parameters defining the trifocal tensor sat-
isfy a number of constraints, including the aforementioned equations lT2 G

i
1l3 = 0

(i = 1, 2, 3) satisfied by any pair of matching epipolar lines l2 and l3. It is also
easy to show that the matrices Gi1 are singular, a property we will come back to in
Chapter 15. Faugeras and Mourrain [1995] have shown that the coefficients of the
trifocal tensor of an uncalibrated trinocular stereo rig satisfy 8 independent con-
straints, reducing the total number of independent parameters to 18. The method
described in [Hartley, 1995] enforces these constraints a posteriori by recovering the
epipoles e12 and e13 (or equivalently the vectors t2 and t3 in (12.2.5)) from the
linearly-estimated trifocal tensor, then recovering in a linear fashion a set of tensor
coefficients that satisfy the constraints.

12.3 More Views

What about four views? In this section we follow Faugeras and Mourrain [1995] and
first note that we can eliminate the depth of the observed point in the projection
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(a)

(b) (c)

(d) (e)
Transfer Using Fundamental Matrices

Method: Average Distance:
Ground Plane (b) 7.70 pixels

[Luong et al., 1993] (c) 9.58 pixels

Transfer Using the Trifocal Tensor

Method: Average Distance:
7 points (d) 0.98 pixel

10 points (e) 0.44 pixel

Figure 12.8. Transfer experiments: (a) input images; (b)-(c) transfer using the funda-
mental matrix, estimated in (a) using correspondences on the ground floor and in (b) using
the non-linear method of [Luong et al., 1993]; (d)-(e) transfer using the trifocal tensor es-
timated in (d) from seven points, and in (e) using least squares from ten points. Reprinted
from [Shashua, 1995], Figures 2–4. Quantitative comparisons are given in the table, where
the average distances between the data points and the transfered ones are shown for each
method. The input features are indicated by white squares and the reprojected ones are
are indicated by white crosses.
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equation by writing

zp =MP ⇐⇒ p × (MP ) = ([p×]M)P = 0. (12.3.1)

Of course, only two of the scalar equations associated with this vector equation
are independent. Choosing (for example) the first and second of these equations
allows us to rewrite (12.3.1) as(

uM3 −M1

vM3 −M2

)
P = 0, (12.3.2)

whereMi denotes row number i of the matrixM.
Suppose now that we have four views, with associated projection matricesMi

(i = 1, 2, 3, 4). Writing (12.3.2) for each one of these yields

QP = 0, where Q
def
=




u1M3
1 −M

1
1

v1M3
1 −M

2
1

u2M3
2 −M

1
2

v2M3
2 −M

2
2

u3M3
3 −M

1
3

v3M3
3 −M

2
3

u4M3
4 −M

1
4

v4M3
4 −M

2
4



. (12.3.3)

Equation (12.3.3) is a system of eight homogeneous equations in four unknowns
that admits a non-trivial solution. It follows that the rank of the corresponding
8 × 4 matrix Q is at most 3, or, equivalently, all its 4 × 4 minors must have zero
determinants. Geometrically, each pair of equations in (12.3.3) represents the ray
Ri (i = 1, 2, 3, 4) associated with the image point pi, and Q must have rank 3 for
these rays to intersect at a point P (Figure 12.9).

The matrix Q has three kinds of 4× 4 minors:

1. Those that involve two rows from one projection matrix, and two rows from
another one. The equations associated with the six minors of this type include,
for example,5

Det



u2M3

1 −M
1
1

v2M3
1 −M

2
1

u3M3
2 −M

1
2

v3M3
2 −M

2
2


 = 0. (12.3.4)

These determinants yield bilinear constraints on the position of the associated
image points. It is easy to show (see exercises) that the corresponding equa-
tions reduce to the epipolar constraints (12.1.2) when we takeM1 = ( Id 0 )
andM2 = (RT −RT t ).

5General formulas can be given as well by using for example (u1, u2) instead of (u, v) and
playing around with indices and tensorial notation. We will abstain from this worthy exercise
here.
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Figure 12.9. Four images p1, p2, p3 and p4 of the same point P define this point as the
intersection of the corresponding rays Ri (i = 1, 2, 3, 4).

2. The second type of minors involves two rows from one projection matrix, and
one row from each of two other matrices. There are 48 of those, and the
associated equations include, for example,

Det



u1M3

1 −M
1
1

v1M3
1 −M

2
1

u2M3
2 −M

1
2

v3M3
3 −M

2
3


 = 0. (12.3.5)

These minors yield trilinear constraints on the corresponding image positions.
It is easy to show (see exercises) that the corresponding equations reduce
to the trifocal constraints (12.2.7) introduced in the previous section when
we takeM1 = ( Id 0 ). In particular, they can be expressed in terms of the
matrices Gi1 (i = 1, 2, 3). Note that this completes the geometric interpretation
of the trifocal constraints, that express here the fact that the rays associated
with three images of the same point must intersect in space.
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3. The last type of determinant involves one row of each matrix. The equations
associated with the 16 minors of this form include, for example,

Det



v1M3

1 −M
2
1

u2M3
2 −M

1
2

v3M3
3 −M

2
3

v4M3
4 −M

2
4


 = 0. (12.3.6)

These equations yield quadrilinear constraints on the position of the points pi
(i = 1, 2, 3, 4). Geometrically, each row of the matrix Q is associated with an
image line or equivalently with a plane passing through the optical center of
the corresponding camera. Thus each quadrilinearity expresses the fact that
the four associated planes intersect in a point (instead of not intersecting at
all in the generic case).

Let us focus from now on the the quadrilinear equations. Developing determi-
nants such as (12.3.6) with respect to the image coordinates reveals immediately
that the coefficients of the quadrilinear constraints can be written as

εijklDet



Mi

1

Mj
2

Mk
3

Ml
4


 , (12.3.7)

where εijkl = ∓1 and i, j, k and l are indices between 1 and 4 (see exercises). These
coefficients determine the quadrifocal tensor [Triggs, 1995].

Like its trifocal cousin, this tensor can be interpreted geometrically using both
points and lines. In particular, consider four pictures pi (i = 1, 2, 3, 4) of a point
P and four arbitrary image lines li passing through these points. The four planes
Li (i = 1, 2, 3, 4) formed by the preimages of the lines must intersect in P , which
implies in turn that the 4× 4 matrix

L
def
=



lT1M1

lT2M2

lT3M3

lT4M4




must have rank 3, and, in particular, that its determinant must be zero. This
obviously provides a quadrilinear constraint on the coefficients of the four lines li
(i = 1, 2, 3, 4). In addition, since each row LTi = lTi Mi of L is a linear combination
of the rows of the associated matrix Mi, the coefficients of the quadrilinearities
obtained by developing Det(L) with respect to the coordinates of the lines li are
simply the coefficients of the quadrifocal tensor as defined by (12.3.7).

Finally, note since Det(L) is linear in the coordinates of l1, the vanishing of this
determinant can be written as l1 ·q(l2, l3, l4) = 0, where q is a (trilinear) function of
the coordinates of the lines li (i = 2, 3, 4). Since this relationship holds for any line
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l1 passing through p1 it follows that p1 ≈ q(l2, l3, l4). Geometrically, this means
that the ray passing through O1 and p1 must also pass through the intersection of
the planes formed by the preimages of l2, l3 and l4 (Figure 12.10). Algebraically,
this means that, given the quadrifocal tensor and arbitrary lines passing through
three images of a point, we can predict the position of this point in a fourth image.
This provides yet another method for transfer.

2L 2

3
p

3l

2
p

1
p l2

3
O

3

1

21 OO

L3

4l4

4
p

4L

P

4
O

Figure 12.10. Given four images p1, p2, p3 and p4 of some point P and three arbitrary
image lines l2, l3 and l4 passing through the points p2, p3 and p4, the ray passing through
O1 and p1 must also pass through the point where the three planes L2, L3 and L4 formed
by the preimages of these lines intersect.

Note that the quadrifocal constraints are valid in both the calibrated and un-
calibrated cases since we have made no assumption on the form of the matrices
Mi. The quadrifocal tensor is defined by 81 coefficients (or 80 up to scale), but
these coefficients satisfy 51 independent constraints, reducing the total number of
independent parameters to 29 [Heyden, 1998; Hartley, 1998]. It can also be shown
that, although each quadruple of images of the same point yields 16 independent
constraints like (12.3.6) on the 80 tensor coefficients, there exists a linear depen-
dency between the 32 equations associated with each pair of points [Heyden, 1998].
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Thus six point correspondences are necessary to estimate the quadrifocal tensor in a
linear fashion. Algorithms for performing this task and enforcing the 51 constraints
associated with actual quadrifocal tensors can be found in [Hartley, 1998].

Finally, Faugeras and Mourrain [1995] have shown that the quadrilinear tensor
is algebraically dependent on the associated essential/fundamental matrices and
trifocal tensor, and thus does not add independent new constraints. Likewise, it
can be shown that additional views do not add independent constraints either.

12.4 Notes

The essential matrix as an algebraic form of the epipolar constraint was discovered
by Longuet-Higgins [1981], and its properties have been elucidated by Huang and
Faugeras [1989]. The fundamental matrix was introduced by Luong and Fauge-
ras [1992; 1995]. We will come back to the properties of the fundamental matrix
and of the epipolar transformation in Chapter 15, when we adress the problem of
recovering the structure of a scene and the motion of a camera from a sequence of
perspective images.

The trilinear constraints associated with three views of a line were introduced in-
dependently by Spektakis and Aloimonos [1990] and Weng, Huang and Ahuja [1992]

in the context of motion analysis for internally calibrated cameras. They were ex-
tended by Shashua [1995] and Hartley [1997] to the uncalibrated case. The quadri-
focal tensor was introduced by Triggs [1995]. Geometric studies can by found in
Faugeras andMourrain [1995], Faugeras and Papadopoulo [1997] and Heyden [1998].

We mentioned in the introduction that photogrammetry is concerned with the
extraction of quantitative information from multiple pictures. In this context, binoc-
ular and trinocular geometric constraints are regarded as the source of condition
equations that determine the intrinsic and extrinsic parameters (called interior and
exterior orientation parameters in photogrammetry) of a stereo pair or triple. In
particular, the Longuet-Higgins relation appears, in a slightly disguised form, as the
coplanarity condition equation, and trinocular constraints yield scale-restraint con-
dition equations that take calibration and image measurement errors into account
[Thompson et al., 1966, Chapter X]: in this case, the rays associated with three
images of the same point are not guaranteed to intersect anymore (Figure 12.11).

The setup is as follows: if the rays R1 and Ri (i = 2, 3) associated with the image
points p1 and pi do not intersect, the minimum distance between them is reached
at the points P1 and Pi such that the line joining these points is perpendicular to
both R1 and Ri. Algebraically, this can be written as

−−−→
O1P1 = z

i
1
−−−→
O1p1 =

−−−→
O1Oi + zi

−−→
Oipi + λi(

−−−→
O1p1 ×

−−→
Oipi) for i = 2, 3. (12.4.1)

Assuming that the cameras are internally calibrated so the projection matrices
associated with the second and third cameras are (RT2 −RT2 t2 ) and (R

T
3 −RT3 t3 ),

(12.4.1) can be rewritten in the coordinate system attached to the first camera as

zi1p1 = ti + ziRipi + λi(p1 ×Ripi) for i = 2, 3. (12.4.2)
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Figure 12.11. Trinocular constraints in the presence of calibration or measurement
errors: the rays R1, R2 and R3 may not intersect.

Note that a similar equation could be written as well for completely uncalibrated
cameras by including terms depending on the (unknown) intrinsic parameters. In
either case, (12.4.2) can be used to calculate the unknowns zi, λi and z

i
1 in terms of

p1, pi, and the projection matrices associated with the cameras (see exercises). The
scale-restraint condition is then written as z2

1 = z3
1 . Although it is more complex

than the trifocal constraint (in particular, it is not trilinear in the coordinates of
the points p1, p2 and p3), this condition does not involve the coordinates of the
observed point, and it can be used (in principle) to estimate the trifocal geometry
directly from image data. A potential advantage is that the error function z2

1 − z
3
1

has a clear geometric meaning: it is the difference between the estimates of the
depth of P obtained using the pairs of cameras 1 ↔ 2 and 1 ↔ 3. It would be
interesting to further investigate the relationship between the trifocal tensor and
the scale-constraint condition, as well as its practical application to the estimation
of the trifocal geometry.
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12.5 Assignments

Exercises

1. Show that one of the singular values of an essential matrix is 0 and the other
two are equal. (Huang and Faugeras [1989] have shown that the converse is
also true, i.e., any 3 × 3 matrix with one singular value equal to 0 and the
other two equal to each other is an essential matrix.)

Hint: the singular values of E are the eigenvalues of EET .

Solution: We have E = [t×]R, thus EET = [t×][t×]
T = [t×]

T [t×]. If a is an
eigenvector of EET associated with the eigenvalue λ then, for any vector b

λb · a = bT ([t×]
T [t×]a) = (t× b) · (t× a).

Choosing a = b = t shows that λ = 0 is an eigenvalue of EET . Choosing
b = t shows that if λ �= 0 then a is orthogonal to t. But then choosing a = b
shows that

λ|a|2 = |t× a|2 = |t|2|a|2.

It follows that all non-zero singular values of E must be equal. Note that the
singular values of E cannot all be zero since this matrix has rank 2.

2. The infinitesimal epipolar constraint (12.1.3) was derived by assuming that
the observed scene was static and the camera was moving. Show that when
the camera is fixed and the scene is moving with translational velocity v and
rotational velocity ω, the epipolar constraint can be rewritten as

pT ([v×][ω×])p+ (p× ṗ) · v = 0.

Note that this equation is now the sum of the two terms appearing in (12.1.3)
instead of their difference.

Hint: If R and t denote the rotation matrix and translation vectors appearing
in the definition of the essential matrix for a moving camera, show that the
object displacement that yields the same motion field for a static camera is
given by the rotation matrix RT and the translation vector −RT t.

3. Show that when the 8× 8 matrix associated with the eight-point algorithm is
singular, the eight points and the two optical centers lie on a quadric surface
[Faugeras, 1993].

Hint: Use the fact that when a matrix is singular, there exists some non-trivial
linear combination of its columns that is equal to zero. Also take advantage of
the fact that the matrices representing the two projections in the coordinate
system of the first camera are in this case ( Id 0 ) and (RT ,−RT t ).
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4. Show that three of the determinants of the 3× 3 minors of

L =


 lT1 0
lT2R2 lT2 t2
lT3R3 lT3 t3


 .

can be written as

l1 ×


 lT2 G1

1 l3
lT2 G

2
1 l3

lT2 G
3
1 l3


 = 0.

Show that the fourth determinant can be written as a linear combination of
these.

5. Show that (12.3.4) reduces to (12.1.2) when M1 = ( Id 0 ) and M2 =
(RT −RT t ).

6. Show that (12.3.5) reduces to (12.2.7) whenM1 = ( Id 0 ).

7. Develop (12.3.6) with respect to the image coordinates and verify that the
coefficients can indeed be written in the form (12.3.7).

8. Use (12.4.2) to calculate the unknowns zi, λi and z
i
1 in terms of p1, pi, Ri

and ti (i = 2, 3). Show that the value of λi is directly related to the epipolar
constraint and characterize the degree of the dependency of z2

1 − z
3
1 on the

data points.

Programming Assignments

Note: the assignments below require routines for solving square and overdetermined
linear systems. An extensive set of such routines is available in MATLAB as well as
in public-domain libraries such as LINPACK and LAPACK that can be downloaded
from the Netlib repository (http://www.netlib.org/). Data for these assignments
will be available in the CD companion to this book.

1. Implement the 8-point algorithm for weak calibration from binocular point
correspondences.

2. Implement the linear least-squares version of that algorithm with and without
Hartley’s pre-conditioning step.

3. Implement an algorithm for estimating the trifocal tensor from point corre-
spondences.

4. Implement an algorithm for estimating the trifocal tensor from line correspon-
dences.


