
11

CSE590ISCSE590IS
Making servers go fastMaking servers go fast

http://www.http://www.cscs..washingtonwashington..eduedu/education/courses/cse590is/education/courses/cse590is

Steve Gribble
Department of Computer Science and Engineering

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

AdministriviaAdministrivia

•• next on the hook: Paulnext on the hook: Paul
– coming up soon: Krishna, Sushant

•• some dates to take note ofsome dates to take note of
– Feb 17: holiday

– Feb 21: midterm out

– Feb 28: midterm due

22

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

How to optimize performanceHow to optimize performance

•• step 1: find the bottleneck of the systemstep 1: find the bottleneck of the system
– may be tough to find

• obscured by parallelism/pipelining, multiple layers of abstraction

– may depend on workload
• scale, concurrency, popularity distributions

– may change over time
• hardware trends, workload trends, platform software

•• step 2: widen the bottleneckstep 2: widen the bottleneck
– add more resources

– make better use of resources: pipeline, parallelize, optimize algorithms

•• repeat as necessaryrepeat as necessary
– but don’t forget to stop when you’re done…

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Single machine web serverSingle machine web server

•• There are many potential bottlenecks:There are many potential bottlenecks:

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware

33

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Single machine web serverSingle machine web server

•• There are many potential bottlenecks:There are many potential bottlenecks:

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Packet processing pathPacket processing path

•• 1400 byte packet arrival costs on 1.7 GHz P4 / Linux:1400 byte packet arrival costs on 1.7 GHz P4 / Linux:
– device driver: 12 microseconds

– TCP stack: 10 microseconds

– user/kernel crossing: ~1 microsecond

– extra copies: ~0.3 microseconds each

•• max throughput: max throughput:
– ~550 Mb/s = 10,000 web requests/s = 1/5 of Yahoo

– but now CPU is 100% utilized, no cycles left for apps

•• probably not the bottleneck for web servers…probably not the bottleneck for web servers…

44

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Packet processing to the extremePacket processing to the extreme

•• Two kinds of overhead: perTwo kinds of overhead: per--byte, perbyte, per--packetpacket

– per-byte: cost scales with size of packet
• DMA between NIC/host

• memory copies within host (e.g., copy across kernel boundary)
• data manipulation (e.g., checksums)

– solution? zero-copy networking, user-level networking, smart NIC
• get OS out of way, DMA from device to user-level

– per-packet: cost scales with # of packets
• buffer allocation/deallocation

• interrupt processing overhead
• data structure manipulation (Mogul & Banga)

– solution? optimized networking stacks, OS architectures

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Socket abstractionsSocket abstractions

•• pitfall: benchmarking on a LAN instead of on a WANpitfall: benchmarking on a LAN instead of on a WAN
– WAN has 1000x higher latency

• # concurrent connections = throughput x latency

• amount of live state proportional to # concurrent connections
• bandwidth-delay product is much higher

•• scaling to large # of concurrent connectionsscaling to large # of concurrent connections
– Mogul & Banga paper: don’t use linear data structures!

• fancy select(), socket allocator: still matters today

•• handling large handling large BxDBxD productsproducts
– provision socket buffers correctly

• only matters for high throughput connections (video?)

• not an issue for most servers: transfers are short, client BW is limited
• running out of 32 bit sequence number space for TCP

55

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Concurrency managementConcurrency management

•• a religious topic: processes vs. threads vs. eventsa religious topic: processes vs. threads vs. events
– thread fanatics

• much easier to program

• parallelism easier to find and exploit (SMPs)

• performance is perfectly fine, thank you

– event fanatics
• much easier to program

• scheduling is easier to control and exploit

– not hidden in thread scheduler, or lock structure

• performance, scaling properties are much better than threads

– process people
• who cares about this stuff, get a life!

•• my take on it (for servers)my take on it (for servers)
– threads/processes work great, and this isn’t the real bottleneck in most

systems, so let’s move on

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Single machine web serverSingle machine web server

•• There are many potential bottlenecks:There are many potential bottlenecks:

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware

66

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Pipeline servers: L1/L2 cachePipeline servers: L1/L2 cache

•• claim: instructionsclaim: instructions--perper--cycle (IPC) is low on serverscycle (IPC) is low on servers
– blame threads for hurting I-cache performance

• thread scheduler jumps between unrelated basic blocks

– instead, break server into computational “stages”
• execute all tasks in one stage before moving on to next

•• does it work?does it work?
– yes, but performance becomes very fragile

• OS gets in the way

• d-cache matters too
• working set size of stage must be perfectly sized

– payoff in practice is minimal
• 5-10% improvement (1 month of moore’s law)

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Memory managementMemory management

•• cache and VM performance might matter toocache and VM performance might matter too
– memory allocator research

• make more efficient use of physical memory to avoid VM pressure

• parallelize to avoid becoming a bottleneck on SMPs
• avoid artificial conflicts in caches due to integral page size layout

– stack layout matters too

•• my take on this stuffmy take on this stuff
– we’ve been successful at hiding all of this machinery

• but, not at all easy for app writers to optimize for this, or worse, to decide if
optimizing for this matters…

– thankfully, in most cases, I/O or processor is the bottleneck
• cheap to overprovision memory to help make sure of this

77

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

DisksDisks

•• if you move the disk arm, it will be your bottleneckif you move the disk arm, it will be your bottleneck
– seek: 5 ms

• 10 million cycles, or 100 Mb/s of network throughput

• seek bandwidth: 1 MB/s per disk

•• so what can we do?so what can we do?

– buy lots of memory to cache disk

– avoid writes, and if use them, use logging to go sequential

– avoid seeks on read, but if must, read >2MB after each seek

• clever layout

– coalesce reads from multiple connections by delaying

– ultimately, buy lots of disks (clusters, disk arrays)

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

HigherHigher--level issueslevel issues

•• overload managementoverload management
– if offered load exceeds your capacity, what happens?

– need to reject load early, otherwise you’ll livelock

• admission control outside server (L4 switch)

• switch to polling (instead of interrupts) at high load

• lazy-receiver-processing: reject early in TCP stack, interrupt costs
accounted to destination process

•• differential qualitydifferential quality--ofof--serviceservice

– if approaching capacity, service “high priority” connections

• early demultiplexing so can associate packets with consumers

88

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Latency vs. throughputLatency vs. throughput

•• HarcholHarchol--BalterBalter: optimizing the order of request handling: optimizing the order of request handling
– network stacks and servers are “fair”

• each connection is processed at an equal rate

– not optimal if we want to minimize average latency
• or minimize amount of live state in a server

– instead: process connections with SRJF
• doesn’t matter under light load
• matters a lot as approach capacity (10x latency at 90% load)

•• problemsproblems
– how do you estimate “length” of connection?

• size of document x BW to end host

– starvation of long jobs: why not just reject them?

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Protocol optimizationProtocol optimization

•• HTTP is a really horrible protocolHTTP is a really horrible protocol
– many small connections

• overhead and latency of establishing TCP connection is bad

• persistent connections helped

– chatty, untokenized wireline format

• typically 500-700 bytes per object in headers

• irrelevant for wired servers/clients

• matters more for wireless

– pay-per-byte, content is much smaller

– WAP fiasco

99

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

What about dynamic content?What about dynamic content?

•• most optimization papers deal with static web pagesmost optimization papers deal with static web pages
– but increasing fraction of content is dynamically generated

•• what can we do?what can we do?
– make CGI frameworks faster (“fast-CGI”)

– make app logic faster

• hard to generalize

– punt and throw money at it (clusters)

– offload costs to the client

• edge-side includes (cache fragments, reassemble at clients)

• push applets/data all the way to clients

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

ClustersClusters

•• increase performance by replicating bottleneck resourceincrease performance by replicating bottleneck resource

•• introduces new issuesintroduces new issues
– load-balancing: avoid any replica from becoming bottleneck

• how up-to-date must load information be?

• Mitzenmacher:

– stale information is good enough

– real job is to avoid worst-case, rather than get to best-case

– sample two or three, pick best

– distributing working set rather than replicating it

• LARD: partition working set

– aggregate memory/disk scales with # of nodes

1010

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Discussion topicsDiscussion topics

•• assume that server/cluster performance issues are assume that server/cluster performance issues are
solved; what remains?solved; what remains?

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

HotspotsHotspots

•• sudden rise in popularity of a server (/. effect)sudden rise in popularity of a server (/. effect)
– dilemma

• unlikely to happen any given server, so nobody provisions for it

• most clients see them, so somebody ought to provision for it

•• many proposed solutionsmany proposed solutions

– spill content to clients to absorb loads (padmanaban)

– have servers cooperate

• hash-signature of content means trust isn’t issue

– rent-a-server / CDN

1111

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

LowLow--bandwidth last hopsbandwidth last hops

•• the edge of the network isn’t getting any fasterthe edge of the network isn’t getting any faster
– and is the bottleneck for many systems [e.g., p2p]

– limited number of tricks here…
• better compression

– lossycompression (distillation)

– content hashcaches (exploit redundancy across objects)

• latency-hiding with pipelined rendering / streaming

– turned out to matter a lot for web page design

• latency-hiding with aggressive prefetching

– goal: 100% link utilization all the time

– servers and ISPs hate this

CSE590IS: Internet Systems/Services ©2003, Steven D. Gribble

Content is getting biggerContent is getting bigger

•• web: web: 44--6KB objects6KB objects

•• P2P: audio: 4MB, video: 1GBP2P: audio: 4MB, video: 1GB
– no part of the Internet is ready for this

• server links, backbones, client links

•• not at all clear what to do herenot at all clear what to do here
– find something other than Internet to push the content?

• snail-mail, sneakernet

– one lever is that the content is immutable

• satellites/cable/multicast to carousel most popular content

