Y bradc@cray.com
@ chapel-lang.org
¥ @ChapelLanguage

Who am [? Smas

. Computer Science & Engineerin *
Education: P 9 9 >

« Earned Ph.D. from University of Washington CSE in 2001 -
 focused on the ZPL data-parallel array language
« Remain associated with UW CSE as an Affiliate Professor

Industry: G =AY

 Currently a Principal Engineer at Cray Inc.
 Technical lead / founding member of the Chapel project

 Also spent a year at a startup: QuickSilver Technology

©2019 Cray Inc. (@

Piz Daint: One of Today’s Most Powerful Supercomputers ===~

© 2019 Cray Inc. C 3

https://www.cscs.ch/computers/piz-daint/

Piz Daint: One of Today’s Most Powerful Supercomputers ===~

- [4 ——_—

Model Cray XC40/Cray XC50

Number of Hybrid Compute Nodes 5704

Number of Multicore Compute Nodes 1431

Peak Floataing-point Performance per Hybrid Node 4.761 Teraflops Intel Xeon E5-2690 v3/Nvidia Tesla P100

Peak Floating-point Performance per Multicore Node 1.210 Teraflops Intel Xeon E5-2695 v4

Hybrid Peak Performance 27.154 Petaflops

Muliticore Peak Performance 1.731 Petaflops

Hybrid Memory Capacity per Node 64 GB; 16 GB CowoS HBM2

Multicore Memory Capacity per Node 64 GB, 128 GB

Total System Memory 43797TB;83.1TB

System Interconnect Cray Aries routing and communications ASIC, and Dragonfly
network topology

Sonexion 3000 Storage Capacity 8.8 PB

Sonexion 3000 Parallel File System Theoretical Peak Performance 112 GB/s

Sonexion 1600 Storage Capacity 2.5PB

Sonexion 1600 Parallel File System Theoretcal Peak Performance 138 GB/s

L R Pt e, S S et
https://www.cscs.ch/computers/piz-daint/
© 2019 Cray Inc. C 4

https://www.cscs.ch/computers/piz-daint/

Outline

v

» What's Chapel?

« Software Engineering & Chapel
« Parting Thoughts

» Chapel Resources

© 2019 Cray Inc.

What is Chapel? cmas

Chapel: A productive parallel programming language

» portable & scalable

» open-source & collaborative /~
CcCRANY
CHAPEL

Goals: 0

» Support general parallel programming

 “any parallel algorithm on any parallel hardware”

» Make parallel programming at scale far more productive

©2019 Cray Inc. C 6

Chapel and Productivity S

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

©2019 Cray Inc. (@

CLBG Cross-Language Summary (pec 18, 2018)

zoomed-out

Execution Time
(normalized to fastest entry)

© 2019 Cray Inc.

B chapel
I csharpcore
B dart
Il fpascal
B fsharp
I gcc
N ghe
N gnat
g0
. gpp
Il hipe
ifc
Il java
BB jruby
B julia
E lua
node
B ocaml
I perl
; ! i W php
S~ i d S : python3
: i RN i BN racket

~ Erlangme ‘ ‘o st
PHPg® mRacket . © | I e

.\
Lua .

\

‘ .\\ ‘

~

~

Pyt-lw)n O 5 ‘
Ruby ..
Perl "

60

~ i 3
: g S :] I typescript
20 bt - . . ‘*115\,, \\\ U B R — B[]
i SR > i i . yarv

Julia 3 Dart ; \J_\|‘“»~‘ ® i : O gmean-imalleft

. i 'Z‘B‘ ---- =008 -4 :5:':’:‘.‘::-2;‘0&55;’1‘?_?;,?-_;9:::9‘

Compressed Code Size (normalized.to smallest entfy)

CRANY

CLBG Cross-Language Summary (Dec 18, 2018, zoomed) ===

zoomed-1in
v

chapel
csharpcore
dart

fpascal

fsharp

gcc

ghc

gnat

g0

gpp

hipe

ifc

java

jruby

julia

lua

node

ocaml

perl

php

python3

racket

rust Lngp
sbcl

sWwift
typescript

VW

ya;;)
gmean-smallest
gmean-fastest

Javmscﬂpﬁ

Execution Time
(normalized to fastest entry)
.
)

e Ha‘skerlrlr
‘ “o-F Pascal
Go-- IF# \OQ\

ool

ust
@ C++

1.6 1.5 2.6 2.5 3.0 3.5

Compressed Code Size (normalized to smallest entry)

© 2019 Cray Inc.

2]
(o]

CLBG Cross-Language Summary (Dec 18, 2018, zoomed) ===

zoomed-1in
v

chapel
csharpcore
dart

fpascal

fsharp

gcc

ghc

gnat

g0

gpp

hipe

ifc

java

jruby

julia

lua

node

ocaml

perl

php

python3

racket

rust Lngp
sbcl

sWwift
typescript

VW

ya;;)
gmean-smallest
gmean-fastest

Javmscﬂpﬁ

Execution Time
(normalized to fastest entry)
.
)

e Ha‘skerlrlr
= | ~o.Pascal -
‘ Go-- IF# \OQ\

ool

ust
@ C++

1.6 1.5 2.6 2.5 3.0 3.5

Compressed Code Size (normalized to smallest entry)

© 2019 Cray Inc. 10

2]

CLBG Cross-Language Summary (pec 18, 2018)

zoomed-out

© 2019 Cray Inc.

Execution Time
(normalized to fastest entry)

.\
Lua .

o .

Pyt-lw)n O 5 :
60”%, .\,\” S ,\‘\\, o O SO
Ruby - ‘

\ . e .-
Perl " L Smalltalk -

i N N f i
PT 3 P — coomosaesenEan=a=0aeed Qe e TN I e .

ErIan‘c\J\iig | e
PHP g® mRacket . © |
Julia g Dart \ \?\\\\\\Ql
Javaseript D "M m- oM - g
: . E——~ E ST = ———“‘3—- _________

1.0 1.5 2.0 2.5 3.0

Compressed Code Size (normalized.to smallest entry)

B chapel
I csharpcore
B dart
Il fpascal
B fsharp
I gcc
N ghe
N gnat
g0
. gpp
Il hipe
ifc
Il java

~EEE jruby

B julia
E lua
node
B ocaml
I perl
s php
python3
I racket
I rust
sbcl
swift
I typescript

. . W

N yarv
D gmean-smallest
() gmean-fastest

_"é: """ EEe. L ek d‘ffiifﬁo:::‘:":f‘f;-;.;;:_ﬂ‘

3.5

CRANY

11

HPCC RA: buffering vs. network atomics Smas

RA Performance (GUPS)

25 -___..._-—*
Chapel I.19 pre (unordered) --—-&-- T
20 F Chapel I.19 pre —— e
Reference (bucketing) —>— .7
wn __________________________‘_..,.-;" __________________
L 2N
2 o
w IO -________________T-'_""’: ———————————————————————————
e
5 -——————-.—-. —————————————————————————————————————
-"‘.-
.o %
0 was=
32 64 128 256 512

Locales (x 36 cores / locale)

©2019 Cray Inc. (@ 12

HPCC RA: MPI kernel

/* Perform updates to main table. The scalar equivalent is: } else {
* HPCC_InsertUpdate (Ran, WhichPe, Buckets);
* for (i=0; i<NUPDATE; i++) { pendingUpdates++;
* Ran = (Ran << 1) * (((s64Int) Ran < 0) ? POLY : 0); }
* Table[Ran & (TABSIZE-1)] = Ran; it+;
*)
% else {

MPI_Test (soutreq, s&have done, MPI_STATUS_IGNORE) ;
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
speUpdates) ;
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,
UPDATE_TAG, MPI_COMM WORLD, &outreq);
pendingUpdates -= peUpdates;

MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype6d,
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);
while (i < SendCnt) {
/* receive messages */
do {
MPI_Test (&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {)
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);)
bufferBase = 0;)
for (j=0; j < recvUpdates; j ++) { /* send remaining updates in buckets */
inmsg = LocalRecvBuffer [bufferBase+j]; while (pendingUpdates > 0)
LocalOffset = (inmsg & (tparams.TableSize - 1)) - /* receive messages */
tparams.GlobalStartMyProc; do {
HPCC_Table[LocalOffset] "= inmsg; MPI_Test (s¢inreq, s&have_done, &status);
) if (have_done) (
} else if (status.MPI_TAG == FINISHED_TAG) f{ if (status.MPI_TAG == UPDATE_TAG) {
NumberReceiving--; MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
} else bufferBase = 0;
MPI_Abort(MPI_COMM WORLD, -1); for (j=0; j < recvUpdates; j ++) {
MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype6d, inmsg = LocalRecvBuffer[bufferBase+j];
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq); LocalOffset = (inmsg & (tparams.TableSize - 1)) -
} tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;

} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) { }

Ran = (Ran << 1) ((s64Int) Ran < ZERO64B ? POLY : ZEROG4B);) else if (status.MPI_TAG == FINISHED TAG) {
GlobalOffset = Ran & (tparams.TableSize-1); /* we got a done message. Thanks for playing... */
if (GlobalOffset < tparams.Top) NumberReceiving--;
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));) else {
else MPI_Abort (MPI_COMM WORLD, -1);
WhichPe = ((GlobalOffset - tparams.Remainder) /)

tparams.MinLocalTableSize); MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype64,
{ MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

if (WhichPe == tparams.MyProc)
LocalOffset = (Ran & (tparams.TableSize - 1)) -)
tparams.GlobalStartMyProc; } while (have done && NumberReceiving > 0);

HPCC_Table[LocalOffset] "= Ran;

©2019 Cray Inc. C

CRANY

MPI_Test (soutreq, &have done, MPI_STATUS_IGNORE) ;
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
speUpdates) ;
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,
UPDATE_TAG, MPI_COMM WORLD, &outreq);
pendingUpdates -= peUpdates;

)
/* send our done messages */

for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =
MPI_REQUEST NULL; continue; }
/* send garbage - who cares, no one will look at it */

MPI_Isend(&Ran, 0, tparams.dtype6d, proc_count, FINISHED TAG,
MPI_COMM WORLD, tparams.finish_req + proc_count);
)
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait (&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) -
tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;
)

} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;

) else {

MPI_Abort (MPI_COMM WORLD, -1);

)
MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

MPI Waitall(tparams.NumProcs, tparams.finish req, tparams.finish statuses);

13

HPCC RA: MPI kernel comment vs. Chapel SR

/* Perform updates to main table. The scalar equivalent is: C h a pel Ke rnel

* for (i=0; i<NUPDATE; i++) {

e g e =0 7 POLY 0 forall (, r) in zip(Updates, RAStream()) do
- _
! Tl[r & 1ndexMask].xor(r);

MPI Comment

/* Perform updates to main table. The scalar equivalent 1is:
*

* for (1=0; i<NUPDATE,; 1i++) {

& Ran = (Ran << 1) * (((s64Int) Ran < 0) 2 POLY : 0);
4 Table[Ran & (TABSIZE-1)] ”“= Ran;

* }

*/

© 2019 Cray Inc. C 14

The Chapel Team at Cray (May 2018) | S

[X 0 B .va.v
BT A by ‘ e

~13 full-time employees + ~2 summer interns + ~2 GSoC students

© 2019 Cray Inc. C 15

Software
Engineering &
Chapel

© 2019 Cray Inc.

Disclaimers Smas

* Anything | say may not translate at all to any other job / project you may take on
 I'm reporting on my group’s practices and not necessarily those of Cray broadly
* These slides are not particularly pretty...

©2019 Cray Inc. (@) 7

My year at QuickSilver (between UW and Cray) cmasr

« Worked for an Extreme Programming (XP) software group

» Nowadays, more likely to be Agile software development, Scrum, Kanban, ...
« My takeaways:

« frequent planning (sprints)

 customer involvement / focus

« daily standups

» test-first development

* pair programming always

* brags

* sustainable pace

©2019 Cray Inc. (@) @

My year at QuickSilver (between UW and Cray) cmasr

« Worked for an Extreme Programming (XP) software group

« Nowadays, more likely to be Agile software development, Scrum, Kanban
« My takeaways:

« frequent planning (sprints)

* test-first development

* pair programming always
* brags

* sustainable pace

©2019 Cray Inc. (@) 9

A Brief History of Chapel Smase

2003-2006: Initial Concept / Splashing Around (2-4 devs)
 blank slate development

2006-2012: Developing a Research Prototype (6-7 devs)
* research focus

2013-2018: Transition from Research to Production-Grade (~12 devs)
* increased focus on users, adoption, stability

2019-2021: Striving for Adoption (12-15(7?) devs)
* lock down production use cases and users

©2019 Cray Inc. C 20

What did we set out to create? cmas

« Language definition

« Compiler

* Runtime (access to system-level capabilities: memory, network, threads, ...)
« Standard Libraries

* Tools (minimal)

©2019 Cray Inc. (@) 2

Compiling Chapel

© 2019 Cray Inc.

Chapel
Source
Code

Standard
Modules
(in Chapel)

Chapel
Executable

CRANY

22

Chapel Compiler Architecture

© 2019 Cray Inc.

Chapel
Compiler
/_ __________ —
/
Chapel J Standard
Source |==p Cgirr):l'ﬁg;c - G(e:ng(r)?jteed C Compiler
Code I P & Linker
1] i
' |
Internal Modules Runtime Support
Standard | | (in Chapel) Library (in C)
(i?\/kc):(::ge;) I 2 1S 1l 5
PEUL A EX|E
= o
| = BN | E
[0) Q
\
\ =]

CRANY

23

Chapel Compilation Architecture cmas

: | Runtime Support
: | Library (in C)

I speaJy] /syse _|_|
I uouemunwwool

©2019 Cray Inc. C 24

Runtime Communication Layer. Communication = ===~

‘ Chapel Runtime Support Library (in C) ‘

Communication

- [

none asnet n fi
(single locale) 9 ugni

@ﬁ&@ Cray Inc. @ @

Do you want to impose a style on developers?

* Yes?
* How strict?
if (flag) { if (flag) if (flag)
foo () ; { foo();
} else { fool(); else
bar () ; } bar () ;
} else

bar () ;

©2019 Cray Inc. C

CRANY

26

Do you want to impose a style on developers? cRas

* Yes?
* How strict?
if (isConst (expr)) { .. }
if (isConst (expr) == true) { .. }

if ((isConst (expr) == true) == true) { .. } // 22?2

©2019 Cray Inc. (@) 2

Do you want to impose a style on developers? cRas

* Yes?
* How strict?
* No?
 “Let each developer’s style serve as their handwriting”
» Can use code review to squash bad habits, develop common sense of taste

©2019 Cray Inc. (@) 2

What about code reviews? cmas

« Can you afford the time to do them?
« Can you afford not to?
« What is the intention / what do you expect to gain from it?

©2019 Cray Inc. (@) 29

What level of code documentation will you require? ===~

« Comment every file / routine / variable / code block?
» Write self-documenting code?
« Document in commit / merge comments?

©2019 Cray Inc. (@) 0

Do you want to develop open- or closed-source? ===~

« (even if ultimate goal is to open-source...)
» Potential advantages to open-source:
* leverage open-source community, developers, and code (?)
» get immediate and continual feedback
 “seems like the right thing to do”
» Potential disadvantages:
* means living with your warts showing
* no such thing as a free lunch

© 2019 Cray Inc. C 31

Source Control Management? Smacr

* “Yes” is the only reasonable answer
« Historically, Chapel has used:
« CVS
« SVN
« Git
« Git familiarity is perhaps the most valuable SW dev skill after programming
 as well as GitHub or GitLab (hosting sites that support git repositories)

©2019 Cray Inc. (@) 2

Chapel’s use of GitHub

 use GitHub issues to track bugs, feature requests, stories, tasks, epics

© 2019 Cray Inc.

Filters ~ is:issue is:open © Labels 35 =* Milestones 4

® 1,349 0pen v 1,570 Closed Author ~ Projects v Labels ~

Milestones ~

© writef()/formatted 1/0 should check argument types for param strings area: Libraries / Modules

type: Feature Request
#12493 opened an hour ago by bradcray /| New Issues

® can c_ptr sometimes be wide? area: Compiler area: Language area: Libraries / Modules | type: Design

#12490 opened 7 hours ago by mppf |/| New Issues

® Improve string sort performance area: Libraries / Modules |type: Performance
#12487 opened 8 hours ago by mppf ||| New Issues

® remove deprecated out error functions area: Libraries / Modules
#12484 opened 15 hours ago by mppf /| Backlog

® Parallelize Scans m area: Libraries / Modules type: Unimpl 1 Feature
#12482 opened a day ago by bradcray 0of2 New Issues

® tidy up Sort package chpldoc
#12478 opened a day ago by mppf ||/ Sprint Backlog

® document comm=ofi area: Docs |type: Portability @
#12475 opened a day ago by gbtitus PB Sprint 25 [I| In Progress

®© comms=ofi should be informative when verbosity>=2 area: Runtime |type: Portability

#12474 opened a day ago by gbtitus ||| Backlog

Assignee v

Sort v

C

CRANY

33

Chapel’s use of GitHub

CRANY

 use GitHub issues to track bugs, feature requests, tasks, stories

« submit proposed changes as pull requests (PRs

* must be reviewed by core developer (someone who takes turns doing triage)

© 2019 Cray Inc.

 use GitHub comments/reviews to give feedback

* if reviewer / reviewee can’t agree, escalate to the group

Fix writef() for abstract enums #12358

1o merge 8 commits into from
& Conversation 5 o Commits 8 Checks 0 [Files changed 23
a bradoray commented 17 days ago + ected - warber] +@

It seems that our code paths for writef() and readf() calls were trying to
cast botwoon anums and negors which of cours fr supported fo
abstract enums (and that this was true even if the user wasn't trying

to print the enum as an integer since all %-format to argument matching
s done at run-time, so the compiler generates code for many possible
formats).

Here, | ¥

eror condition for abstract enums and by taking more care when
reading enums in to cast them to integers before casting to their
ultimate type.

‘This PR follows the current approach taken for writef() (and readf(),
which is to cast if the % format doesn't match the actual argument
type. In issue #12423 | ask whether this behavior is what we want
o not (it seemed surprising to me) for future consideration.
Resolves #12344

Fix writef() for abstract enums has no dependencies + add dependency

0 rin for wrtter() of abstract emas v

@ bradcray changed the pipeline from New Issues to Needs Review 17 days ago

R @ bradcray eferenced this pul request 17 days ago
Abstract enums emit cast-to-int error when used in formatted 1/0 #12344 (O Open
bradoray commented 17 days sgo Raror) (o] +@

Hi @mppf — You understand the writef() code better than | do, so I'm wondering whether you could

edit

+321-8 wmmm

Pipelines

© Chapel Workspace
Needs Review

Reviewers
Suggestions

2 mpt Reauest

[tvdia-duncan Reauest
vassiitvinov Reuest
Assignees

No one—assign yourself

Labels

None yet

Projects

None yet

Milestone

No miestone

Estimate

No estimate yet

Notinside a Release

Eples

for more opinions

mppf commented 15 days ago Member @

Looks like a good start to me.
Could you:

« return false as the second tuple element in the event that the enum isn't supposed to cast
toffrom integral types, as you proposed

« also update casts int - compile for readf on
an abstract enum). For this one you can return A~ ERANGE f the anum s ot castabe toffrom
integer.

« update the test / add a test to include some readf calls on abstract enums
« update the test / add a test to cover the case in which we want an error when reading the enum

Thanks!

[braderay added some commits 6 days ago

B otseinguisn between sostrace enms and nee
) 200 sstract enum suport to sectfPrisicive)
) verge branch “aaster” of httpsz//githu.con/chapel-Lang/chapel. Snto . = v pusar
) 406 tests of uriting enums of various Kinds using vrious X forsats -
0 erse branch “master of ttps://gtthub.con/chapel-Lang/chapel tnto £ = .

bradoray commented 8 hours ago Author | (Member] +@

Hi @mppf — I've done most of what we discussed here and have beefed up the testing of the
writef() cases. I think the last thing | need to do is add some testing of readf() cases, but you could
probably start the got herein ime if you things to do
(hay).

B bradcray added some commits an hour ago
D 41 sumort o raatr() on emms rom various types

3 506 tests of reading enums it vardous ¥ formats

 Allow edits from maintainers
Learn more

B Move Issue

34

Chapel’s use of GitHub cmac

 use GitHub issues to track bugs, feature requests, tasks, stories
« submit proposed changes as pull requests (PRs)
* must be reviewed by core developer (someone who takes turns doing triage)
 use GitHub comments/reviews to give feedback
* if reviewer / reviewee can’t agree, escalate to the group for more opinions
* must also pass testing
« at minimum, a complete run of linux testing
- optionally, other configurations as considered valuable

eeeeeeeeeeeee

* Travis testing run automatically on each PR @ rerecsraroses

v g continuous
e kev smoke tests also run post-merqge (©) This brancs has o conflctswith the base branch
Merging can be performed automatically.
LYEIGEETIEELTES SRR You can also open this in GitHub Desktop or view command line instructions.

©2019 Cray Inc. C 35

ation/travis-cifpr — The Travis CI build passed

Chapel’s use of GitHub

 use GitHub issues to track bugs, feature requests, tasks, stories

« submit proposed changes as pull requests (PRs

* use ZenHub for tracking

© 2019 Cray Inc.

Chapel Workspace

Change Worksp:

m Boards

& Reports v

+ Create...

Invite

ow tutorials

orteuts

n Brad Chamberlain ~

Pull requests Issues Marketplace Explore

Repos (2/4) v © Labels +

Matching any f

v & braderay X

199 Issues - 0 Story
New Issues

chapel #10782
Exporting Chapel - const
string

Compiler. area: Tools
- i8] user issue

chapel #11336
Numerical instability in
LCALS IF.QUAD kernel

chapel #1136
Crypto module thread safety
issues.

Libraries | Modules

chapel #1136
Improve error message for
undefined cast for records.

area: Compiler

chapel #11269

+ Milestones

) chapel-lang / chapel

Code Issues 1,349

Issues with no Ass... X _Select al
622 ssues - 3 Story Points
Icebox

chapel #922

6
Resolve performance

regression for miniMD and
NPB MG due to in intent PR

type: Performance.

chapel #9268
Allow use of concrete type
alias to call generic
initializer?

aran: L anauace fvaa: Dasian
i crave o287
Append *_chpl” suffix to

internal module symbols.

area: Compiler
chapel #929¢
uniquifyName in presence of
extern symbols

area: Compiler [type: Bug!
type:

observes LZMA whe
libunwind s a shared library

chapel #11372
functions to convert integer
byte order

Libraries | Modules

chapel #8748
Confusing error on object
construction from JSON

area: Libraries | Modules.

‘type: Feature Request
chapel #9390
Copying GMPRandom

| Chapel Workspace © Wateh +
Pullrequests 21 [@ZenHub 11 Projects 0
[Epics v ® Releases v @ Estimates v & Authors v

(1012) Clear all fiters

story

168 Issues - 5 St
Backlog

y Points Olssues
Sprint Backlog

chapel #12459
Design spike: LLVM library
‘compilation

‘Theme: Language Interoper.
Python Interoperabilty

locale Chapel library
Python Interoperability
Theme: Language Interoper.
Support multi-locale interop,

‘type: Design

chapel #11277

messages to avoid ‘int"-
only implication

[s

Prototype making loops over
distributed array slices only
involve locales that own
something

) chapel #10405
Support for querying the
‘localSubdomain' and

chapel #11377
Add DefaultRectangular
rators that iterate in CMO

Libraries | Module:

of other

Arbitrary precision improve.

area: Libraries | Modules.
stat: Won't fix / Ain't broke
‘type: Unimplemented Feature

area: Libraries / Modules steal
: Feature Request

60

Insights

* Unstar

Settings

0 lssues - 0 Sto)

In Progress

780

tasks (a Kanban-style board for tas

ks / stories

¥ Fork

22Issues
Needs Review

2 Story Points

[chapel #12356

upport zma_getsockopt

for ZMQ_LAST_ENDPOINT
Jsprint 25

@ area: Libraries | Modules.
type: Design
chapel #12399 11
implement ZMQ
getsockopt and
LAST_ENDPOINT

area: Libraries | Modules.
area: Runtimearea: Tests
stat: Needs Code Review
chapel #9045
CSV to Dataframe importer
Jsprint7
DataFrames in Chapel

(@ chapel #10154 [
CSV to DataFrame
importer

stat: Work in Progress
chapel #10328 [
First draft implementation of
enumerate() terator

post-release
stat: Needs Design Review
chapel #10330 [
Improve error message for

trying to use an enum within
aclass

post-release

015 0 - sonss| 6 sowayL

swpod &

41+ Issues
@ Closed

y Points

@ chapel #12483 1)
Remove unstable message

domains of enums

@ chapel #12491 [
Update gec gen compiler to
7.3.0 for cray module builds.

@ chapel #12488 [}
Reduce sortStrings problem
size

chapel #1286 [
Fix type of param field when
initialized with literal

(® chapel #12470 ||
Add :throw:/:throws: to the
chpldoc technote

Docs area: Tools

stat: Needs Code Review

@ chapel #12485 [
Fix multiple waits in Spawn

@ chapel #12479 1)
Replace BufferedAtomics
UnorderedAtomics

@ chapel #12481 1)
First good draft of parallel
Block-distributed scan

chapel #1269 [
Support optionally parallel
1D scans on default
rectangular

@ chapel #11303 1

C

CRANY

36

Chapel’s use of GitHub cmac

use GitHub issues to track bugs, feature requests, tasks, stories

submit proposed changes as pull requests (PRs)

use ZenHub for tracking tasks (a Kanban-style board for tasks / stories)
releases hosted on GitHub as well

[]
Latest release . Edi
Fall 2018 Release (version 1.18.0) :
1180 g‘ awallace-cray released this on Sep 20, 2018 - 2794 commits to master since this release
-0 3abe896

Cray Inc. and the Chapel open-source community are pleased to announce
the release of version 1.18.0 of the Chapel Compiler. Please see the
CHANGES.md file for release highlights and notes. Full

instructions for downloading and installing Chapel are on the Chapel
website. Download the source release, chapel-1.18.0.tar.gz,

to get started.

68471e1f398b074edcc28caePbe26a481078adc3edeaddf663f01c6bd3b6ae@d chapel-1.18.0.tar.gz (sha256)

¥ Assets 3

@ chapel-1.18.0.tar.gz 67.8 MB
[source code (zip)

[source code (tar.gz)

©2019 Cray Inc. C o

Testing: Our key to sanity Smas

* homegrown system
« crawls directory structure looking for things to test
» simplest form:
* hello.chpl # source file
* hello.good # expected output of compilation + execution steps
» extended form:
« additional files to specify:
« command-line options for compiler and executable
« actions to take before compiling, running, diffing, ...
. etc.

©2019 Cray Inc. (@) %

What do we run? (Correctness testing) SR~

« 9500+ tests
x back-end compilers (gnu, clang, llvm, icc, cce, pgi)
x platforms (Linux, Mac OS X, Crays, Cygwin, ...)
X processor types (x86, arm, knl, ...)
x machine models (flat, numa)
x tasking options (fifo, qthreads)
x options for communication (local, gasnet, ugni, libfabric, ...)
x build options (quickstart, preferred, valgrind, ...)
x compiler options (normal, --fast, --baseline, --verify, ...)
X ...

©2019 Cray Inc. (@) %

What do we run? (Correctness testing) SR~

« 9500+ tests ...or 300+ (release examples only) or ~6 (“hellos”)
x back-end compilers (gnu, clang, llvm, icc, cce, pgi)
x platforms (Linux, Mac OS X, Crays, Cygwin, ...)
X processor types (x86, arm, knl, ...)
x machine models (flat, numa)
x tasking options (fifo, qthreads)
x options for communication (local, gasnet, ugni, libfabric, ...)
x build options (quickstart, preferred, valgrind, ...)
x compiler options (normal, --fast, --baseline, --verify, ...)
X ...

©2019 Cray Inc. (@) 40

Testing managed through Jenkins

Jenkins

Jenkins

& People

_~ Build History

.. Project Relationship
&~ Check File Fingerprint
2. Job Import Plugin

B CLI Commander

Build Queue

No builds in the queue.

Build Executor Status

= master
1 Idle
2 Idle
3 Idle
4 |dle
5 Idle

= chap01
1 Idle

= chap02
1 Idle

All Active i Cra

W Name |
archive-test-logs

chapcs-correctness-test-c2chapel

chapcs-correctness-test-gasnet-everything
chapcs-correctness-test-gasnet-fast

chapcs-correctness-test-gasnet-smp

chapcs-correctness-test-valgrind
chapcs-mloc-correctness-test-gasnet-ibv

chapcs-mloc-correctness-test-gasnet-mpi

chapcs-mloc-correctness-test-slurm-gasnet-ibv.fast

chapcs-mloc-correctness-test-slurm-gasnet-ibv.large

chapcs-mloc-correctness-test-slurm-gasnet-ibv.llvm

(o N V) °N VN N SRUNN S N S N ViR

Last Statuses

17 hr

> 1.7 days

ENABLE AUTO REFRESH

Last Duration Cron Trigger

3 min 50 sec Build periodically: 45 1 * * *

2 min 58 sec Build periodically: 02 * * *
6 hr 39 min Build periodically: 02 * * *
6 hr 27 min Build periodically: 02 * * *
4 min 6 sec Build periodically: 02 * * *
10 hr Build periodically: 02 * * *
19 min Build periodically: 452 * * *
20 min Build periodically: 50 2 * * *
2 hr 30 min Build periodically: 30 2 * * *
1 hr 20 min Build periodically: 352 * * *
1 hr 32 min Build periodically: 402 * * *
5 hr 56 min Build periodically: 02 * * *
2 hr 12 min Build periodically: 12 * * *

CRANY

© 2019 Cray Inc.

41

Testing managed through Jenkins

Jenkins
4 People Al All Active ¢
= Build History w

Project Relationship ‘s
= Check File Fingerpring
Job Import Plugin
@ CLI Commander o

Build Queve -

No builds in the
queue

Build Executor -
Status

» master
11die

21die

31die

41die

5idie

» chap01
11die

» chap02
11die

» chap04
11die

» chap0s

1 correctness

CECOEEOEOOEEOO0E 0

©

» chap0s
1 correctness

cecoe

2k £1538
baseline

» chap12

1 correctness
#1535

CECOEEEOOOEO00E0

» chap13

11dle

» chap1d

11dle

» chap1s

11die

» chap15-mrhelp
11die

21dle

cceco00E

ENABLE AUTO REFRESH

CRANY

© 2019 Cray Inc.

Name | ey ™" oL v
archive-test-logs chapt6-mrhelp @ 17he 8min 1 sec Build periodically: 02 * * *
chapes-correctness-test-c2chapdi idie ° 16hr 1hr 8 min Build periodically: 02 * * *
chapes-correctness-test- b idle ° orrectnes it 17hr 13 hr Build periodically: 02 * * *
chapcs-correctness-test-gasnet-h |dle ° correctness-test-rhel.linux64 17hr 56 min Build periodically: 02 * * *
chaps-correctness-test: ldle ° correctness-test-rhel.mason-spack 17he 25min Build periodically: 02 * * *
chapwg"n chapcs00 ° conecxness test-sphinxcontrib-chapeldomain 17hr 49 sec Build periodically: 02 * * *
chapes-mioc: e ° correctness-test 17 16 hr Build periodically: 02 * * *
chapes-mioc- corecness ot 04 e e >4.7 days > 6.7 days 18hr Build periodically: 02 * * *
chapes-mioc-correctness-test-siff chapes01 ° cray-module-arm-xc 17hr>7.7days 1 hr 42 min Build periodically: 02 * * *
chapes-mloc-correctness-test-siff Idie ° cray-module-correctness-arm-xc-aprun 15 hr > 9.6 days. 2hr 45 min
C"BW chapcs02 ° 3.7mo>83mo 2 hr 22 min
Idle ° cray- - cray-xc-aprun 2hr 30 min
Y Chapcsos ° cra) 2hr 29 min
L e cray-module-correctness-cray- >16 days > 29 days 1 hr 56 min
° cray-modul 24days 20 min
chapes04 ° cray-module-correctness-cray- 2.4 days > 18 days 29 min
\die ° modul ss-cray 87hr 1 hr 44 min
| chapesos ° » 8.7 hr>27 days 6hr 36 min Build periodically: 02 * *
i Idle ° 17hr>1.4mo 1 hr 42 min Build periodically: 02 * * *
chapel-code-smoke-test T:f"““ : ?ams‘:c” sec
pdirs © ° 35 sec
correctness-test-baseline chapes07 ° 3hr 32 min
correctness-test-chpiforpyp-docdt Idie o -xc-single-locale 8hr3min
correctness-test-cygwin32 chapes08 ° 10 min
correctnes Win64 Idle ° 2hr 59 min
correctness-test-darwin chapcs09 o 1 hr 45 min
correctness-test-dist-block i ° 15hr>\8m0 44 sec
wvchc ° ° moke-cray-xc 2.4 days > 29 days 27 sec
plicated § chapcs10 ° cray module-smoke-cray-xe 15 hr>1.8mo 46 sec
%5"95”35‘ Idle ° download-stats 17hr 1 min 12 sec Build periodically: 02 * * *
correctness-test-gasnetdarwin | chapcstt-login =~ @ 8min 16 sec
comeciness test fastdang, |y ° 6.8 sec Build periodically: 0 1* * 6
correctness-test-gasnetivim Idle o 5.6sec Build periodically: 0 1** 7
correctness-test-gasnetnuma kg ° 9 min 24 sec Build periodically: 02 * * *
jasnet.quickste, | o ° 19 sec Build periodically: 451 * *
b Idle ° rge 12 sec Poll SCM: H/2* * *
dle ° hub. d I 7.1 sec Poll SCM: Hi2 * * * *
T chapesi1-slurm ° mirror-github-on-cray-forge-gitt 9.2 sec Poll SCM: H/2 . ‘ : .
e ° mitr-gihub-on-cray-forge:pychapeLrealime 73 sec Poll SCM: Hi2
° mirror-github-or 11 sec Poll SCM: Hi2* * *
hapel. ° performance-data-sync 2 min 39 sec Build periodically: 451 * *
n ° performanc 7 hr 15 min Build periodically: 02 * * *
Idle ° persist-perf- da(a pen chapel I-shootout 3 min 53 sec
p ° publish-chay 2min 56 sec
2 ° vea\llmeurbzl\ 2min 33 sec Poll SCM: Hi2* * * *
Idle ° release- 2 min 46 sec
m | chapel-shootout @ Simin/28/se0; L
77454 Idie ° 9 min 44 sec Poll SCM: H/2
correctness-test-inux64.inct ° 0.17 sec Build periodically: 451 * *
corectnes; chapel-ubu1604- o rf.chapel-shootout 7 hr 20 min Build periodically: 02 * * *
correctness-test-livm 1 ° chapel-shootout-livm 8 hr 44 min Build periodically: 02 * * *
coneciness lestivmsystem o idle ° test-release-tarball 57 min Build periodically: 02 * * *
w chapel-ubu160d- @ token-count 3 min 44 sec Build periodically: 02 * * *
ﬁg::zz:::zs_ms(_mpm = ° 14 min Build periodically: 30 1 * *
Soreciness st gasnet [° 5 min 8 sec Buld periodically: 45 1***
R e chapel-ubu1604- update-desched-cache 18 sec Buid periodically: 45 1+ ** 013
2 ° update-jenkins-config 50 sec Poll S Hr2
\die L SLLLANL Build periodically: 450 * * *
° 7hr 18 min Build periodically: 45 1* * *
chapel-ubu1604- L

42

Also Performance Tests

Toggle coni techraptor.net,
@ (gnu+ugni-qthreads)
(gnu+gasnet-aries)
(gnu+gasnet-mpi)
Reset Stroke Patterns
Invert Line Stroke/Color

Select a test suite
[Performance Tracking 4

Select and display specific tests

Display Cl
Last Two Weeks| | Select All
Unselect All| [Invert Selection

Filter:

« NPB: EP Perf (Mopls) - size D
 HPCC: FFT Perf (Gflopls) - n=2/20
« HPCC: HPL Release Perf (Gflop/s) - n=255, nb=32
 HPCC: PTRANS Perf (GB/sec) -
« HPCC: RA-atomics Perf (GUPS) - n=2+33
 HPCC: Buffered RA-atomics Perf (GUPS) - n=2433
@ HPCC: RA-on Perf (GUPS) -
' HPCC: RA-rmo Perf (GUPS) -
« HPCC: STREAM-EP Perf (GBIs) - n=5,723,827,200
 HPCC: Global STREAM Perf (GBIs) - n=5,723,827,200
« HPCC: Promoted STREAM Perf (GBJs) - n=5,723,827,200

SSCA: SSCA#2 Kernel 4 Perf (TEPS) - size 16, 2*4 vertices

SSCA: SSCA#2 Kemnel 4 Perf (TEPS) - size 22, 2*4 vertices
« PRK Stencil Variations Perf

Bale: Histogram Perf (MB/s per node)

Bale: Indexgather Perf (MB/s per node)

1D block scan time

NPB: EP Time (sec) - size D

NPB MG Time (sec) Size B

HPCC: FFT Time (sec) - n=220

HPCC: HPL Release Time (sec) - n=255, nb=32

HPCC: PTRANS Time (sec) - n=2,000, nb=100

HPCC: RA-atomics Time (sec) - n=2"33

HPCC: RA-on Time (sec) - n=2+33

HPCC: RA-rmo Time (sec) - n=2%33

HPCC: STREAM-EP Time (sec) - n=5,723,827,200

HPCC: Global STREAM Time (sec) - n=5,723,827,200

HPCC: Promoted STREAM Time (sec) - n=5,723,827,200
¥ SSCA: SSCA#2 Kernel 4 (sec) - size 16, 2°4 vertices
SSCA: SSCA#2 Kernel 4 (sec) - size 22, 2*4 vertices
« DOE: Lulesh Dense Time (sec) - sedovi5oct
« DOE: miniMD Time (sec) - size 20

LLNL CoMD Time (sec)

Elegant AoS CoMD Time (sec)
/1S variations

|

The Iron Mac: How to Get Rid of Annoying Loc...

.Jiron-mac-how-to-get-rid-of

Chapel Performance Graphs for 16 node XC

Graphs Last Updated on 2019-03-03

NPB: EP Perf (Mopls) - size D — ep Mopls - D (gnu+ugni-gthreads)
14000
12000
10000
2 8000
2 6000
4000
2000
1
Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019
[iog] [fons] [screenshot] [ressty zoom]
HPCC: FFT Perf (Gflop/s) - n=2420 — fft Gflop/s (gnu+ugni-qthreads)
02
o
8
2
3 o5
2
e l
8 0.1
g N
5
2 oos
5
¢ {
0 1
Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019
\] [scresnshot] [resety zoom]
HPCC: HPL Release Perf (Gflop/s) - n=255, nb=32 — hpl Gflopls (gnu+ugni-gthreads)
0.003
T 00025 W it
2
S Yol
S o002 ‘
[
8 00015 w
g
£ oot SIS
£ hna'mael
& 0.000
ot
Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019
annotations| [screenshot| [reset y zoom

© 2019 Cray Inc.

C

CRANY

43

Current gaps in our testing cmas

* no unit testing

« all tests are end-to-end runs of the compiler

* (happily, compilers are more amenable to this than some types of software)
* no testing of examples in code-based documentation

* language specification is (mostly) tested

 wishlist: something that would test code in my Powerpoint slides...
* no “fuzzing” / random testing

« an important way to simulate novice users?

©2019 Cray Inc. (@) “

Parting Thoughts

© 2019 Cray Inc.

Technical Choices e

* Find / create ways to eat your own dogfood
 Create tools to help yourself
 Particularly with repetitive tasks, recurring pain points
« Use existing techniques and technologies when available and appropriate
» “Why waste an hour in the library when you can spend a month in the lab?”

©2019 Cray Inc. (@) “®

Healthy Attitudes for the Tech World Sma~

« Be comfortable with uncertainty, imperfection, changes—they’re bound to occur
» Don’t be afraid to rewrite code
» Don’t be overly protective of code that you’ve written

« Don’t be a bean counter (at least about unimportant beans)
* true problems have a tendency to make themselves known

* Find ways to make your process fun for yourself / your team

©2019 Cray Inc. (@) o

Who you are matters a ton cmas

* Don’t be a jerk

* If you are a jerk, fake it until you’re not
* It's truly a small world

» Being capable is so much more important than seniority, expertise, ...

©2019 Cray Inc. (@) 8

One more cRas

« Don’t expect that you'll remember everything forever (you won't)
=> Create notes, documentation, comments for yourself as much as anyone

©2019 Cray Inc. (@) 9

Tips from my team SRane

* Learn how to break problems into smaller subcomponents
* easier to estimate level of effort required
* easier to determine edge cases, avoid backtracking

©2019 Cray Inc. (@) o0

Chapel Resources

© 2019 Cray Inc.

Chapel Central

https://chapel-lang.orqg
e downloads

e presentations

papers

resources

e documentation

© 2019 Cray Inc.

The Chapel Parallel Programmin

age

What is Chapel?

Chapel is @ modern programming language that is...

« parallel: contains first-class concepts for concurrent and parallel computation
productive: designed with programmability and performance in mind
portable: runs on laptops, clusters, the cloud, and HPC systems

scalable: supports locality-oriented features for distributed memory systems
open-source: hosted on GitHub, permissively licensed

Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

.
Upcoming Events -
.
.

Documentation New to Chapel?

Dx Il h |

r;'::‘:o.: - As an introduction to Chapel, you may want to...
Release Notes

« read a blog_article or book chapter
o) « watch an overview talk or browse its slides
Developer Resources + download the release
« browse sample programs
Pm‘ Media / Blog Posts « view other resources to learn how to trivially write distributed programs like this:

use CyclicDist; // use the Cyclic distribution Library
Publications and Papers config const n « 109; // use --ne<val> when executing to override this defoult
CHIUW forall {1 in {1..n) dmapped Cyclic(startldx=1) do

CHUG writeln("Hello from iteration *, i, " of “, n, ™ running on node *, here.id);

Contributors / Credits
Research / Collaborations

What's Hot?

f:’::,_“:':ggg,y com « Chapel 1.17 is now available—download a copy or browse its release notes

The advance program for CHIUW 2018 is now available—hope to see you there!

(v}) T + Chapel is proud to be a Rails Girls Summer of Code 2018 organization
ivo « Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube
« Browse slides from SIAM PP18, NWCPP, SealLang, SC17, and other recent talks

* Also see: What's New?

CRANY

52

https://chapel-lang.org/

Chapel Social Media (no account required cRas

W Home

G Moments

Password

Emall o Phone
Likes Go to Facebook Home
200 ficenook P ——

 Chapel highlights

Following

48

Fallowors

278

— 74 76

Tweets Tueessrtes Mo | 22, ——
Chapel Language N
@ChapelLanguage # Poned Tweet -] =
. Sio Chapel Language ©ChapelLangu 0 L
Crmnr e e) o (\ , Unfamiiar with Chapet? Road a new int e N -
programming language designed = - Home. =
productive parallel kanguage on the *This is -/ @ ?hapel Parallel Programming Language
development is being led by Gcray inc tamonadtutodeloon — & Trending 72 subscribers
S Interview with Brad Cha} Programming e — T
3 256 Photos and videos productive parallel pro Language AL =4+ (3 - 0.5 /m)
S called Chapel @ChapelLanguage _-m.um, D Haory A playast of festured Chape presentations

Home P || e | @D ® Vchivier CHIUW 2017 keynote: Chapel's Home in the New Landscape of
Scientific Frameworks, Jonathan Dursi

e - 348 views 10m

Posts SUBSCRIPTIONS

Photos Posts

Q searel © Popularon YouTu
About
7% Chapel Programming Language Chapel B O e
i . Community Kt/ July 133t 10:14 AM - @ Software
http://twitter.com/ChapelLanguage | s wasc il Compuing Py PoerSound @ =
Programming Python User Group) meet-up, we'll be giving an Gaming
Info and Ads introduction to the Chapel language. Join us! Commul O
meetup. 19582/ e 228p

MORE FROM YOUTUBE

O YouTubeRed

Il Movies & Shows
0 Semigs -
™ Report history

https://www.youtube.com/channel/UCHmMmM27bYjhknKEmU7ZzPGsQ/

© 2019 Cray Inc. @ o

http://twitter.com/ChapelLanguage
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Chapel Community cmas

S Questions DeveloperJobs Tags Users [chapel] vz O 9B 0 S

Tagged Questions votns

Chapel is a portable, open-source parallel programming language. Use this tag o ask questions about the Chapel
language of its implementaton
Leam more . improve tag #lo Top Users Synonyms

chapel-lang | chapel

6 Tuple Concatenation in Chapel Coce @ Issues 292 Pull requests 26 Projects © Settings Insights «
— Let's say tuples and | want theen as they come. How do | do this? The followings
does slemant-wise additon: If ts = (Yo", "cat’), = ("bar", "dog”) 1s += 1 pives ts =
Filters « iscissue is:open Labels Milestones Chaoe! sromararnis s [Fesk
tuples concaleraion addtion hpc chapel asked Jan 2 x apel programming language | Peal
Tahi
7 385 @ 2020pen v 77 Closed Author « Labels « Projects - Brian Dolan
\\/ h e what is the syntax for making a copy (not a reference] to an array?
T - oforall” for remote coforalls s Comper VWIICIC
6 Is there a way to use non-scalar values in functions with where clauses in Chapel? ‘type: Pertormance oy W Michael Ferguson
vorms T've beon trying out Chapel off and on over 1he past year or 50. | have used C and C++ briey in the past, bul #6257 cpened 13 hours ago by renswho ymmu ﬂltleS R new variable?
most of my experience is with dynamic languages such as Python, Ruby, and Erlang more . X -
D Consider using processor atomics for remote coforalls EndCount area: Comgiler th rive
chapel mshed Apr 23 8t 23:18 type: Pertormance Vs
ﬁ,"‘ g #6368 opaned 13 hours ago by romewho B0
=® 3303
7 v 1 make uninstall s BTR e Feture Regusst - Brian Dolan @buddt
#6353 cpened 14 hours ags by mop! oh, got it, thanks!
Is there any writef{) format specifier for a bool?
6 1 make check doe Michael Ferguson

't work with jconfigure sme 0TR

spened 16 hours &g

-

e 1locked at the writed() documentasion for any bool specifier and there didn't seem 10 be any. In a Chapel .
E program | have: .. config const veriy = false; /* that works but | want 1o use writef()

- . N L N () p.“iﬂﬂ variable via in intent to a forall loop seems to create an iteration-private variable,
Spel D Mo ain ot a task-private one ses: Compier

pened a day ago by cassela

https://stackoverflow.com/questions/tagged/chapel

Remove chpl_comm_make_progress ams: Runtime easy fpe Design

#6349 ooened & day o

Brian Dolan 314
isn'tthere a proc f(ref arr) {} aswell?

D Runtime error after make on Linux Mint amai8TR user issue

#6348 opaned 3 day o5 cians

Michael Ferguson
yes. The default intent for array is ref’ or ‘const ref” depending on if the function body modifies
it. S0 that's effectively the default.

m o
https://qitter.im/chapel-lang/chapel

read-only mailing list: chapel-announce@lists.sourceforge.net (~15 mails / year)

https://github.com/chapel-lang/chapel/issues

g

©2019 Cray Inc. (@

=

https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel

Suggested Reading: Chapel history and overview ===~

Chapel chapter from Programming Models for Parallel Computing

» a detailed overview of Chapel’s history, motivating themes, features
 published by MIT Press, November 2015
« edited by Pavan Balaji (Argonne)

» chapter is also available online

© 2019 Cray Inc. C 55

https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/PMfPC-Chapel.pdf

Suggested Rea

IN

Chapel Comes of Age: Making

Progr ing P i

Bradford L. Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan, Michael Ferguson,
Ben Harshbarger, David Iten, David Keaton, Vassily Litvinov, Preston Sahabu, and Greg Titus
Chapel Team

Cray Inc.
Seattle, WA, USA
chapel_info@cray.com

Abmw_cmpd h 3 progrumming language whoeo goo
to support general-purpose parallel computing.
s ch-pel" lnvmd: can be thought of as combining
the strengths of Python, Fortran, C/C++, and MPI in a
single language. Five years ago, the DARPA High Productivity
Computing mmm (HPCS) program that launched Chapel
wnpvped p, the team embarked on a five-year effort
to improve peﬁnppu.lmendnnn ‘This paper follows
up on our CUG 2013 paper by summarizing the progress
made by the Chapel project since that time. Specifically,
Chapel’s performance now competes with or beats hand-coded
C+MPUSHMEM+OpenMP:; its suite of standard libraries has
grown to include FFTW, BLAS, LAPACK, MPI, ZMQ, and
other key technologies; its documentation has been modernized
and fleshed out; and the set of tools available to Chapel users
has grown. This paper also characterizes the experiences of
early adopters from communities as diverse as astrophysics
and artificial intelligence.

Keywords-Parallel programming; Computer languages
1. INTRODUCTION

Chapel is a programming language designed to support
productive, general-purpose parallel computing at scale.
Chapel’s approach can be thought of as striving to create
a language whose code is as attractive to read and write as
Python, yet which supports the performance of Fortran and
the scalability of MPL Chapel also aims to compete with C
in terms of portability, and with C++ in terms of flexibility
and extensibility. Chapel is designed to be general-purpose
in the sense that when you have a parallel algorithm in mind
and a parallel system on which you wish to run it, Chapel
should be able to handle that scenario.

Chapel’s design and implementation are led by Cray Inc.
with feedback and code contributed by users and the open-
source community. Though developed by Cray, Chapel’s
design and implementation are portable, permitting its pro-
grams o scale up from multicore laptops to commaodity
clusters to Cray systems. In addition, Chapel programs can
be run on cloud-computing platforms and HPC systems
from other vendors. Chapel is being developed in an open-
source manner under the Apache 2.0 license and is hosted
at GitHub.!

" hutps:/github.convchapel-lang/chapel

The development of the Chapel language was undertaken
by Cray Inc. as part of its participation in the DARPA High
Productivity Computing Systems program (HPCS). HPCS

up in late 2012, at which point Chapel was a com-
pelling prototype, having successfully demonstrated several
key research challenges that the project had undertaken.
Chief among these was supporting data- and task-parallelism
in a unified manner within a single language. This was
accomplished by supporting the creation of high-level data-
parallel abstractions like parallel loops and arrays in terms
of lower-level Chapel features such as classes, iterators, and

tasks.

Under HPCS, Chapel also successfully supported the ex-
pression of parallelism using distinct language features from
those used to control locality and affinity—that is, Chapel

programmers specify which computations should run in
parallel distinetly from specifying where those computations
should be run. This permits Chapel programs to support
multicore, multi-node, and heterogeneous computing within
a single unified language.

Chapel’s implementation under HPCS demonstrated that
the language could be implemented portably while still being
optimized for HPC-specific features such as the RDMA
support available in Cray® Gemini™ and Aries™ net-
works. This allows Chapel to take advantage of native
hardware support for remote puts, gets, and atomic memory
operations.

Despite these successes, at the close of HPCS, Chapel was
not at all ready to support production codes in the field. This
was not surprising given the language’s aggressive design
and modest-sized research team. However, reactions from
potential users were sufficiently positive that, in early 2013,
Cray embarked on a follow-up effort to improve Chapel
and move it towards being a production-ready language.
Colloquially, we refer to this effort as “the five-year push.”

‘This paper’s contribution is to describe the results of this
five-year effort, providing readers with an understanding of
Chapel’s progress and achievements since the end of the
HPCS program. In doing so, we directly compare the status
of Chapel version 1.17, released last month, with Chapel
version 1.7, which was released five years ago in April 2013.

Recent Progress (CUG 2018) ===~

available at chapel-lang.org

CRANY

Chapel Comes of Age:
Productive Parallelism at Scale
CUG 2018

Brad Chamberlain, Chapel Team, Cray Inc.

© 2019 Cray Inc.

=

€

56

https://chapel-lang.org/publications/cug2018-chapel.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf

et |

Y, / : T o
SAFE HARBOR <.'%éf€” SR
STATEMENT it :

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

© 2019 Cray Inc.

Wapel-lang.

QUESTIONS?

cray.com

@cray_inc

linkedin.com/company/cray-inc-

5 ¢ &

