CS 6320 – Software Engineering of Web-Based Systems

Programming Assignment #6
Simple Web Site Using HTML, JSP and Servlet Technologies

The site consists of three pages:

1. A static HTML page index.html. This page prints an attractive welcome message of your choice and contains an “enter” link to the next page.

2. A JSP page enter.jsp. This page should somewhere print the current date and time, as well as the URL string used to invoke the JSP. (Note this is dynamic content, right?) It should also generate a form, consisting of two text input fields and a submit button. The form data should be submitted using POST to

3. A Servlet named FormServlet.java. This servlet reads the submitted form data, interpreting the two text values as small integers m and n, and generates an HTML response which is either

· A polite error message if the submitted text values are not valid numbers, or if either of m or n is unreasonably large. Otherwise,

· A nicely formatted m by n multiplication table (laid out using HTML <table> mechanism, of course).

For example, if the user enters m = 4 and n = 3, the resulting table produced by FormServlet should look something like:

A 4 by 3 Multiplication Table:

	m
	n=1
	n=2
	n=3

	1
	1
	2
	3

	2
	2
	4
	6

	3
	3
	6
	9

	4
	4
	8
	12

The page does not need to contain any other links–so the only way to leave it is to use the browser’s “back” button or to load another URL explicitly.
Here is the HTML code used to generate the above table.

<center>
A 4 by 3 Multiplication Table:

<table border bgcolor="red" cols="4">

<tr>

<td>m</td><td>n=1</td><td>n=2</td><td>n=3</td>

</tr>

<tr>

<td>1</td><td>1</td><td>2</td><td>3</td>

</tr>

<tr>

<td>2</td><td>2</td><td>4</td><td>6</td>

</tr>

<tr>

<td>3</td><td>3</td><td>6</td><td>9</td>

</tr>

<tr>

<td>4</td><td>4</td><td>8</td><td>12</td>

</tr>

</table>

</center>

The functionality described above is all that is required for this site. In particular, the site does not need to be beautiful. While this is a very simple site, the functionality (such as it is) could not be provided with static pages alone.

What to Hand In

Create a zip file that contains the following files:

· index.html, the static HTML file.

· enter.jsp, the JSP file that generates your form.

· FormServlet.java, the Servlet that accepts and processes form input and generates the response.
· Email your source code files (or a link to your website) to barbara.hecker@csueastbay.edu with the subject line of [your last name] + “assign6.”
Late Policy: There is a seven day grace period. This assignment will be counted late on the eighth day after the due date. Starting with the eighth day, you will receive a 10% point deduction PER DAY for lateness.

Academic Dishonesty: All of your programming assignments need to represent your own effort. Programs should be done without consultation with other students and you should not share your source code with others. Any program submitted that is essentially the same, as someone else’s will not be accepted. ALL matching assignments will receive 0 credits.
Getting Started
You can start out by creating a “Hello World” page to make sure your IDE and Tomcat are working. (This tutorial works with NetBeans and Tomcat as the IDE and server environment. You will need to change the IDE commands for Eclipse or download NetBeans and try this out – it’s free.)
1. In the IDE (NetBeans), choose

Project > Project Manager > New

to create a new project named “HW”.

2. Create a new folder to contain your project. Assume

C:\HW
is the name of the folder.

3. Now mount the new folder in the IDE Filesystem Explorer. That is, select “Filesystems” (which should be the only thing visible in the window at this point) and right-click to get a context menu. Now choose

Mount > Local Directory

and select the “HW” folder you just created.

4. You now need to create a “Web Module” in your project. A Web Module is a standard directory structure that contains your pages and information that the server uses to locate JSP and Servlet files. The IDE will maintain this information for you. You may want to look at the IDE Help section on Web Modules. In particular, the diagram at

Developing Web Modules > Adding Items > File Location

is helpful.

Let’s assume you want to create a Web Module named “webmodule” in your project folder. You can let the IDE create the folder itself. In the Filesystem Explorer, select the HW folder and right-click to get a context menu. Choose

New > Web Module

When asked to choose a target, click “Browse” and then in the next window in the dialog choose “Create New Folder” near the upper right. Rename the new folder to “webmodule”, then click “OD” and “Finish”.

You should now be able to see webmodule in both the Filesystem Explorer and the Project Explorer.

5. Now create a static HTML page. In the Filesystem Explorer, select your new webmodule and right-click to get a context menu. Now choose

New > HTML File

Name the new file “index” (not “index.html”; the filename extension will be generated automatically; if you type “index.html” here you will get a file named “index.html.html”, which you do not want. Stupid IDE).

Click “Finish” and you will find yourself in an editor on an HTML template.

6. Create your “Hello World” message and save.
7. At any time you can choose

Project > Build Project

At this state, since your project contains no Java or JSP files, nothing needs to be done to build the project and the IDE will just tell you so.

8. In the Project Explorer, select the webmodule, right-click to get a context menu, and choose

Execute (force reload)

You may get an error message at this point, a dialog box that says something like “Cannot load file in external browser …”. Click “OK” and hope the browser comes up anyway. It usually does.

When the browser comes up, you may need to type the URL

http://localhost:8081/index.html

This should display your index.html file.
Creating a JSP Page

If you get this far, the rest is easy. The following steps will create a JSP page.

1. In the Filesystem Explorer, select webmodule, right-click to get a context menu, and choose

New > JSP

Name the new file something like “”. As before, do not explicitly type the “.jsp” extension.

Click “Finish” and you will find yourself in an editor on a JSP template.

2. Edit some contents into your new JSP file and save it.
3. Choose

Project > Build Project

To compile your JSP. If there are compilation errors, the IDE will tell you about them. By the way, note that a JSP is not required to contain any actual Java code.

4. Run your project as above: in the Project Explorer, select the webmodule, right-click to get a context menu, and choose

Execute (force reload)

By default, the browser will come up displaying index.html. You can display the JSP by entering its URL:

http://localhost:8081/enter.jsp

This should display your new JSP.

Creating a Servlet

Creating a Servlet is nearly the same as above, but there are a couple of important differences.

1. A Servlet must be in the WEB-Inf/Classes subdirectory. Thus, to create a new Servlet, get into the Filesystem Explorer and select WEB-Inf/Classes (open the little toggles as necessary). Then right-click to get a context menu, choose

New > Servlet

and proceed as above. Do not include the extension “.java” when you specify the servlet name; the IDE will provide it automatically. Assume the name is “FormServlet”. The IDE will also ask for a “Display Name” and “Description”; these are for documentation only, so enter whatever you want.

2. When you build the project and execute the webmodule, your servlet will appear in a virtual directory called (appropriately) servlet. Thus, the URL

http://localhost:8081/servlet/FormServlet

will invoke your servlet and display its output.

