Exercises 121

¢ Owner UID
e Size

¢ Number of attaches

Project—UNIX Shell and History Feature

This project consists of modifying a C program which serves as a shell interface
that accepts user commands and then executes each command in a separate
process. A shell interface provides the user a prompt after which the next
command is entered. The example below illustrates the prompt sh> and the
user’s next command: cat prog.c. This command displays the file prog.con
the terminal using the UNIX cat command.

sh> cat prog.c

One technique for implementing a shell interface is to have the parent
process first read what the user enters on the command line (i.e. cat prog.c),
and then create a separate child process that performs the command. Unless
otherwise specified, the parent process waits for the child to exit before
continuing. This is similar in functionality to what is illustrated in Figure
3.11. However, UNIX shells typically also allow the child process to run in the
background —or concurrently—as well by specifying the ampersand (&) at the
end of the command. By rewriting the above command as

sh> cat prog.c &

the parent and child processes now run concurrently.

The separate child process is created using the fork () system call and the
user’s command is executed by using one of the system calls in the exec()
family (as described in Section 3.3.1).

Simple Shell

A C program that provides the basic operations of a command line shell is
supplied in Figure 3.25. This program is composed of two functions: main()
and setup (). The setup () function reads in the user’s next command (which
can be up to 80 characters), and then parses it into separate tokens that are used
to fill the argument vector for the command to be executed. (If the command
is to be run in the background, it will end with '&’, and setup() will update
the parameter background so the main() function can act accordingly. This
program is terminated when the user enters <Control><D> and setup () then
invokes exit ().

The main() function presents the prompt COMMAND-> and then invokes
setup(), which waits for the user to enter a command. The contents of the
command entered by the user is loaded into the args array. For example, if
the user enters 1s -1 at the COMMAND-> prompt, args[0] becomes equal to
the string 1s and args[1] is set to the string to -1. (By "string”, we mean a
null-terminated, C-style string variable.)

122

Chapter 3 Processes

$incliude <stdio.h> 3
#include <unistd.h>

#define MAX LINE 80

/** setup(} reads in the next command line, separating it into
distinct tokens using whitespace as delimiters.

setup () modifies the args parameter so that it hclds pointers
to the null-terminated strings that are the tokens in the most
recent user command line as well as a NULL pointer, indicating
the end of the argument list, which comes after the string
pcinters that have been assigned to args. */

vold setup(char inputBuffer(], char *args[],int *background)

{

/** full source code available cnline */

int main (void)

{

char inputBuffer [MAX LINE]; /* buffer to hold command entered x/
int packground; /* equals 1 if a command is followed by ‘&’ */
char *args [MAX.LINE/2 + 1]; /* command line arguments ¥/

while (1) {
background = 0;
printf (" COMMAND->") ;
/* setup() calls exit() when Control-D is entered */
setup (inputBuffer, args, &background);

/** the steps are:

(1} fork a child process using fork()

(2) the child process will invoke execvp()

(2) 1if background == 1, the parent will wait,

otherwise it will invoke the setup() function again. */

Figure 3.25 Outline of simple shell.

This project is organized into two parts: (1) creating the child process and
executing the command in the child, and (2) modifying the shell to allow a
history feature.

Creating a Child Process
The first part of this project is to modify the main () function in Figure 3.25 so

that upon returning from setup (), a child process is forked and executes the
command specified by the user.

Exercises 123

As noted above, the setup () function loads the contents of the argssarray
with the command specified by the user. This args array will be passed to the
execvp() function, which has the following interface:

execvp(char *command, char *params[]);

where command represents the command to be performed and params stores the
parameters to this command. For this project, the execvp () function should be
invoked as execvp(args [0] ,args) ; be sure to check the value of background
to determine if the parent process is to wait for the child to exit or not.

Creating a History Feature

The next task is to modify the program in Figure 3.25 so that it provides a
history feature that allows the user access up to the 10 most recently entered
commands. These commands will be numbered starting at 1 and will continue
to grow larger even past 10, e.g. if the user has entered 35 commands, the 10
most recent commands should be numbered 26 to 35. This history feature will
be implementing using a few different techniques.

First, the user will be able to list these commands when he/she presses
<Control> <C>, which is the SIGINT signal. UNIX systems use signals to
notify a process that a particular event has occurred. Signals may be either
synchronous or asynchronous, depending upon the source and the reason for
the event being signaled. Once a signal has been generated by the occurrence
of a certain event (e.g., division by zero, illegal memory access, user entering
<Control> <C>, etc.), the signal is delivered to a process where it must be
handled. A process receiving a signal may handle it by one of the following
techniques:

® Ignoring the signal
® using the default signal handler, or

* providing a separate signal-handling function.

Signals may be handled by first setting certain fields in the C structure
struct sigaction and then passing this structure to the sigaction()
function. Signals are defined in the include file /usr/include/sys/signal.h.
For example, the signal SIGINT represents the signal for terminating a program
with the control sequence <Control> <C>. The default signal handler for
SIGINT is to terminate the program.

Alternatively, a program may choose to set up its own signal-handling
function by setting the sa_handler field in struct sigaction to the name of
the function which will handle the signal and then invoking the sigaction()

function, passing it (1) the signal we are setting up a handler for, and (2) a =

pointer to struct sigaction.

In Figure 3.26 we show a C program that uses the function han-
d1e_SIGINT() for handling the SIGINT signal. This function prints out the
message “Caught Control C” and then invokes the exit () function to ter-
minate the program. (We must use the write () function for performing output
rather than the more common printf() as the former is known as being

124

Chapter 3 Processes

#include <signal.h> s
#include <unistd.h>
#include <stdioc.h>

#define BUFFER_SIZE 50
char buffer [BUFFER.SIZE] ;

/* the signal handling function */
void handle SIGINT{)

{

write (STDOUT FILENO, buffer, strlen (buffer)) ;

exit (0);

}

int main{int argc, char *argv[])

{
/* set up the signal handler */
struct sigaction handler;
handler.sahandler = handle SIGINT;
sigaction (SIGINT, &handler, NULL) ;

/* generate the output message */
strepy (buffer, "Caught Control C\n");

/* loop until we receive <Control><C> */
while (1)

l

return 0;

Figure 3.26 Signal-handling program.

signal-safe, indicating it can be called from inside a signal-handling function;
such guarantees cannot be made of printf ().) This program will run in the
while (1) loop until the user enters the sequence <Control> <C>. When this
occurs, the signal-handling function handle SIGINT () is invoked.

The signal-handling function should be declared above main() and
because control can be transferred to this function at any point, no parameters
may be passed to it this function. Therefore, any data that it must access in your
program must be declared globally, i.e. at the top of the source file before your
function declarations. Before returning from the signal-handling function, it
should reissue the command prompt. :

If the user enters <Control><C>, the signal handler will output a list of the
most recent 10 commands. With this list, the user can run any of the previous
10 commands by entering r x where ‘x’ is the first letter of that command. If
more than one command starts with ‘x’, execute the most recent one. Also, the
user should be able to run the most recent command again by just entering ‘r’,
You can assume that only one space will separate the ‘'r” and the first letter and

Bibliographical Notes 125

that the letter will be followed by "\n". Again, ‘r’ alone will be immedjately
followed by the \n character if it is wished to execute the most recent command.

Any command that is executed in this fashion should be echoed on the
user’s screen and the command is also placed in the history buffer as the next
command. (r x does not go into the history list; the actual command that it
specifies, though, does.)

It the user attempts to use this history facility to run a command and the
command is detected to be erroneous, an error message should be given to the
user and the command not entered into the history list, and the execvp()
function should not be called. (It would be nice to know about improperly
formed commands that are handed off to execvp () that appear to look valid
and are not, and not include them in the history as well, but that is beyond the
capabilities of this simple shell program.) You should also modify setup() so
it returns an int signifying if has successfully created a valid args list or not,
and the main () should be updated accordingly.

Bibliographical Notes

Interprocess communication in the RC 4000 system was discussed by Brinch-
Hansen [1970]. Schlichting and Schneider [1982] discussed asynchronous
message-passing primitives. The IPC facility implemented at the user level
was described by Bershad et al. [1990].

Details of interprocess communication in UNIX systems were presented
by Gray [1997]. Barrera [1991] and Vahalia [1996] described interprocess
communication in the Mach system. Solomon and Russinovich [2000] and
Stevens [1999] outlined interprocess communication in Windows 2000 and
UNIX respectively.

The implementation of RPCs was discussed by Birrell and Nelson [1984]. A
design of a reliable RPC mechanism was described by Shrivastava and Panzieri
[1982], and Tay and Ananda [1990] presented a survey of RPCs. Stankovic
[1982] and Staunstrup [1982] discussed procedure calls versus message-passing
communication. Grosso [2002] discussed RMI in significant detail. Calvert and
Donahoo [2001] provided coverage of socket programming in Java.

