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1.1

A Y

Since you came here you probably want to learn the inner workings of computer graphics and do
all the stuff the cool kids do by yourself. Doing things by yourself is extremely fun and resourceful
and gives you a great understanding of graphics programming. However, there are a few items that
need to be taken into consideration before starting your journey.

Prerequisites

Since OpenGL is a graphics API and not a platform of its own, it requires a language to operate
in and the language of choice is C++, therefore a decent knowledge of the C++ programming
language is required for these tutorials. However, I will try to explain most of the concepts used,
including advanced C++ topics where required so it is not required to be an expert in C++, but
you should be able to write more than justa ' Hello World’ program. If you don’t have much
experience with C++ I can recommend the following free tutorials at www.learncpp.com.

Also, we will be using some math (linear algebra, geometry and trigonometry) along the
way and I will try to explain all the required concepts of the math required. However, I'm not a
mathematician by heart so even though my explanations might be easy to understand, they will most
likely be incomplete. So where necessary I will provide pointers to good resources that explain the
material in a more complete fashion. Do not be scared about the mathematical knowledge required
before starting your journey into OpenGL; almost all the concepts can be understood with a basic
mathematical background and I will try to keep the mathematics to a minimum where possible.
Most of the functionality does not even require you to understand all the math as long as you know
how to use it.


http://www.learncpp.com

1.2

1.2.1

1.2.2

1.2.3

1.24

1.2 Structure 15

Structure

LearnOpenGL is broken down into a number of general subjects. Each subject contains several
sections that each explain different concepts in large detail. Each of the subjects can be found at the
menu to your left. The subjects are taught in a linear fashion (so it is advised to start from the top
to the bottom, unless otherwise instructed) where each page explains the background theory and
the practical aspects.

To make the tutorials easier to follow and give them some added structure the site contains
boxes, code blocks, color hints and function references.

Boxes

Green boxes encompasses some notes or useful features/hints about OpenGL or the
subject at hand.

Red boxes will contain warnings or other features you have to be extra careful with.

Code

You will find plenty of small pieces of code in the website that are located in dark-gray boxes with
syntax-highlighted code as you can see below:

Since these provide only snippets of code, wherever necessary I will provide a link to the entire
source code required for a given subject.

Color hints

Some words are displayed with a different color to make it extra clear these words portray a special
meaning:

e Definition: green words specify a definition i.e. an important aspect/name of something
you're likely to hear more often.

e Program logic: red words specify function names or class names.

e Variables: blue words specify variables including all OpenGL constants.

OpenGL Function references

A particularly well appreciated feature of LearnOpenGL is the ability to review most of OpenGL’s
functions wherever they show up in the content. Whenever a function is found in the content that is
documented at the website, the function will show up with a slightly noticeable underline. You can
hover the mouse over the function and after a small interval, a pop-up window will show relevant
information about this function including a nice overview of what the function actually does. Hover
your mouse over glEnable to see it in action.

Now that you got a bit of a feel of the structure of the site, hop over to the Getting Started
section to start your journey in OpenGL!
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Before starting our journey we should first define what OpenGL actually is. OpenGL is mainly
considered an API (an Application Programming Interface) that provides us with a large set of
functions that we can use to manipulate graphics and images. However, OpenGL by itself is not an
API, but merely a specification, developed and maintained by the Khronos Group.

penGL

The OpenGL specification specifies exactly what the result/output of each function should
be and how it should perform. It is then up to the developers implementing this specification to
come up with a solution of how this function should operate. Since the OpenGL specification does
not give us implementation details, the actual developed versions of OpenGL are allowed to have
different implementations, as long as their results comply with the specification (and are thus the
same to the user).

The people developing the actual OpenGL libraries are usually the graphics card manufacturers.
Each graphics card that you buy supports specific versions of OpenGL which are the versions of
OpenGL developed specifically for that card (series). When using an Apple system the OpenGL
library is maintained by Apple themselves and under Linux there exists a combination of graphic
suppliers’ versions and hobbyists’ adaptations of these libraries. This also means that whenever
OpenGL is showing weird behavior that it shouldn’t, this is most likely the fault of the graphics
cards manufacturers (or whoever developed/maintained the library).


http://www.khronos.org/
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Since most implementations are built by graphics card manufacturers. Whenever there
is a bug in the implementation this is usually solved by updating your video card drivers;
those drivers include the newest versions of OpenGL that your card supports. This is
one of the reasons why it’s always advised to occasionally update your graphic drivers.

Khronos publicly hosts all specification documents for all the OpenGL versions. The interested
reader can find the OpenGL specification of version 3.3 (which is what we’ll be using) here which
is a good read if you want to delve into the details of OpenGL (note how they mostly just describe
results and not implementations). The specifications also provide a great reference for finding the
exact workings of its functions.

Core-profile vs Immediate mode

In the old days, using OpenGL meant developing in immediate mode (also known as the fixed
function pipeline) which was an easy-to-use method for drawing graphics. Most of the functionality
of OpenGL was hidden in the library and developers did not have much freedom at how OpenGL
does its calculations. Developers eventually got hungry for more flexibility and over time the
specifications became more flexible; developers gained more control over their graphics. The
immediate mode is really easy to use and understand, but it is also extremely inefficient. For that
reason the specification started to deprecate immediate mode functionality from version 3.2 and
started motivating developers to develop in OpenGL’s core-profile mode which is a division of
OpenGL’s specification that removed all old deprecated functionality.

When using OpenGL’s core-profile, OpenGL forces us to use modern practices. Whenever we
try to use one of OpenGL’s deprecated functions, OpenGL raises an error and stops drawing. The
advantage of learning the modern approach is that it is very flexible and efficient, but unfortunately
is also more difficult to learn. The immediate mode abstracted quite a lot from the actual operations
OpenGL performed and while it was easy to learn, it was hard to grasp how OpenGL actually
operates. The modern approach requires the developer to truly understand OpenGL and graphics
programming and while it is a bit difficult, it allows for much more flexibility, more efficiency and
most importantly a much better understanding of graphics programming.

This is also the reason why our tutorials are geared at Core-Profile OpenGL version 3.3.
Although it is more difficult, it is greatly worth the effort.

As of today, much higher versions of OpenGL are published (at the time of writing 4.5) at
which you might ask: why do I want to learn OpenGL 3.3 when OpenGL 4.5 is out? The answer to
that question is relatively simple. All future versions of OpenGL starting from 3.3 basically add
extra useful features to OpenGL without changing OpenGL’s core mechanics; the newer versions
just introduce slightly more efficient or more useful ways to accomplish the same tasks. The result
is that all concepts and techniques remain the same over the modern OpenGL versions so it is
perfectly valid to learn OpenGL 3.3. Whenever you’re ready and/or more experienced you can
easily use specific functionality from more recent OpenGL versions.


https://www.opengl.org/registry/doc/glspec33.core.20100311.withchanges.pdf
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When using functionality from the most recent version of OpenGL, only the most
modern graphics cards will be able to run your application. This is often why most
developers generally target lower versions of OpenGL and optionally enable higher
version functionality.

In some tutorials you’ll sometimes find more modern features which are noted down as such.

2.2 Extensions

2.3

A great feature of OpenGL is its support of extensions. Whenever a graphics company comes up
with a new technique or a new large optimization for rendering this is often found in an extension
implemented in the drivers. If the hardware an application runs on supports such an extension
the developer can use the functionality provided by the extension for more advanced or efficient
graphics. This way, a graphics developer can still use these new rendering techniques without
having to wait for OpenGL to include the functionality in its future versions, simply by checking if
the extension is supported by the graphics card. Often, when an extension is popular or very useful
it eventually becomes part of future OpenGL versions.

The developer then has to query whether any of these extensions are available (or use an
OpenGL extension library). This allows the developer to do things better or more efficient, based
on whether an extension is available:

if (GL_ARB_extension_name)

With OpenGL version 3.3 we rarely need an extension for most techniques, but wherever it is
necessary proper instructions are provided.

State machine

OpenGL is by itself a large state machine: a collection of variables that define how OpenGL should
currently operate. The state of OpenGL is commonly referred to as the OpenGL context. When
using OpenGL, we often change its state by setting some options, manipulating some buffers and
then render using the current context.

Whenever we tell OpenGL that we now want to draw lines instead of triangles for example,
we change the state of OpenGL by changing some context variable that sets how OpenGL should
draw. As soon as we changed the state by telling OpenGL it should draw lines, the next drawing
commands will now draw lines instead of triangles.

When working in OpenGL we will come across several state-changing functions that change
the context and several state-using functions that perform some operations based on the current
state of OpenGL. As long as you keep in mind that OpenGL is basically one large state machine,
most of its functionality will make more sense.
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Obijects

The OpenGL libraries are written in C and allows for many derivations in other languages, but in
its core it remains a C-library. Since many of C’s language-constructs do not translate that well to
other higher-level languages, OpenGL was developed with several abstractions in mind. One of
those abstractions are objects in OpenGL.

An object in OpenGL is a collection of options that represents a subset of OpenGL’s state. For
example, we could have an object that represents the settings of the drawing window; we could
then set its size, how many colors it supports and so on. One could visualize an object as a C-like
struct:

struct object_name {
GLfloat optionl;
GLuint option2;

GLchar[] name;

}i

Primitive types

Note that when working in OpenGL it is advised to use the primitive types defined
by OpenGL. Instead of writing £1oat we prefix it with GL; the same holds for int,
uint, char, bool etc. OpenGL defines the memory-layout of their GL primitives in a
cross-platform manner since some operating systems may have different memory-layouts
for their primitive types. Using OpenGL’s primitive types helps to ensure that your
application works on multiple platforms.

Whenever we want to use objects it generally looks something like this (with OpenGL’s context
visualized as a large struct):

struct OpenGL_Context {

object* object_Window_Target;

GLuint objectId = 0;
glGenObject (1, &objectId);

glBindObject (GL_WINDOW_TARGET, objectId);

glSetObjectOption (GL_WINDOW_TARGET, GL_OPTION_WINDOW_WIDTH, 800);
glSetObjectOption (GL_WINDOW_TARGET, GL_OPTION_WINDOW_HEIGHT, 600);

glBindObject (GL_WINDOW_TARGET, O0);

This little piece of code is a workflow you’ll frequently see when working in OpenGL. We first
create an object and store a reference to it as an id (the real object data is stored behind the scenes).
Then we bind the object to the target location of the context (the location of the example window
object target is defined as GL_WINDOW_TARGET). Next we set the window options and finally we
un-bind the object by setting the current object id of the window target to 0. The options we set are
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stored in the object referenced by ob ject Id and restored as soon as we bind the object back to
GL_WINDOW_TARGET.

The code samples provided so far are only approximations of how OpenGL operates;
throughout the tutorial you will come across enough actual examples.

The great thing about using these objects is that we can define more than one object in our
application, set their options and whenever we start an operation that uses OpenGL’s state, we bind
the object with our preferred settings. There are objects for example that act as container objects
for 3D model data (a house or a character) and whenever we want to draw one of them, we bind the
object containing the model data that we want to draw (we first created and set options for these
objects). Having several objects allows us to specify many models and whenever we want to draw
a specific model, we simply bind the corresponding object before drawing without setting all their
options again.

Let’s get started

You now learned a bit about OpenGL as a specification and a library, how OpenGL approximately
operates under the hood and a few custom tricks that OpenGL uses. Don’t worry if you didn’t get
all of it; throughout the tutorial we’ll walk through each step and you’ll see enough examples to
really get a grasp of OpenGL. If you’re ready for the next step we can start creating an OpenGL
context and our first window here.

Additional resources

e opengl.org: official website of OpenGL.
e OpenGL registry: hosts the OpenGL specifications and extensions for all OpenGL versions.


http://www.learnopengl.com/#!Getting-started/Creating-a-window
https://www.opengl.org/
https://www.opengl.org/registry/

3.1

The first thing we need to do to create stunning graphics is to create an OpenGL context and an
application window to draw in. However, those operations are specific per operating system and
OpenGL purposefully tries to abstract from these operations. This means we have to create a
window, define a context and handle user input all by ourselves.

Luckily, there are quite a few libraries out there that already provide the functionality we seek,
some specifically aimed at OpenGL. Those libraries save us all the operation-system specific work
and give us a window and an OpenGL context to render in. Some of the more popular libraries are
GLUT, SDL, SFML and GLFW. For our tutorials we will be using GLFW.

GLFW

GLFW is a library, written in C, specifically targeted at OpenGL providing the bare necessities re-
quired for rendering goodies to the screen. It allows us to create an OpenGL context, define window

parameters and handle user input which is all that we need.

The focus of this and the next tutorial is getting GLFW up and running, making sure it properly
creates an OpenGL context and that it properly displays a window for us to render in. The tutorial
will take a step-by-step approach in retrieving, building and linking the GLFW library. For this
tutorial we will use the Microsoft Visual Studio 2012 IDE. If you’re not using Visual Studio (or an
older version) don’t worry, the process will be similar on most other IDEs. Visual Studio 2012 (or
any other version) can be downloaded for free from Microsoft by selecting the express version.

GLFW )
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Building GLFW

GLFW can be obtained from their webpage’s download page. GLFW already has pre-compiled
binaries and header files for Visual Studio 2012/2013, but for completeness’ sake we will compile
GLFW ourselves from the source code. So let’s download the Source package.

If you’re using their pre-compiled binaries, be sure to download the 32 bit versions and
not the 64 bit versions (unless you know exactly what you're doing). The 64 bit versions
have reportedly been causing weird errors for most readers.

Once you’ve downloaded the source package, extract it and open its content. We are only
interested in a few items:

e The resulting library from compilation.

e The include folder.
Compiling the library from the source code guarantees that the resulting library is perfectly tailored
for your CPU/OS, a luxury pre-compiled binaries do not always provide (sometimes, pre-compiled
binaries are not available for your system). The problem with providing source code to the open
world however is that not everyone uses the same IDE for developing their application, which
means the project/solution files provided may not be compatible with other people’s IDEs. So
people then have to build their own project/solution with the given .c/.cpp and .h/.hpp files, which
is cumbersome. Exactly for those reasons there is a tool called CMake.

CMake

CMake is a tool that can generate project/solution files of the user’s choice (e.g. Visual Studio,
Code::Blocks, Eclipse) from a collection of source code files using pre-defined CMake scripts. This
allows us to generate a Visual Studio 2012 project file from GLFW’s source package which we can
use to compile the library. First we need to download and install CMake that can be found on their
download page. I used the Win32 Installer.

Once CMake is installed you can choose to run CMake from the command line or via their
GUL Since we’re not trying to overcomplicate things we’re going to use the GUL. CMake requires
a source code folder and a destination folder for the binaries. As the source code folder we’re going
to choose the root folder of the downloaded GLFW source package and for the build folder we’re
creating a new directory build and then select that directory.
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Once the source and destination folders have been set, click the Configure button so CMake
can read the required settings and the source code. We then have to choose the generator for the


http://www.glfw.org/download.html
http://www.cmake.org/cmake/resources/software.html
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project and since we’re using Visual Studio 2012 we will choose the Visual Studio 11 option
(Visual Studio 2012 is also known as Visual Studio 11). CMake will then display the possible
build options to configure the resulting library. We can leave them to their default values and click
Configure again to store the settings. Once the settings have been set, we can click Generate
and the resulting project files will be generated in your build folder.

Compilation

In the build folder a file named GLFW. s1n can be found and we open it with Visual Studio 2012.
Since CMake generated a project file that already contains the proper configuration settings we can
hitthe Build Solution button and the resulting compiled library can be found in src/Debug
named glfw3.1ib (note, we're using version 3).

Once the library is generated we need to make sure the IDE knows where to find the library

and the include files. There are two approaches in doing this:

1. We find the /1ib and /include folders of the IDE/Compiler and add the content of
GLFW’s include folder to the IDE’s /include folder and similarly add g1 fw3.1ib
to the IDE’s /1ib folder. This works, but this is not the recommended approach. It’s hard
to keep track of your library/include files and a new installation of your IDE/Compiler will
result in lost files.

2. The recommended approach is to create a new set of directories at a location of your choice
that contains all the header files/libraries from third parties to which you can refer to using
your IDE/Compiler. I personally use a single folder that contains a Libs and Include
folder where I store all my library and header files respectively for OpenGL projects. Now
all my third party libraries are organized within a single location (that could be shared across
multiple computers). The requirement is however, that each time we create a new project we
have to tell the IDE where to find those directories.

Once the required files are stored at a location of your choice, we can start creating our first OpenGL
project with GLFW!

Ouir first project

First, let’s open up Visual Studio and create a new project. Choose Visual C++ if multiple options
are given and take the Empty Project (don’t forget to give your project a suitable name). We
now have a workspace to create our very first OpenGL application!

Linking
In order for the project to use GLFW we need to link the library with our project. This can be done
by specifying we want to use g1 fw3 . 1ib in the linker settings, but our project does not yet know

where to find gl fw3.1ib since we pasted our third party libraries to different directories. We
thus need to add those directories to the project first.

We can add those directories (where VS should search for libraries/include-files) by going to
the project properties (right-click the project name in the solution explorer) and then go to VC++
Directories as can be seen in the image below:
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Configuration: | Active(Debug) v | Platform: | Active(Win32) hd Configuration Manager...
> Commeon Properties 4 General
a Configuration Properties Executable Directories S(VCInstallDir)bin; S (Wind ows5DE_ExecutablePath_x86);5(VSInstallDi
General Include Directories C:\Users\Joey\Dropbox\OpenGLiLibraries\Includes;$ (IncludePat
Debugging Reference Directories S(VCInstallDir)atimfc\lib; 5V ClnstallDir)lib
Library Directories C:\Users\Joey\Dropbox\OpenGL\Libraries\Libs;$(LibraryPath)
> GG Library WinRT Directories §(WindowsSDK_MetadataPath)
> Linker Source Directories S(VCInstallDir)atimfc\srcmfc SV ClnstallDir)atlmf c\srcmfem; 5(VC
» Manifest Tool Exclude Directories $(VCInstaliDinlinclude;S(VClnstallDinatimfc\include;S(WindowsSDK|

From there on out you can add your own directories to let the project know where to search.
This can be done by manually inserting it into the text or clicking the appropriate location string
and selecting the <Edit..> option where you’ll see the following image for the Include
Directories case:

Inherited values:

SVCInstaliDirjinclude
S(VCInstaliDiratimfelinclude
S{WindewsSDK_IncludePath)

[#] Inhesit from parent or project defaults Macros>>

oK Cancel

Here you can add as many extra directories as you’d like and from that point on the IDE will
also search those directories when searching for header files, so as soon as your Include folder
from GLFW is included, you will be able to find all the header files for GLFW by including
<GLFW/ . .>. The same applies for the library directories.

Since VS can now find all the required files we can finally link GLFW to the project by going
to the Linker tab and selecting input:

Configuration: | Active(Debug) v | Platform: | Active(Win32) A Configuration Manager...

> Common Properties Additional Dependencies opengl32.lib;glfw3.lib;%(AdditionalDependencies)
a Configuration Properties Ignore All Default Libraries
General Ignore Specific Default Libraries
Debugging Maodule Definition File
VC++ Directories Add Module to Assembly
> CfCr+ Embed Managed Resource File
4 Linker Force Symbol References
General Delay Loaded Dlls
InpuT: . Assembly Link Resource
Manifest File
Debugging

To then link to a library you’d have to specify the name of the library to the linker. Since the
library name is g1fw3.1ib, we add that to the Additional Dependencies field (either
manually or using the <Edit . .> option) and from that point on GLFW will be linked when we
compile. Aside from GLFW you should also add a link entry to the OpenGL library, but this might
differ per operating system:

OpenGL library on Windows

If you’re on Windows the OpenGL library opengl32 . 1ib comes with the Microsoft SDK which
is installed by default when you install Visual Studio. Since this tutorial uses the VS compiler and
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is on windows we add opengl132.11ib to the linker settings.

OpenGlL library on Linux

On Linux systems you need to link to the 1ibGL. so library by adding —1GL to your linker
settings. If you can’t find the library you probably need to install any of the Mesa, NVidia or AMD
dev packages, but I won’t delve into the details since this is platform-specific (plus I’'m not a Linux
expert).

Then, once you’ve added both the GLFW and OpenGL library to the linker settings you can
include the headers of GLFW as follows:

#include <GLFW\glfw3.h>

This concludes the setup and configuration of GLFW.

GLEW

We’re still not quite there yet, since there is one other thing we still need to do. Since OpenGL
is a standard/specification it is up to the driver manufacturer to implement the specification to a
driver that the specific graphics card supports. Since there are many different versions of OpenGL
drivers, the location of most of its functions is not known at compile-time and needs to be queried
at run-time. It is then the task of the developer to retrieve the location of the functions he/she needs
and store them in function pointers for later use. Retrieving those locations is OS-specific and in
Windows it looks something like this:

typedef void (*GL_GENBUFFERS) (GLsizei, GLuintx);

GL_GENBUFFERS glGenBuffers = (GL_GENBUFFERS)wglGetProcAddress (
)i

GLuint buffer;
glGenBuffers (1, &buffer);

As you can see the code looks complex and it’s a cumbersome process to do this for each
function you might need that is not yet declared. Thankfully, there are libraries for this purpose as
well where GLEW is the most popular and up-to-date library.

Building and linking GLEW

GLEW stands for OpenGL Extension Wrangler Library and manages all that cumbersome work we
talked about. Since GLEW is again a library, we need to build/link it to our project. GLEW can be
downloaded from their download page and you can either choose to use their pre-compiled binaries
if your target platform is listed or compile them from the source as we’ve done with GLFW. Again,
use GLEW’s 32 bit libraries if you’re not sure what you’re doing.

We will be using the static version of GLEW which is glew32s.11ib (notice the §éxtension)
so add the library to your library folder and also add the include content to your include folder.


http://glew.sourceforge.net/index.html
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Then we can link GLEW to the project by adding glew32s.11ib to the linker settings in VS.
Note that GLFW3 is also (by default) built as a static library.

Static linking of a library means that during compilation the library will be integrated in
your binary file. This has the advantage that you do not need to keep track of extra files,
but only need to release your single binary. The disadvantage is that your executable
becomes larger and when a library has an updated version you need to re-compile your
entire application.

Dynamic linking of a library is done via . d11 files or . so files and then the library code
and your binary code stays separated, making your binary smaller and updates easier.
The disadvantage is that you’d have to release your DLLs with the final application.

If you want to use GLEW via their static library we have to define a pre-processor variable
GLEW_STATIC before including GLEW.

GLEW_STATIC

<GL/glew.h>

If you want to link dynamically you can omit the GLEW_STATIC define. Keep in mind that if
you want to link dynamically you’ll also have to copy the .DLL to the same folder of your binary.

For Linux users compiling with GCC the following command line options might help you
compile the project —-1GLEW -1glfw3 —-1GL -1X11 -lpthread -1Xrandr
—1Xi. Not correctly linking the corresponding libraries will generate many undefined
reference errors.

Now that we successfully compiled and linked both GLFW and GLEW we’re set to go for
the next tutorial where we’ll discuss how we can actually use GLFW and GLEW to configure an
OpenGL context and spawn a window. Be sure to check that all your include and library directories
are correct and that the library names in the linker settings match with the corresponding libraries.
If you’re still stuck, check the comments, check any of the additional resources or ask your question
below.

3.6 Additional resources

e Building applications: provides great info about the compilation/linking process of your
application and a large list of possible errors (plus solutions) that might come up.

o GLFW with Code::Blocks: building GLFW in Code::Blocks IDE.

e Running CMake: short overview of how to run CMake on both Windows and Linux.

e Writing a build system under Linux: an autotools tutorial by Wouter Verholst on how to write
a build system in Linux, specifically targeted for these tutorials.

e Polytonic/Glitter: a simple boilerplate project that comes pre-configured with all relevant
libraries; great for if you want a sample project for the LearnOpenGL tutorials without the
hassle of having to compile all the libraries yourself.


http://www.learnopengl.com/#!Getting-Started/Hello-Window
http://www.opengl-tutorial.org/miscellaneous/building-your-own-c-application/
http://wiki.codeblocks.org/index.php?title=Using_GLFW_with_Code::Blocks
http://www.cmake.org/runningcmake/
demo/autotools_tutorial.txt
https://github.com/Polytonic/Glitter

Let’s see if we can get GLFW up and running. First, create a . cpp file and add the following
includes to the top of your newly created file. Note that we define GLEW_STATIC since we're
using the static version of the GLEW library.

fine GLEW_STATIC
clude <GL/glew.h>

#include <GLFW/glfw3.h>

Be sure to include GLEW before GLFW. The include file for GLEW contains the correct
OpenGL header includes (like GL /gl . h) so including GLEW before other header files
that require OpenGL does the trick.

Next, we create the ma in function where we will instantiate the GLFW window:

int main ()

{
glfwInit ();
glfwWindowHint (GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint (GLEFW_CONTEXT_ VERSION_MINOR, 3);

(
(
glfwWindowHint (GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE) ;
glfwWindowHint (GLFW_RESIZABLE, GL_FALSE);

return 0;

In the main function we first initialize GLFW with g1 fwInit, after which we can configure
GLFW using gl fwiWindowHint. The first argument of g1 fwWindowHint tells us what option
we want to configure, where we can select the option from a large enum of possible options
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prefixed with GLFW_. The second argument is an integer that sets the value of our option. A list of
all the possible options and its corresponding values can be found at GLFW’s window handling
documentation. If you try to run the application now and it gives a lot of undefined reference errors
it means you didn’t successfully link the GLFW library.

Since the focus of this website is on OpenGL version 3.3 we’d like to tell GLFW that 3.3 is
the OpenGL version we want to use. This way GLFW can make the proper arrangements when
creating the OpenGL context. This ensures that when a user does not have the proper OpenGL
version GLFW fails to run. We set the major and minor version both to 3. We also tell GLFW
we want to explicitly use the core-profile and that the window should not be resizable by a user.
Telling GLFW explicitly that we want to use the core-profile will resultin invalid operation
errors whenever we call one of OpenGL'’s legacy functions, which is a nice reminder when we
accidentally use old functionality where we’d rather stay away from. Note that on Mac OS X you
also need to add g1 fwWindowHint (GLFW_OPENGIL_FORWARD_COMPAT, GL_TRUE); to
your initialization code for it to work.

Make sure you have OpenGL versions 3.3 or higher installed on your system/hardware
otherwise the application will crash or display undefined behavior. To find the OpenGL
version on your machine either call glxinfo on Linux machines or use a utility like the
OpenGL Extension Viewer for Windows. If your supported version is lower try to check
if your video card supports OpenGL 3.3+ (otherwise it’s really old) and/or update your
drivers.

Next we’re required to create a window object. This window object holds all the windowing
data and is used quite frequently by GLFW’s other functions.

GLFWwindowx window = glfwCreateWindow (800, 600, , nullptr,
nullptr) ;
f (window == nullptr)

i
{

std::cout << << std::endl;
glfwTerminate () ;
return -1;

}

glfwMakeContextCurrent (window) ;

The glfwCreateWindow function requires the window width and height as its first two
arguments respectively. The third argument allows us to create a name for the window; for now we
call it "LearnOpenGL" but you're allowed to name it however you like. We can ignore the last
2 parameters. The function returns a GLFWwindow object that we’ll later need for other GLFW
operations. After that we tell GLFW to make the context of our window the main context on the
current thread.

GLEW

In the previous tutorial we mentioned that GLEW manages function pointers for OpenGL so we
want to initialize GLEW before we call any OpenGL functions.

glewExperimental = GL_TRUE;


http://www.glfw.org/docs/latest/window.html#window_hints
http://download.cnet.com/OpenGL-Extensions-Viewer/3000-18487_4-34442.html
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(glewInit () != GLEW_OK)

std::cout << << std::endl;
1rn —-1;

Notice that we set the glewExperimental variable to GL_TRUE before initializing GLEW.
Setting glewExperimental to true ensures GLEW uses more modern techniques for managing
OpenGL functionality. Leaving it to its default value of GL_FALSE might give issues when using
the core profile of OpenGL.

Viewport

Before we can start rendering we have to do one last thing. We have to tell OpenGL the size of the
rendering window so OpenGL knows how we want to display the data and coordinates with respect
to the window. We can set those dimensions via the glViewport function:

glviewport (0, 0, 800, 600);

The first two parameters set the location of the lower left corner of the window. The third
and fourth parameter set the width and height of the rendering window, which is the same as the
GLFW window. We could actually set this at values smaller than the GLFW dimensions; then all
the OpenGL rendering would be displayed in a smaller window and we could for example display
other elements outside the OpenGL viewport.

Behind the scenes OpenGL uses the data specified via glViewport to transform the 2D
coordinates it processed to coordinates on your screen. For example, a processed point of
location (-0.5,0.5) would (as its final transformation) be mapped to (200, 450)
in screen coordinates. Note that processed coordinates in OpenGL are between -1 and 1
so we effectively map from the range (-1 to 1) to (0, 800) and (0, 600).

Ready your engines

We don’t want the application to draw a single image and then immediately quit and close the
window. We want the application to keep drawing images and handling user input until the program
has been explicitly told to stop. For this reason we have to create a while loop, that we now call the
game loop, that keeps on running until we tell GLFW to stop. The following code shows a very
simple game loop:

while (!glfwWindowShouldClose (window) )
{
glfwPollEvents();

glfwSwapBuffers (window) ;

The gl fwWindowShouldClose function checks at the start of each loop iteration if GLFW
has been instructed to close, if so, the function returns t rue and the game loop stops running, after
which we can close the application.
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The glfwPollEvents function checks if any events are triggered (like keyboard input or
mouse movement events) and calls the corresponding functions (which we can set via callback
methods). We usually call eventprocessing functions at the start of a loop iteration.

The gl fwSwapBuf fers will swap the color buffer (a large buffer that contains color values
for each pixel in GLFW’s window) that has been used to draw in during this iteration and show it
as output to the screen.

Double buffer

When an application draws in a single buffer the resulting image might display flickering
issues. This is because the resulting output image is not drawn in an instant, but drawn
pixel by pixel and usually from left to right and top to bottom. Because these images are
not displayed at an instant to the user, but rather via a step by step generation the result
may contain quite a few artifacts. To circumvent these issues, windowing applications
apply a double buffer for rendering. The front buffer contains the final output image
that is shown at the screen, while all the rendering commands draw to the back buffer.
As soon as all the rendering commands are finished we swap the back buffer to the front
buffer so the image is instantly displayed to the user, removing all the aforementioned
artifacts.

One last thing

As soon as we exit the game loop we would like to properly clean/delete all resources that were
allocated. We can do this via the g1 fwTerminate function that we call at the end of the main
function.

glfwTerminate () ;

return 0;

This will clean up all the resources and properly exit the application. Now try to compile your
application and if everything went well you should see the following output:

o LeamOpenGL - olEN|
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If it’s a very dull and boring black image, you did things right! If you didn’t get the right image
or you’re confused as to how everything fits together, check the full source code here.

If you have issues compiling the application, first make sure all your linker options are set
correctly and that you properly included the right directories in your IDE (as explained in the
previous tutorial). Also make sure your code is correct; you can easily verify it by looking at the
source code. If you still have any issues, post a comment below with your issue and me and/or the
community will try to help you.

Input

We also want to have some form of input control in GLFW and we can achieve this using GLFW’s
callback functions. A callback function is basically a function pointer that you can set that
GLFW can call at an appropriate time. One of those callback functions that we can set is the
KeyCallback function, which should be called whenever the user interacts with the keyboard.
The prototype of this function is as follows:

key_callback (GLFWwindow* window, int key, int scancode, int action,

int mode);

The key input function takes a GLFWwindow as its first argument, an integer that specifies the
key pressed, an action that specifies if the key is pressed or released and an integer representing
some bit flags to tell youif shift, control, alt or super keys have been pressed. Whenever
a user pressed a key, GLFW calls this function and fills in the proper arguments for you to process.

1 key_callback (GLEFWwindowx window, int key, int scancode, int action,

int mode)

if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose (window, GL_TRUE) ;

In our (newly created) key_callback function we check if the key pressed equals the escape
key and if it was pressed (not released) we close GLFW by setting its WindowShouldClose
property to t rue using gl fwSetwindowShouldClose. The next condition check of the main
while loop will then fail and the application closes.

The last thing left to do is register the function with the proper callback via GLFW. This is done
as follows:

glfwSetKeyCallback (window, key_callback);

There are many callbacks functions we can set to register our own functions. For example, we
can make a callback function to process window size changes, to process error messages etc. We
register the callback functions after we’ve created the window and before the game loop is initiated.


http://learnopengl.com/code_viewer.php?code=getting-started/hellowindow
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Rendering

We want to place all the rendering commands in the game loop, since we want to execute all the
rendering commands each iteration of the loop. This would look a bit like this:

ile(!glfwWindowShouldClose (window) )

glfwPollEvents () ;

glfwSwapBuffers (window) ;

Just to test if things actually work we want to clear the screen with a color of our choice.
At the start of each render iteration we always want to clear the screen otherwise we would
still see the results from the previous iteration (this could be the effect you’re looking for, but
usually you don’t). We can clear the screen’s color buffer using the g1Clear function where
we pass in buffer bits to specify which buffer we would like to clear. The possible bits we can set are
GL_COLOR_BUFFER_BIT,GL_DEPTH_BUFFER_BITand GL_STENCIL_BUFFER_BIT. Right
now we only care about the color values so we only clear the color buffer.

’

glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
)

glClear (GL_COLOR_BUFFER_BIT

Note that we also set a color via glClearColor to clear the screen with. Whenever we
call glClear and clear the color buffer, the entire colorbuffer will be filled with the color as
configured by g1lClearColor. This will result in a dark green-blueish color.

As you might recall from the OpenGL tutorial, the g1ClearColor function is a state-
setting function and g1lClear is a state-using function in that it uses the current state
to retrieve the clearing color from.
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The full source code of the application can be found here.

So right now we got everything ready to fill the game loop with lots of rendering calls, but
that’s for the next tutorial. I think we’ve been rambling long enough here.


http://learnopengl.com/code_viewer.php?code=getting-started/hellowindow2
http://www.learnopengl.com/#!Getting-started/Hello-Triangle

-

In OpenGL everything is in 3D space, but the screen and window are a 2D array of pixels so a large
part of OpenGL’s work is about transforming all 3D coordinates to 2D pixels that fit on your screen.
The process of transforming 3D coordinates to 2D coordinates is managed by the graphics pipeline
of OpenGL. The graphics pipeline can be divided into two large parts: the first transforms your
3D coordinates into 2D coordinates and the second part transforms the 2D coordinates into actual
colored pixels. In this tutorial we’ll briefly discuss the graphics pipeline and how we can use it to
our advantage to create some fancy pixels.

There is a difference between a 2D coordinate and a pixel. A 2D coordinate is a
very precise representation of where a point is in 2D space, while a 2D pixel is an
approximation of that point limited by the resolution of your screen/window.

The graphics pipeline takes as input a set of 3D coordinates and transforms these to colored
2D pixels on your screen. The graphics pipeline can be divided into several steps where each step
requires the output of the previous step as its input. All of these steps are highly specialized (they
have one specific function) and can easily be executed in parallel. Because of their parallel nature
most graphics cards of today have thousands of small processing cores to quickly process your data
within the graphics pipeline by running small programs on the GPU for each step of the pipeline.
These small programs are called shaders.

Some of these shaders are configurable by the developer which allows us to write our own
shaders to replace the existing default shaders. This gives us much more fine-grained control over
specific parts of the pipeline and because they run on the GPU, they can also save us valuable CPU
time. Shaders are written in the OpenGL Shading Language (GLSL) and we’ll delve more into that
in the next tutorial.

Below you’ll find an abstract representation of all the stages of the graphics pipeline. Note that
the blue sections represent sections where we can inject our own shaders.
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As you can see the graphics pipeline contains a large number of sections that each handle one
specific part of converting your vertex data to a fully rendered pixel. We will briefly explain each
part of the pipeline in a simplified way to give you a good overview of how the pipeline operates.

As input to the graphics pipeline we pass in a list of three 3D coordinates that should form a
triangle in an array here called Vertex Data; this vertex data is a collection of vertices. A vertex
is basically a collection of data per 3D coordinate. This vertex’s data is represented using vertex
attributes that can contain any data we’d like but for simplicity’s sake let’s assume that each vertex
consists of just a 3D position and some color value.

In order for OpenGL to know what to make of your collection of coordinates and color
values OpenGL requires you to hint what kind of render types you want to form with the
data. Do we want the data rendered as a collection of points, a collection of triangles or
perhaps just one long line? Those hints are called primitives and are given to OpenGL
while calling any of the drawing commands. Some of these hints are GL_POINTS,
GL_TRIANGLES and GI,_LINE_STRIP.

The first part of the pipeline is the vertex shader that takes as input a single vertex. The main
purpose of the vertex shader is to transform 3D coordinates into different 3D coordinates (more on
that later) and the vertex shader allows us to do some basic processing on the vertex attributes.

The primitive assembly stage takes as input all the vertices (or vertex if GL_POINTS is chosen)
from the vertex shader that form a primitive and assembles all the point(s) in the primitive shape
given; in this case a triangle.

The output of the primitive assembly stage is passed to the geometry shader. The geometry
shader takes as input a collection of vertices that form a primitive and has the ability to generate
other shapes by emitting new vertices to form new (or other) primitive(s). In this example case, it
generates a second triangle out of the given shape.

The tessellation shaders have the ability to subdivide the given primitive into many smaller
primitives. This allows you to for example create much smoother environments by creating more

triangles the smaller the distance to the player.

The output of the tessellation shaders is then passed on to the rasterization stage where it maps
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the resulting primitive to the corresponding pixels on the final screen, resulting in fragments for the
fragment shader to use. Before the fragment shaders runs, clipping is performed. Clipping discards
any fragments that are outside your view, increasing performance.

A fragment in OpenGL is all the data required for OpenGL to render a single pixel.

The main purpose of the fragment shader is to calculate the final color of a pixel and this
is usually the stage where all the advanced OpenGL effects occur. Usually the fragment shader
contains data about the 3D scene that it can use to calculate the final pixel color (like lights, shadows,
color of the light and so on).

After all the corresponding color values have been determined, the final object will then pass
through one more stage that we call the alpha test and blending stage. This stage checks the
corresponding depth (and stencil) value (we’ll get to those later) of the fragment and uses those
to check if the resulting fragment is in front or behind other objects and should be discarded
accordingly. The stage also checks for alpha values (alpha values define the opacity of an object)
and blends the objects accordingly. So even if a pixel output color is calculated in the fragment
shader, the final pixel color could still be something entirely different when rendering multiple
triangles.

As you can see, the graphics pipeline is quite a complex whole and contains many configurable
parts. However, for almost all the cases we only have to work with the vertex and fragment shader.
The geometry shader and the tessellation shaders are optional and usually left to their default
shaders.

In Modern OpenGL we are required to define at least a vertex and fragment shader of our own
(there are no default vertex/fragment shaders on the GPU). For this reason it is often quite difficult
to start learning Modern OpenGL since a great deal of knowledge is required before being able to
render your first triangle. Once you do get to finally render your triangle at the end of this chapter
you will end up knowing a lot more about graphics programming.

Vertex input

To start drawing something we have to first give OpenGL some input vertex data. OpenGL is a 3D
graphics library so all coordinates that we specify in OpenGL are in 3D (%, y and z coordinate).
OpenGL doesn’t simply transform all your 3D coordinates to 2D pixels on your screen; OpenGL
only processes 3D coordinates when they’re in a specific range between —1.0 and 1.0 on all 3
axes (x, y and z). All coordinates within this so called normalized device coordinates range will
end up visible on your screen (and all coordinates outside this region won’t).

Because we want to render a single triangle we want to specify a total of three vertices with
each vertex having a 3D position. We define them in normalized device coordinates (the visible
region of OpenGL) in a GLf1loat array:

GLfloat vertices[] = {
-0.5f, -0.5f, 0.0f,

0.5E, =0.5&, 0,0:%,
0.0£, 0.5f, 0.0f
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Because OpenGL works in 3D space we render a 2D triangle with each vertex having a z
coordinate of 0. 0. This way the depth of the triangle remains the same making it look like it’s 2D.

Normalized Device Coordinates (NDC)

Once your vertex coordinates have been processed in the vertex shader, they should

be in normalized device coordinates which is a small space where the %, y and z

values vary from —1.0 to 1.0. Any coordinates that fall outside this range will

be discarded/clipped and won’t be visible on your screen. Below you can see the

triangle we specified within normalized device coordinates (ignoring the z axis):
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Unlike usual screen coordinates the positive y-axis points in the up-direction and the
(0, 0) coordinates are at the center of the graph, instead of top-left. Eventually you
want all the (transformed) coordinates to end up in this coordinate space, otherwise they
won’t be visible.

Your NDC coordinates will then be transformed to screen-space coordinates via the
viewport transform using the data you provided with glviewport. The resulting
screen-space coordinates are then transformed to fragments as inputs to your fragment
shader.

With the vertex data defined we’d like to send it as input to the first process of the graphics
pipeline: the vertex shader. This is done by creating memory on the GPU where we store the vertex
data, configure how OpenGL should interpret the memory and specify how to send the data to the
graphics card. The vertex shader then processes as much vertices as we tell it to from its memory.

We manage this memory via so called vertex buffer objects (VBO) that can store a large number
of vertices in the GPU’s memory. The advantage of using those buffer objects is that we can send
large batches of data all at once to the graphics card without having to send data a vertex a time.
Sending data to the graphics card from the CPU is relatively slow, so wherever we can we try to
send as much data as possible at once. Once the data is in the graphics card’s memory the vertex
shader has almost instant access to the vertices making it extremely fast

A vertex buffer object is our first occurrence of an OpenGL object as we’ve discussed in the
OpenGL tutorial. Just like any object in OpenGL this buffer has a unique ID corresponding to that
buffer, so we can generate one with a buffer ID using the g1 GenBuf fers function:

GLuint VBO;

glGenBuffers (1, &VBO);
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OpenGL has many types of buffer objects and the buffer type of a vertex buffer object is
GL_ARRAY_BUFFER. OpenGL allows us to bind to several buffers at once as long as they have
a different buffer type. We can bind the newly created buffer to the GL_ARRAY_BUFFER target
with the g1BindBuf fer function:

glBindBuffer (GL_ARRAY_BUFFER, VBO) ;

From that point on any buffer calls we make (on the GL_ARRAY_BUFFER target) will be used
to configure the currently bound buffer, which is VBO. Then we can make a call to g1BufferData
function that copies the previously defined vertex data into the buffer’s memory:

glBufferData (GL_ARRAY_BUFFER, sizeof (vertices), vertices, GL_STATIC_DRAW) ; ‘

glBufferData is a function specifically targeted to copy user-defined data into the currently
bound buffer. Its first argument is the type of the buffer we want to copy data into: the vertex buffer
object currently bound to the GL_ARRAY_BUFFER target. The second argument specifies the size
of the data (in bytes) we want to pass to the buffer; a simple sizeof of the vertex data suffices.
The third parameter is the actual data we want to send.

The fourth parameter specifies how we want the graphics card to manage the given data. This
can take 3 forms:

e GIL_STATIC_DRAW: the data will most likely not change at all or very rarely.

e GI_DYNAMIC_DRAW: the data is likely to change a lot.

e GL_STREAM_DRAW: the data will change every time it is drawn.

The position data of the triangle does not change and stays the same for every render call so its
usage type should best be GL_STATIC_DRAW. If, for instance, one would have a buffer with data
that is likely to change frequently, a usage type of GL_DYNAMIC_DRAW or GL,_STREAM_DRAW
ensures the graphics card will place the data in memory that allows for faster writes.

As of now we stored the vertex data within memory on the graphics card as managed by a
vertex buffer object named VBO. Next we want to create a vertex and fragment shader that actually
processes this data, so let’s start building those.

Vertex shader

The vertex shader is one of the shaders that are programmable by people like us. Modern OpenGL
requires that we at least set up a vertex and fragment shader if we want to do some rendering so we
will briefly introduce shaders and configure two very simple shaders for drawing our first triangle.
In the next tutorial we’ll discuss shaders in more detail.

The first thing we need to do is write the vertex shader in the shader language GLSL (OpenGL

Shading Language) and then compile this shader so we can use it in our application. Below you’ll
find the source code of a very basic vertex shader in GLSL:

#version 330 core

layout (location = 0) in vec3 position;
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d main ()

gl_Position = vecd (position.x, position.y, position.z,

As you can see, GLSL looks similar to C. Each shader begins with a declaration of its version.
Since OpenGL 3.3 and higher the version numbers of GLSL match the version of OpenGL (GLSL
version 420 corresponds to OpenGL version 4.2 for example). We also explicitly mention we’re
using core profile functionality.

Next we declare all the input vertex attributes in the vertex shader with the in keyword. Right
now we only care about position data so we only need a single vertex attribute. GLSL has a vector
datatype that contains 1 to 4 floats based on its postfix digit. Since each vertex has a 3D coordinate
we create a vec3 input variable with the name position. We also specifically set the location
of the input variable via layout (location = 0) and you’ll later see that why we’re going
to need that location.

Vector

In graphics programming we use the mathematical concept of a vector quite often,
since it neatly represents positions/directions in any space and has useful mathematical
properties. A vector in GLSL has a maximum size of 4 and each of its values can be
retrieved via vec.x, vec.y, vec.z and vec.w respectively where each of them
represents a coordinate in space. Note that the vec.w component is not used as a
position in space (we’re dealing with 3D, not 4D) but is used for something called
perspective division. We’ll discuss vectors in much greater depth in a later tutorial.

To set the output of the vertex shader we have to assign the position data to the predefined
gl_Position variable which is a vec4 behind the scenes. At the end of the main function,
whatever we set g1_Position to will be used as the output of the vertex shader. Since our input
is a vector of size 3 we have to cast this to a vector of size 4. We can do this by inserting the vec3
values inside the constructor of vec4 and set its w component to 1 . 0 f (we will explain why in a
later tutorial).

The current vertex shader is probably the most simple vertex shader we can imagine because
we did no processing whatsoever on the input data and simply forwarded it to the shader’s output.
In real applications the input data is usually not already in normalized device coordinates so we
first have to transform the input data to coordinates that fall within OpenGL’s visible region

Compiling a shader

We wrote the source code for the vertex shader, but in order for OpenGL to use the shader it has to
dynamically compile it at run-time from its source code.

The first thing we need to do is create a shader object, again referenced by an ID. So we store
the vertex shader as a GLuint and create the shader with g1CreateShader:

GLuint vertexShader;

vertexShader = glCreateShader (GL_VERTEX_SHADER) ;
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We provide the type of shader we want to create as an argument to g1CreateShader. Since
we’re creating a vertex shader we pass in GL_VERTEX_SHADER.

Next we attach the shader source code to the shader object and compile the shader:

glShaderSource (vertexShader, 1, &vertexShaderSource, NULL);

glCompileShader (vertexShader) ;

The glShaderSource function takes the shader object to compile to as its first argument.
The second argument specifies how many strings we’re passing as source code, which is only
one. The third parameter is the actual source code of the vertex shader and we can leave the 4th
parameter to NULL.

You probably want to check if compilation was successful after the call to
glCompileShader and if not, what errors were found so you can fix those. Checking
for compile-time errors is accomplished as follows:

GLint success;
GLchar infolLog[512];

glGetShaderiv (vertexShader, GL_COMPILE_STATUS, &success);

First we define an integer to indicate success and a storage container for the error mes-
sages (if any). Then we check if compilation was successful with g1Get Shaderiv. If
compilation failed, we should retrieve the error message with glGet ShaderInfolog
and print the error message.

if (!success)

{
glGetShaderInfolog (vertexShader, 512, NULL, infolog);
std::cout <<

infolog << std::endl;

If no errors were detected while compiling the vertex shader it is now compiled.

5.4 Fragment shader

The fragment shader is the second and final shader we’re going to create for rendering a triangle.
The fragment shader is all about calculating the color output of your pixels. To keep things simple
the fragment shader will always output an orange-ish color.
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Colors in computer graphics are represented as an array of 4 values: the red, green, blue
and alpha (opacity) component, commonly abbreviated to RGBA. When defining a color
in OpenGL or GLSL we set the strength of each component to a value between 0. 0
and 1. 0. If, for example, we would setred to 1. 0f and green to 1.0f we would get a
mixture of both colors and get the color yellow. Given those 3 color components we can
generate over 16 million different colors!

#version 330 core

out vec4 color;

id main ()

color = vecd4(1.0f, 0.5f, 0.2f, 1.0f);

The fragment shader only requires one output variable and that is a vector of size 4 that defines
the final color output that we should calculate ourselves. We can declare output values with the
out keyword, that we here promptly named color. Next we simply assign a vec4 to the color
output as an orange color with an alpha value of 1.0 (1. 0 being completely opaque).

The process for compiling a fragment shader is similar to the vertex shader, although this time
we use the GL_FRAGMENT_SHADER constant as the shader type:

GLuint fragmentShader;
fragmentShader = glCreateShader (GL_FRAGMENT_SHADER) ;
1, &fragmentShaderSource, NULL) ;

glShaderSource (fragmentShader,
glCompileShader (fragmentShader) ;

Both the shaders are now compiled and the only thing left to do is link both shader objects into
a shader program that we can use for rendering.

Shader program

A shader program object is the final linked version of multiple shaders combined. To use the
recently compiled shaders we have to link them to a shader program object and then activate this
shader program when rendering objects. The activated shader program’s shaders will be used when
we issue render calls.

When linking the shaders into a program it links the outputs of each shader to the inputs of the
next shader. This is also where you’ll get linking errors if your outputs and inputs do not match.

Creating a program object is easy:

GLuint shaderProgram;

shaderProgram = glCreateProgram() ;

The glCreateProgram function creates a program and returns the ID reference to the newly
created program object. Now we need to attach the previously compiled shaders to the program
object and then link them with glLinkProgram:
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glAttachShader (shaderProgram, vertexShader);
glAttachShader (shaderProgram, fragmentShader);

glLinkProgram(shaderProgram) ;

The code should be pretty self-explanatory, we attach the shaders to the program and link them
via glLinkProgram.

Just like shader compilation we can also check if linking a shader program failed
and retrieve the corresponding log. However, instead of using g1Get Shaderiv and
glGetShaderInfolog we now use:

glGetProgramiv (shaderProgram, GL_LINK_STATUS, &success);
if (!success) {
glGetProgramInfolLog (shaderProgram, 512, NULL, infolog);

The result is a program object that we can activate by calling g1UseP rogram with the newly
created program object as its argument:

glUseProgram (shaderProgram) ;

Every shader and rendering call after g1UseProgram will now use this program object (and
thus the shaders).

Oh yeah, and don’t forget to delete the shader objects once we’ve linked them into the program
object; we no longer need them anymore:

glDeleteShader (vertexShader) ;

glDeleteShader (fragmentShader) ;

Right now we sent the input vertex data to the GPU and instructed the GPU how it should
process the vertex data within a vertex and fragment shader. We’re almost there, but not quite yet.
OpenGL does not yet know how it should interpret the vertex data in memory and how it should
connect the vertex data to the vertex shader’s attributes. We’ll be nice and tell OpenGL how to do
that.

Linking Vertex Attributes

The vertex shader allows us to specify any input we want in the form of vertex attributes and while
this allows for great flexibility, it does mean we have to manually specify what part of our input data
goes to which vertex attribute in the vertex shader. This means we have to specify how OpenGL
should interpret the vertex data before rendering.

Our vertex buffer data is formatted as follows:
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VERTEX 1 VERTEX 2 VERTEX 3

POSITION:

STRIDE: 12 ——>
=0OFFSET: O

e The position data is stored as 32-bit (4 byte) floating point values.
e Each position is composed of 3 of those values.
e There is no space (or other values) between each set of 3 values. The values are tightly
packed in the array.
o The first value in the data is at the beginning of the buffer.
With this knowledge we can tell OpenGL how it should interpret the vertex data (per vertex
attribute) using glVertexAttribPointer:

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 x sizeof (GLfloat), (
GLvoidx*)O0) ;

glEnableVertexAttribArray (0) ;

The function glVertexAttribPointer has quite a few parameters so let’s carefully walk
through them:

e The first parameter specifies which vertex attribute we want to configure. Remember that we
specified the location of the position vertex attribute in the vertex shader with layout
(location = 0). This sets the location of the vertex attribute to O and since we want to
pass data to this vertex attribute, we pass in 0.

o The next argument specifies the size of the vertex attribute. The vertex attribute is a vec3 so
it is composed of 3 values.

e The third argument specifies the type of the data which is GL_FLOAT (a vec* in GLSL
consists of floating point values).

e The next argument specifies if we want the data to be normalized. If we set this to GL_TRUE
all the data that has a value not between 0 (or —1 for signed data) and 1 will be mapped to
those values. We leave this at GI._ FALSE.

e The fifth argument is known as the stride and tells us the space between consecutive vertex
attribute sets. Since the next set of position data is located exactly 3 times the size of a
GLfloat away we specify that value as the stride. Note that since we know that the array is
tightly packed (there is no space between the next vertex attribute value) we could’ve also
specified the stride as 0 to let OpenGL determine the stride (this only works when values are
tightly packed). Whenever we have more vertex attributes we have to carefully define the
spacing between each vertex attribute but we’ll get to see more examples of that later on.

e The last parameter is of type GLvoidx* and thus requires that weird cast. This is the offset
of where the position data begins in the buffer. Since the position data is at the start of the
data array this value is just 0. We will explore this parameter in more detail later on
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Each vertex attribute takes its data from memory managed by a VBO and which VBO it
takes its data from (one could have multiple VBOs) is determined by the VBO currently
bound to GL_ARRAY_BUFFER when calling glVertexAttribPointer. Since
the previously defined VBO was bound before calling glVertexAttribPointer
vertex attribute 0 is now associated with its vertex data.

Now that we specified how OpenGL should interpret the vertex data we should also enable
the vertex attribute with glEnableVertexAttribArray giving the vertex attribute location
as its argument; vertex attributes are disabled by default. From that point on we have everything
set up: we initialized the vertex data in a buffer using a vertex buffer object, set up a vertex and
fragment shader and told OpenGL how to link the vertex data to the vertex shader’s vertex attributes.
Drawing an object in OpenGL would now look something like this:

glBindBuffer (GL_ARRAY_BUFFER, VBO);
glBufferData (GL_ARRAY_BUFFER, si of (vertices), vertices, GL_STATIC_DRAW);

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 sizeof (GLfloat), (
GLvoidx*)O0) ;
glEnableVertexAttribArray (0) ;

glUseProgram (shaderProgram) ;

someOpenGLFunctionThatDrawsOurTriangle () ;

We have to repeat this process every time we want to draw an object. It may not look like that
much, but imagine if we have over 5 vertex attributes and perhaps 100s of different objects (which
is not uncommon). Binding the appropriate buffer objects and configuring all vertex attributes for
each of those objects quickly becomes a cumbersome process. What if there was some way we
could store all these state configurations into an object and simply bind this object to restore its
state?

Vertex Array Object

A vertex array object (also known as VAO) can be bound just like a vertex buffer object and any
subsequent vertex attribute calls from that point on will be stored inside the VAO. This has the
advantage that when configuring vertex attribute pointers you only have to make those calls once
and whenever we want to draw the object, we can just bind the corresponding VAO. This makes
switching between different vertex data and attribute configurations as easy as binding a different
VAO. All the state we just set is stored inside the VAO.

Core OpenGL requires that we use a VAO so it knows what to do with our vertex inputs.
If we fail to bind a VAO, OpenGL will most likely refuse to draw anything.

A vertex array object stores the following:

e Callsto glEnableVertexAttribArrayorglDisableVertexAttribArray.
e Vertex attribute configurations via glVertexAttribPointer.

e Vertex buffer objects associated with vertex attributes by callsto glVertexAttribPointer.
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VAO 1 VBO 1
attribute pointer 0 pos[0] pos[l] pos[2] pos[3] . pos[n]
attribute pointer 1
attribute pointer 2

Bas

attribute pointer 15 VBO 2

pos[0] col[0] pos[l] col[1]

VAO 2

attribute pointer 0
attribute pointer 1
attribute pointer 2

nan

attribute pointer 15

The process to generate a VAO looks simliar to that of a VBO:

GLuint VAO;
glGenVertexArrays (1, &VAO);

To use a VAO all you have to do is bind the VAO using g1BindVertexArray. From that
point on we should bind/configure the corresponding VBO(s) and attribute pointer(s) and then
unbind the VAO for later use. As soon as we want to draw an object, we simply bind the VAO with
the prefered settings before drawing the object and that is it. In code this would look a bit like this:

glBindVertexArray (VAO) ;

glBindBuffer (GL_ARRAY_BUFFER, VBO);
glBufferData (GL_ARRAY_BUFFER, sizeof (vertices), vertices,
GL_STATIC_DRAW) ;

=

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 * s of (GLfloat), (
GLvoidx*)O0) ;
glEnableVertexAttribArray (0) ;

glBindVertexArray (0) ;

[oool

glUseProgram (shaderProgram) ;
glBindVertexArray (VAO) ;
someOpenGLFunctionThatDrawsOurTriangle () ;
glBindVertexArray (0) ;
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It is common practice to unbind OpenGL objects when we’re done configuring them so
we don’t mistakenly (mis)configure them elsewhere.

And that is it! Everything we did the last few million pages led up to this moment, a VAO that
stores our vertex attribute configuration and which VBO to use. Usually when you have multiple
objects you want to draw, you first generate/configure all the VAOs (and thus the required VBO and
attribute pointers) and store those for later use. The moment we want to draw one of our objects,
we take the corresponding VAO, bind it, then draw the object and unbind the VAO again.

The triangle we’ve all been waiting for
To draw our objects of choice OpenGL provides us with the g1DrawArrays function that draws

primitives using the currently active shader, the previously defined vertex attribute configuration
and with the VBO’s vertex data (indirectly bound via the VAO).

glUseProgram (shaderProgram) ;

ertexArray (VAO) ;
glDrawArrays (GL_TRIANGLES,
rtexArray (0) ;

The g1DrawArrays function takes as its first argument the OpenGL primitive type we would
like to draw. Since we said at the start we wanted to draw a triangle and I don’t like lying to you,
we pass in GL_TRIANGLES. The second argument specifies the starting index of the vertex array
we’d like to draw; we just leave this at 0. The last argument specifies how many vertices we want
to draw, which is 3 (we only render 1 triangle from our data, which is exactly 3 vertices long).

Now try to compile the code and work your way backwards if any errors popped up. As soon
as your application compiles, you should see the following result:

The source code for the complete program can be found here.

If your output does not look the same you probably did something wrong along the way so


http://learnopengl.com/code_viewer.php?code=getting-started/hellotriangle
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check the complete source code, see if you missed anything or ask below in the comments section.

Element Buffer Objects

There is one last thing we’d like to discuss when rendering vertices and that is element buffer objects
abbreviated to EBO. To explain how element buffer objects work it’s best to give an example:
suppose we want to draw a rectangle instead of a triangle. We can draw a rectangle using two
triangles (OpenGL mainly works with triangles). This will generate the following set of vertices:

GLfloat vertices[] = {

o5, 0.9E, 0,0,
B, =0.5£, 0.0i%,
.5, 0.5E, 0,0:F,

BE, =0.5£, 0.0i%,
o5, =0.5E&, 0.0F,
S5, 0,98, 0.0%F

As you can see, there is some overlap on the vertices specified. We specify Bottom Right
and Top Left twice! This is an overhead of 50% since the same rectangle could also be specified
with only 4 vertices, instead of 6. This will only get worse as soon as we have more complex
models that have over 1000s of triangles where there will be large chunks that overlap. What would
be a better solution is to store only the unique vertices and then specify the order at which we want
to draw these vertices in. In that case we would only have to store 4 vertices for the rectangle, and
then just specify at which order we’d like to draw them. Wouldn’t it be great if OpenGL provided
us with a feature like that?

Thankfully, element buffer objects work exactly like that. An EBO is a buffer, just like a vertex
buffer object, that stores indices that OpenGL uses to decide what vertices to draw. This so called
indexed drawing is exactly the solution to our problem. To get started we first have to specify the
(unique) vertices and the indices to draw them as a rectangle:

GLfloat vertices[] = {
.5f, 0.5f, 0.0f,
.5f, -0.5f, 0.0f,
B, =0.5E, 0.0f,
.5f, 0.5f, 0.0f

indices|[]
1, 3,
2, 3

You can see that, when using indices, we only need 4 vertices instead of 6. Next we need to
create the element buffer object:

GLuint EBO;
glGenBuffers (1, &EBO);
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Similar to the VBO we bind the EBO and copy the indices into the buffer with g1Buf ferData.
Also, just like the VBO we want to place those calls between a bind and an unbind call, although
this time we specify GL_ELEMENT_ARRAY_BUFFER as the buffer type.

glBindBuffer (GL_ELEMENT_ARRAY_ BUFFER, EBO);
glBufferData (GL_ELEMENT_ARRAY BUFFER, sizeof (indices), indices,

GL_STATIC_DRAW) ;

Note that we’re now giving GL_ELEMENT_ARRAY_BUFFER as the buffer target. The last
thing left to do is replace the g1DrawArrays call with glDrawElements to indicate we want
to render the triangles from an index buffer. When using g1DrawElements we’re going to draw
using indices provided in the element buffer object currently bound:

glBindBuffer (GL_ELEMENT_ARRAY_ BUFFER, EBO);

glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_INT, O);

The first argument specifies the mode we want to draw in, similar to glDrawArrays. The
second argument is the count or number of elements we’d like to draw. We specified 6 indices so
we want to draw 6 vertices in total. The third argument is the type of the indices which is of type
GL_UNSIGNED_INT. The last argument allows us to specify an offset in the EBO (or pass in an
index array, but that is when you’re not using element buffer objects), but we’re just going to leave
this at 0.

The glDrawElements function takes its indices from the EBO currently bound to the
GL_ELEMENT_ARRAY_BUFFER target. This means we have to bind the corresponding EBO
each time we want to render an object with indices which seems again a bit cumbersome. It just so
happens that a vertex array object also keeps track of element buffer object bindings. The element
buffer object currently bound while a VAO is bound, is stored as the VAO’s element buffer object.
Binding to a VAO thus also automatically binds its EBO.

VAO 1 veo1
attribute pointer 0 pos[0] pos[l] pos[2] pos[3] . pos[n]

attribute pointer 1
attribute pointer 2

attribute pointer 15 VBO 2

element buffer object pos[0] col[0] pos[l] colll] . colln]

strides
VAO 2

attribute pointer 0
attribute pointer 1 ~ EBO1
attribute pointer 2 index data
EBO 2
index data

attribute pointer 15

element buffer object
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A VAO stores the glBindBuffer calls when the target is
GL_ELEMENT_ARRAY BUFFER. This also means it stores its unbind calls so
make sure you don’t unbind the element array buffer before unbinding your VAO,
otherwise it doesn’t have an EBO configured.

The resulting initialization and drawing code now looks something like this:

glBindVertexArray (VAO) ;

glBindBuffer (GL_ARRAY_BUFFER, VBO);
glBufferData (GL_ARRAY_BUFFER, sizeof (vertices), vertices,
GL_STATIC_DRAW) ;

glBindBuffer (GL_ELEMENT_ARRAY_ BUFFER, ) ;
glBufferData (GL_ELEMENT_ARRAY BUFFER, s f(indices), indices,
GL_STATIC_DRAW) ;

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 * si of (GLfloat), (

GLvoidx)0);
glEnableVertexAttribArray (0) ;

glBindVertexArray (0) ;

glUseProgram (shaderProgram) ;
glBindVertexArray (VAO) ;

glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_INT, O0)
glBindVertexArray (0) ;

Running the program should give an image as depicted below. The left image should look
familiar and the right image is the rectangle drawn in wireframe mode. The wireframe rectangle
shows that the rectangle indeed consists of two triangles.
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Wireframe mode

To draw your triangles in wireframe mode, you can configure how OpenGL draws its
primitives via glPolygonMode (GL_FRONT_AND_BACK, GL_LINE). The first
argument says we want to apply it to the front and back of all triangles and the
second line tells us to draw them as lines. Any subsequent drawing calls will
render the triangles in wireframe mode until we set it back to its default using
glPolygonMode (GL_FRONT_AND_BACK, GL_FILL).

If you have any errors, work your way backwards and see if you missed anything. Also, you
can find the complete source code here and feel free to ask any question in the comments section
below.

If you managed to draw a triangle or a rectangle just like we did then congratulations, you
managed to make it past one of the hardest parts of modern OpenGL: drawing your first triangle.
This is a difficult part since there is a large chunk of knowledge required before being able to draw
your first triangle. Thankfully, we now made it past that barrier and the upcoming tutorials will
hopefully be much easier to understand.

Additional resources

e antongerdelan.net/hellotriangle: Anton Gerdelan’s take on rendering the first triangle.
e open.gl/drawing: Alexander Overvoorde’s take on rendering the first triangle.
e antongerdelan.net/vertexbuffers: some extra insights into vertex buffer objects.

Exercises

To really get a good grasp of the concepts discussed a few exercises were set up. It is advised to
work through them before continuing to the next subject to make sure you get a good grasp of
what’s going on.

1. Try to draw 2 triangles next to each other using glDrawArrays by adding more vertices
to your data: solution.

2. Now create the same 2 triangles using two different VAOs and VBOs for their data: solution.

3. Create two shader programs where the second program uses a different fragment shader
that outputs the color yellow; draw both triangles again where one outputs the color yellow:
solution.


http://learnopengl.com/code_viewer.php?code=getting-started/hellotriangle2
http://antongerdelan.net/opengl/hellotriangle.html
https://open.gl/drawing
http://antongerdelan.net/opengl/vertexbuffers.html
http://learnopengl.com/code_viewer.php?code=getting-started/hello-triangle-exercise1
http://learnopengl.com/code_viewer.php?code=getting-started/hello-triangle-exercise2
http://learnopengl.com/code_viewer.php?code=getting-started/hello-triangle-exercise3

6.1

As mentioned in the Hello Triangle tutorial, shaders are little programs that rest on the GPU. These
programs are run for each specific section of the graphics pipeline. In a basic sense, shaders are
nothing more than programs transforming inputs to outputs. Shaders are also very isolated programs
in that they’re not allowed to communicate with each other; the only communication they have is
via their inputs and outputs.

In the previous tutorial we briefly touched the surface of shaders and how to properly use them.
We will now explain shaders, and specifically the OpenGL Shading Language, in a more general
fashion.

GLSL

Shaders are written in the C-like language GLSL. GLSL is tailored for use with graphics and
contains useful features specifically targeted at vector and matrix manipulation.

Shaders always begin with a version declaration, followed by a list of input and output variables,
uniforms and its ma in function. Each shader’s entry point is at its ma i n function where we process
any input variables and output the results in its output variables. Don’t worry if you don’t know
what uniforms are, we’ll get to those shortly.

A shader typically has the following structure:

#version version_number

in type in_variable_name;

in type in_variable_name;

out type out_variable_name;


http://www.learnopengl.com/#!Getting-started/Hello-Triangle
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uniform type uniform_name;

int main ()

{

out_variable_name = weird_stuff_we_processed;

}

When we’re talking specifically about the vertex shader each input variable is also known
as a vertex attribute. There is a maximum number of vertex attributes we’re allowed to declare
limited by the hardware. OpenGL guarantees there are always at least 16 4-component vertex
attributes available, but some hardware might allow for more which you can retrieve by querying
GL_MAX_VERTEX_ATTRIBS:

GLint nrAttributes;
glGetIntegerv (GL_MAX_VERTEX ATTRIBS, &nrAttributes);

std::cout << << nrAttributes
<< std::endl;

This often returns the minimum of 16 which should be more than enough for most purposes.

Types

GLSL has like any other programming language data types for specifying what kind of variable we
want to work with. GLSL has most of the default basic types we know from languages like C: int,
float, double, uint and bool. GLSL also features two container types that we’ll be using a
lot throughout the tutorials, namely vectors and matrices. We’ll discuss matrices in a later
tutorial.

Vectors

A vector in GLSL is a 1,2,3 or 4 component container for any of the basic types just mentioned.
They can take the following form (n represents the number of components):

vecn: the default vector of n floats.
bvecn: a vector of n booleans.
ivecn: a vector of n integers.
uvecn: a vector of n unsigned integers.
dvecn: a vector of n double components.
Most of the time we will be using the basic vecn since floats are sufficient for most of our
purposes.

Components of a vector can be accessed via vec.x where x is the first component of the
vector. You can use . x, .y, .z and . w to access their first, second, third and fourth component
respectively. GLSL also allows you to use rgba for colors or stpqg for texture coordinates,
accessing the same components.

The vector datatype allows for some interesting and flexible component selection called swiz-
zling. Swizzling allows for the following syntax:
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someVec;
differentVec = someVec.xyxx;

anotherVec = differentVec.zyw;
otherVec = someVec.xxxx + anotherVec.yxzy;

You can use any combination of up to 4 letters to create a new vector (of the same type) as
long as the original vector has those components; it is not allowed to access the . z component of
a vec? for example. We can also pass vectors as arguments to different vector constructor calls,
reducing the number of arguments required:

vec2 vect = vec2(0.5f, 0.7f);
vecd result = vecd (vect, 0.0f, 0.0f);

vec4 otherResult = vecd (result.xyz, .0f);

Vectors are thus a flexible datatype that we can use for all kinds of input and output. Throughout
the tutorials you’ll see plenty of examples of how we can creatively manage vectors.

Ins and outs

Shaders are nice little programs on their own, but they are part of a whole and for that reason we
want to have inputs and outputs on the individual shaders so that we can move stuff around. GLSL
defined the in and out keywords specifically for that purpose. Each shader can specify inputs and
outputs using those keywords and wherever an output variable matches with an input variable of
the next shader stage they’re passed along. The vertex and fragment shader differ a bit though.

The vertex shader should receive some form of input otherwise it would be pretty ineffective.
The vertex shader differs in its input, in that it receives its input straight from the vertex data. To
define how the vertex data is organized we specify the input variables with location metadata so we
can configure the vertex attributes on the CPU. We’ve seen this in the previous tutorial as layout
(location = 0). The vertex shader thus requires an extra layout specification for its inputs so
we can link it with the vertex data.

It is also possible to omit the layout (location = 0) specifier and query for the
attribute locations in your OpenGL code via glGetAttribLocation, but I'd prefer
to set them in the vertex shader. It is easier to understand and saves you (and OpenGL)
some work.

The other exception is that the fragment shader requires a vec4 color output variable, since
the fragment shaders needs to generate a final output color. If you’d fail to specify an output color
in your fragment shader OpenGL will render your object black (or white).

So if we want to send data from one shader to the other we’d have to declare an output in the
sending shader and a similar input in the receiving shader. When the types and the names are equal
on both sides OpenGL will link those variables together and then it is possible to send data between
shaders (this is done when linking a program object). To show you how this works in practice we’re
going to alter the shaders from the previous tutorial to let the vertex shader decide the color for the
fragment shader.

Vertex shader
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#version 330 core

layout (location = 0) in vec3 position;

out vecd vertexColor;
d main ()
gl_Position vecd (position, 1.0);

vertexColor vecd4 (0.5£, 0.0f, 0.0f,

Fragment shader

#version 330 core
in vecd4 vertexColor;

out vec4d color;

d main ()

color = vertexColor;

You can see we declared a vertexColor variable as a vec4 output that we set in the
vertex shader and we declare a similar vertexColor input in the fragment shader. Since they
both have the same type and name, the vertexColor in the fragment shader is linked to the
vertexColor in the vertex shader. Because we set the color to a dark-red color in the vertex
shader, the resulting fragments should be dark-red as well. The following image shows the output:



6.4

6.4 Uniforms 56

There we go! We just managed to send a value from the vertex shader to the fragment shader.
Let’s spice it up a bit and see if we can send a color from our application to the fragment shader!

Uniforms

Uniforms are another way to pass data from our application on the CPU to the shaders on the GPU,
but uniforms are slightly different compared to vertex attributes. First of all, uniforms are global.
Global, meaning that a uniform variable is unique per shader program object, and can be accessed
from any shader at any stage in the shader program. Second, whatever you set the uniform value to,
uniforms will keep their values until they’re either reset or updated.

To declare a uniform in GLSL we simply add the uniform keyword to a shader with a type
and a name. From that point on we can use the newly declared uniform in the shader. Let’s see if
this time we can set the color of the triangle via a uniform:

#version 330 core

out vec4 color;

uniform vec4 ourColor;
oid main ()

{

color = ourColor;

}
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We declared a uniform vec4 ourColor in the fragment shader and set the fragment’s output
color to the content of this uniform value. Since uniforms are global variables, we can define them
in any shader we’d like so no need to go through the vertex shader again to get something to the
fragment shader. We’re not using this uniform in the vertex shader so there’s no need to define it
there.

If you declare a uniform that isn’t used anywhere in your GLSL code the compiler will
silently remove the variable from the compiled version which is the cause for several
frustrating errors; keep this in mind!

The uniform is currently empty; we haven’t added any data to the uniform yet so let’s try that.
We first need to find the index/location of the uniform attribute in our shader. Once we have the
index/location of the uniform, we can update its values. Instead of passing a single color to the
fragment shader, let’s spice things up by gradually changing color over time:

GLfloat timeValue = glfwGetTime () ;
GLfloat greenValue = (sin(timeValue) / 2) + 0.5;
GLint vertexColorLocation = glGetUniformLocation (shaderProgram,

glUseProgram(shaderProgram) ;
glUniform4f (vertexColorLocation, 0.0f, greenValue, 0.0f, 1.0f);

First, we retrieve the running time in seconds via g1 fwGet Time (). Then we vary the color
in the range of 0.0 - 1. 0 by using the sin function and store the result in greenvalue.

Then we query for the location of the ourColor uniform using g1GetUniformLocation.
We supply the shader program and the name of the uniform (that we want to retrieve the location
from) to the query function. If glGetUniformLocation returns -1, it could not find the
location. Lastly we can set the uniform value using the g1Uniform4 f function. Note that finding
the uniform location does not require you to use the shader program first, but updating a uniform
does require you to first use the program (by calling g1UseProgram), because it sets the uniform
on the currently active shader program.

Because OpenGL is in its core a C library it does not have native support for type
overloading, so wherever a function can be called with different types OpenGL defines
new functions for each type required; glUniform is a perfect example of this. The
function requires a specific postfix for the type of the uniform you want to set. A few of
the possible postfixes are:

e f: the function expects a f1loat as its value

e 1i: the function expects an int as its value

e ui: the function expects an unsigned int asits value

e 3f: the function expects 3 floats as its value

e fv: the function expects a f1oat vector/array as its value
Whenever you want to configure an option of OpenGL simply pick the overloaded
function that corresponds with your type. In our case we want to set 4 floats of the
uniform individually so we pass our data via g1Uniform4 f (note that we also could’ve
used the £v version).
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Now what we know how to set the values of uniform variables, we can use them for rendering.
If we want the color to gradually change, we want to update this uniform every game loop iteration
(so it changes per-frame) otherwise the triangle would maintain a single solid color if we only set it
once. So we calculate the greenvValue and update the uniform each render iteration:

while (!glfwWindowShouldClose (window) )
{

glfwPollEvents () ;

glClearColor (0.2f, 0.3f, 0.3f, 1.0f);
glClear (GL_COLOR_BUFFER_BIT)

’
’

glUseProgram (shaderProgram) ;

GLfloat timeValue = glfwGetTime () ;

GLfloat greenValue = (sin(timeValue) / 2) + 0.5;

GLint vertexColorLocation = glGetUniformLocation (shaderProgram,
)i

glUniformé4f (vertexColorLocation, 0.0f, greenValue, 0.0f, 1.0f);

glBindVertexArray (VAO) ;
glDrawArrays (GL_TRIANGLES,
glBindVertexArray (0) ;

The code is a relatively straightforward adaptation of the previous code. This time, we update a
uniform value each iteration before drawing the triangle. If you update the uniform correctly you
should see the color of your triangle gradually change from green to black and back to green.
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Check out the source code here if you're stuck.

The image might not be exactly what you would expect, since we only supplied 3 colors, not
the huge color palette we’re seeing right now. This is all the result of something called fragment
interpolation in the fragment shader. When rendering a triangle the rasterization stage usually
results in a lot more fragments than vertices originally specified. The rasterizer then determines the
positions of each of those fragments based on where they reside on the triangle shape.

Based on these positions, it interpolates all the fragment shader’s input variables. Say for
example we have a line where the upper point has a green color and the lower point a blue color.
If the fragment shader is run at a fragment that resides around a position at 70% of the line its
resulting color input attribute would then be a linear combination of green and blue; to be more
precise: 30% blue and 70% green.

This is exactly what happened at the triangle. We have 3 vertices and thus 3 colors and judging
from the triangle’s pixels it probably contains around 50000 fragments, where the fragment shader
interpolated the colors among those pixels. If you take a good look at the colors you’ll see it all
makes sense: red to blue first gets to purple and then to blue. Fragment interpolation is applied to
all the fragment shader’s input attributes.

Our own shader class

Writing, compiling and managing shaders can be quite cumbersome. As a final touch on the shader
subject we’re going to make our life a bit easier by building a shader class that reads shaders from
disk, compiles and links them, checks for errors and is easy to use. This also gives you a bit of an
idea how we can encapsulate some of the knowledge we learned so far into useful abstract objects.


http://learnopengl.com/code_viewer.php?code=getting-started/shaders-interpolated
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We will create the shader class entirely in a header file, mainly for learning purposes and
portability. Let’s start by adding the required includes and by defining the class structure:

#ifndef SHADER_H
ine SHADER_H

e <string>

#include

<fstream>

<sstream>

<iostream>
> std;

<GL/glew.h>;

c Shader

{
public:

GLuint Program;

Shader (c GLchar* vertexSourcePath, c st GLcharx fragmentSourcePath

fendif

We used several preprocessor directives at the top of the header file. Using these little
lines of code informs your compiler to only include and compile this header file if it
hasn’t been included yet, even if multiple files include the shader header. This prevents
linking conflicts.

The shader class holds the ID of the shader program. Its constructor requires the file paths of
the source code of the vertex and fragment shader respectively that we can store on disk as simple
text files. To add a little extra we also added a utility Use function which is rather trivial, but a nice
display of how we could ease our life (albeit a little) with home-made classes.

Reading from file

We’re using C++ filestreams to read the content from the file into several st ring objects:

std:
std:
std:
std:

st GLcharx vertexPath, const GLcharx fragmentPath)

:string vertexCode;

:string fragmentCode;
:ifstream vShaderFile;
:ifstream fShaderFile;

vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit)

’
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fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit)
try
{

vShaderFile.open (vertexPath) ;
fShaderFile.open (fragmentPath) ;
std::stringstream vShaderStream, fShaderStream;

vShaderStream << vShaderFile.rdbuf () ;
fShaderStream << fShaderFile.rdbuf ();

vShaderFile.close();
fShaderFile.close () ;

vertexCode = vShaderStream.str();
fragmentCode = fShaderStream.str();
}
catch(std::ifstream::failure e)
{
std::cout <<
endl;
}
const GLchar* vShaderCode = vertexCode.c_str();
const GLcharx fShaderCode = fragmentCode.c_str();
[...]

Next we need to compile and link the shaders. Note that we’re also reviewing if compilation/link-
ing failed and if so, print the compile-time errors which is extremely useful when debugging (you
are going to need those error logs eventually):

GLuint vertex, fragment;
GLint success;
GLchar infolog[512];

vertex = glCreateShader (GL_VERTEX_ SHADER) ;
glShaderSource (vertex, 1, &vShaderCode, NULL) ;
glCompileShader (vertex) ;

glGetShaderiv (vertex, GL_COMPILE_STATUS, &success);

if (!success)

{
glGetShaderInfolog (vertex, 512, NULL, infolog);
std::cout << << infolog
<< std::endl;

this->Program = glCreateProgram() ;
glAttachShader (this—->Program, vertex);
glAttachShader (this->Program, fragment) ;
glLinkProgram(this—>Program) ;

glGetProgramiv (this->Program, GL_LINK_STATUS, &success);
if (!success)
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glGetProgramInfolog (this->Program, 512, NULL, infolog);
std::cout << << infolog <<
std::endl;

glDeleteShader (vertex) ;
glDeleteShader (fragment) ;

And as a finishing touch we will also implement the Use function:

d Use () { glUseProgram(th >Program); }

And there we have it, a completed shader class. Using the shader class is fairly easy; we create
a shader object once and from that point on simply start using it:

Shader ourShader (
)

while(...)
{

ourShader.Use () ;

glUniformlf (glGetUniformLocation (ourShader.Program,
£);

DrawStuff ();

Here we stored the vertex and fragment shader source code in two files called shader.vs
and shader. frag. You're free to name your shader files in any way you like; I personally find
the extensions .vs and . frag quite intuitive.

Source code of the program with new shader class, the shader class, the vertex shader and the
fragment shader.

6.7 Exercises

1. Adjust the vertex shader so that the triangle is upside down: solution.

2. Specify a horizontal offset via a uniform and move the triangle to the right side of the screen
in the vertex shader using this offset value: solution.

3. Output the vertex position to the fragment shader using the out keyword and set the
fragment’s color equal to this vertex position (see how even the vertex position values are
interpolated across the triangle). Once you managed to do this; try to answer the following
question: why is the bottom-left side of our triangle black?: solution.


http://learnopengl.com/code_viewer.php?code=getting-started/shaders-using-object
http://learnopengl.com/code_viewer.php?type=header&code=shader
http://learnopengl.com/code_viewer.php?type=vertex&code=getting-started/basic
http://learnopengl.com/code_viewer.php?type=fragment&code=getting-started/basic
http://learnopengl.com/code_viewer.php?code=getting-started/shaders-exercise1
http://learnopengl.com/code_viewer.php?code=getting-started/shaders-exercise2
http://learnopengl.com/code_viewer.php?code=getting-started/shaders-exercise3

We learned that to add more detail to our objects we can use colors for each vertex to create some
interesting images. However, to get a fair bit of realism we’d have to have many vertices so we
could specify a lot of colors. This takes up a considerable amount of extra overhead, since each
models needs a lot more vertices and for each vertex a color attribute as well.

What artists and programmers generally prefer is to use a texture. A texture is a 2D image (even
1D and 3D textures exist) used to add detail to an object; think of a texture as a piece of paper with
a nice brick image (for example) on it neatly folded over your 3D house so it looks like your house
has a stone exterior. Because we can insert a lot of detail in a single image, we can give the illusion
the object is extremely detailed without having to specify extra vertices.

Aside from images, textures can also be used to store a large collection of data to send to
the shaders, but we’ll leave that for a different topic.

Below you’ll see a texture image of a brick wall mapped to the triangle from the previous
tutorial.


http://learnopengl.com/img/textures/wall.jpg
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In order to map a texture to the triangle we need to tell each vertex of the triangle which part of
the texture it corresponds to. Each vertex should thus have a texture coordinate associated with
them that specifies what part of the texture image to sample from. Fragment interpolation then does
the rest for the other fragments.

Texture coordinates range from O to 1 in the x and y axis (remember that we use 2D texture
images). Retrieving the texture color using texture coordinates is called sampling. Texture
coordinates start at (0, 0) for the lower left corner of a texture image to (1, 1) for the upper
right corner of a texture image. The following image shows how we map texture coordinates to the
triangle:

(0.5; 1)

We specify 3 texture coordinate points for the triangle. We want the bottom-left side of
the triangle to correspond with the bottom-left side of the texture so we use the (0, 0) texture
coordinate for the triangle’s bottom-left vertex. The same applies to the bottom-right side with
a (1,0) texture coordinate. The top of the triangle should correspond with the top-center of
the texture image so we take (0.5,1.0) as its texture coordinate. We only have to pass 3
texture coordinates to the vertex shader, which then passes those to the fragment shader that neatly
interpolates all the texture coordinates for each fragment.

The resulting texture coordinates would then look like this:
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Texture sampling has a loose interpretation and can be done in many different ways. It is thus
our job to tell OpenGL how it should sample its textures.

Texture Wrapping

Texture coordinates usually range from (0, 0) to (1, 1) but what happens if we specify coor-
dinates outside this range? The default behavior of OpenGL is to repeat the texture images (we
basically ignore the integer part of the floating point texture coordinate), but there are more options
OpenGL offers:
e GL_REPEAT: The default behavior for textures. Repeats the texture image.
e GL_MIRRORED_REPEAT: Same as GL_REPEAT but mirrors the image with each repeat.
e GIL_CLAMP_TO_EDGE: Clamps the coordinates between 0 and 1. The result is that higher
coordinates become clamped to the edge, resulting in a stretched edge pattern.
e GIL_CLAMP_TO_BORDER: Coordinates outside the range are now given a user-specified
border color.
Each of the options have a different visual output when using texture coordinates outside the
default range. Let’s see what these look like on a sample texture image:

GL_REPEAT GL_MIRRORED_REPEAT GL_CLAMP_TO_EDGE GL_CLAMP_TO_BORDER

Each of the aforementioned options can be set per coordinate axis (s, t (and r if you’re using
3D textures) equivalent to x,y,z) with the gl TexParameter« function:

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT) ;

The first argument specifies the texture target; we’re working with 2D textures so the texture
target is GL_TEXTURE_2D. The second argument requires us to tell what option we want to
set and for which texture axis. We want to configure the WRAP option and specify it for both
the S and T axis. The last argument requires us to pass in the texture wrapping mode we’d like
and in this case OpenGL will set its texture wrapping option on the currently active texture with
GL_MIRRORED_REPEAT.

If we choose the GL,_CLAMP_TO_BORDER option we should also specify a border color. This

is done using the £v equivalent of the g1 TexParameter function with GL,_TEXTURE_BORDER_COLOR

as its option where we pass in a float array of the border’s color value:
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float borderColor

glTexParameterfv (

Texture Filtering

Texture coordinates do not depend on resolution but can be any floating point value, thus OpenGL
has to figure out which texture pixel (also known as a texel ) to map the texture coordinate to. This
becomes especially important if you have a very large object and a low resolution texture. You
probably guessed by now that OpenGL has options for this texture filtering as well. There are
several options available but for now we’ll discuss the most important options: GL_NEAREST and
GL_LINEAR.

GL_NEAREST (also known as nearest neighbor filtering) is the default texture filtering method
of OpenGL. When set to GL_NEAREST, OpenGL selects the pixel which center is closest to
the texture coordinate. Below you can see 4 pixels where the cross represents the exact texture
coordinate. The upper-left texel has its center closest to the texture coordinate and is therefore
chosen as the sampled color:

returns

GL_LINEAR (also known as (bi)linear filtering) takes an interpolated value from the texture
coordinate’s neighboring texels, approximating a color between the texels. The smaller the distance
from the texture coordinate to a texel’s center, the more that texel’s color contributes to the sampled
color. Below we can see that a mixed color of the neighboring pixels is returned:

returns

But what is the visual effect of such a texture filtering method? Let’s see how these methods
work when using a texture with a low resolution on a large object (texture is therefore scaled
upwards and individual texels are noticeable):
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GL_NEAREST GL_LINEAR

GL_NEAREST results in blocked patterns where we can clearly see the pixels that form the
texture while GL_ LINEAR produces a smoother pattern where the individual pixels are less visible.
GL_LINEAR produces a more realistic output, but some developers prefer a more 8-bit look and as
a result pick the GL_NEAREST option.

Texture filtering can be set for magnifying and minifying operations (when scaling up or
downwards) so you could for example use nearest neighbor filtering when textures are scaled
downwards and linear filtering for upscaled textures. We thus have to specify the filtering method
for both options via g1l TexParameter*. The code should look similar to setting the wrapping
method:

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Mipmaps

Imagine if we had a large room with thousands of objects, each with an attached texture. There will
be objects far away that have the same high resolution texture attached as the objects close to the
viewer. Since the objects are far away and probably only produce a few fragments, OpenGL has
difficulties retrieving the right color value for its fragment from the high resolution texture, since it
has to pick a texture color for a fragment that spans a large part of the texture. This will produce
visible artifacts on small objects, not to mention the waste of memory to use high resolution textures
on small objects.

To solve this issue OpenGL uses a concept called mipmaps that is basically a collection of
texture images where each subsequent texture is twice as small compared to the previous one.
The idea behind mipmaps should be easy to understand: after a certain distance threshold from
the viewer, OpenGL will use a different mipmap texture that best suits the distance to the object.
Because the object is far away, the smaller resolution will not be noticeable to the user. Also,
mipmaps have the added bonus feature that they’re good for performance as well. Let’s take a
closer look at what a mipmapped texture looks like:
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Creating a collection of mipmapped textures for each texture image is cumbersome to do manu-
ally, but luckily OpenGL is able to do all the work for us with a single call to g1GenerateMipmaps
after we’ve created a texture. Later in the texture tutorial you’ll see use of this function.

When switching between mipmaps levels during rendering OpenGL might show some artifacts
like sharp edges visible between the two mipmap layers. Just like normal texture filtering, it is
also possible to filter between mipmap levels using NEAREST and LINEAR filtering for switching
between mipmap levels. To specify the filtering method between mipmap levels we can replace the
original filtering methods with one of the following four options:

e GL_NEAREST_MIPMAP_NEAREST: takes the nearest mipmap to match the pixel size and

uses nearest neighbor interpolation for texture sampling.

e GIL_LINEAR_MIPMAP_NEAREST: takes the nearest mipmap level and samples using linear

interpolation.

e GL_NEAREST_MIPMAP_LINEAR: linearly interpolates between the two mipmaps that

most closely match the size of a pixel and samples via nearest neighbor interpolation.

e GL_LINEAR_MIPMAP_LINEAR: linearly interpolates between the two closest mipmaps

and samples the texture via linear interpolation.

Just like texture filtering we can set the filtering method to one of the 4 aforementioned methods
using glTexParameteri:

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR MIPMAP_ LINEAR) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

A common mistake is to set one of the mipmap filtering options as the magnification filter.
This doesn’t have any effect since mipmaps are primarily used for when textures get downscaled:
texture magnification doesn’t use mipmaps and giving it a mipmap filtering option will generate an
OpenGL GL_INVALID_ENUM error code.

Loading and creating textures

The first thing we need to do to actually use textures is to load them into our application. Texture
images can be stored in dozens of file formats, each with their own structure and ordering of data,
so how do we get those images in our application? One solution would be to choose a file format
we’d like to use, say . PNG and write our own image loader to convert the image format into a large
array of bytes. While it’s not very hard to write your own image loader, it’s still cuambersome and
what if you want to support more file formats? You’d then have to write an image loader for each
format you want to support.
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Another solution, and probably a good one, is to use an image-loading library that supports
several popular formats and does all the hard work for us. A library like SOIL.

SOIL

SOIL stands for Simple OpenGL Image Library and supports the most popular image formats,
is easy to use and can be downloaded from their webpage here. Like most other libraries you’ll
have to generate the . 1ib yourself. You can use one of their solution files in /projects (don’t
worry if their visual studio version is older, you can just convert them to your newer version; this
works almost all the time) to generate your own. Also, add the content of the src folder to your
includes folder; don’t forget to add SOIL.11ib to your linker options and add #include
<SOIL.h> atthe top of your code.

For the following texture sections we’re going to use an image of a wooden container. To load
an image in SOIL we use its SOTIL,_load_image function:

int width, height;
unsigned charx image = SOIL_load_image ( , &width, &height, O,

SOIL_LOAD_RGB) ;

The function first takes as input the location of an image file. It then expects you to give two
ints as its second and third argument that SOIL will fill with the resulting image’s width and
height. We need the image’s width and height for generating textures later on. The 4th argument
specifies the number of channels the image has, but we’re just going to leave this at 0. The last
argument tells SOIL how it should load the image: we’re only interested in the RGB values of the
image. The result is then stored in a large char/byte array.

Generating a texture

Like any of the previous objects in OpenGL, textures are referenced with an ID; let’s create one:

GLuint texture;

glGenTextures (1, &texture);

The glGenTextures function first takes as input how many textures we want to generate
and stores them in a GLuint array given as its second argument (in our case just a single GLuint).
Just like other objects we need to bind it so any subsequent texture commands will configure the
currently bound texture:

glBindTexture (GL_TEXTURE_2D, texture);

Now that the texture is bound, we can start generating a texture using the previously loaded
image data. Textures are generated with g1 TexImage2D:

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB,
GL_UNSIGNED_BYTE, image);

glGenerateMipmap (GL_TEXTURE_2D) ;

This is a large function with quite a few parameters so we’ll walk through them step-by-step:


http://www.lonesock.net/soil.html
http://learnopengl.com/img/textures/container.jpg
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e The first argument specifies the texture target; setting this to GL_TEXTURE_ 2D means this
operation will generate a texture on the currently bound texture object at the same target (so
any textures bound to targets GL_ TEXTURE_1D or G_TEXTURE_ 3D will not be affected).

e The second argument specifies the mipmap level for which we want to create a texture for if
you want to set each mipmap level manually, but we’ll leave it at the base level which is 0.

e The third argument tells OpenGL in what kind of format we want to store the texture. Our
image has only RGB values so we’ll store the texture with RGB values as well.

e The 4th and 5th argument sets the width and height of the resulting texture. We stored those
earlier when loading the image so we’ll use the corresponding variables.

e The next argument should always be 0 (some legacy stuff).

e The 7th and 8th argument specify the format and datatype of the source image. We loaded the
image with RGB values and stored them as chars (bytes) so we’ll pass in the corresponding
values.

e The last argument is the actual image data.

Once glTexImage?2D is called, the currently bound texture object now has the texture image
attached to it. However, currently it only has the base-level of the texture image loaded and if
we want to use mipmaps we have to specify all the different images manually (by continually
incrementing the second argument) or, we could call glGenerateMipmap after generating the
texture. This will automatically generate all the required mipmaps for the currently bound texture.

After we’re done generating the texture and its corresponding mipmaps, it is good practice to
free the image memory and unbind the texture object:

SOIL_free_image_data (image) ;

glBindTexture (GL_TEXTURE_2D, O0);

The whole process of generating a texture thus looks something like this:

GLuint texture;
glGenTextures (1, &texture);
glBindTexture (GL_TEXTURE_2D, texture);

int width, height;

ed char* image = SOIL_load_image ( , &width, &eight, O,
SOIL_LOAD_RGB) ;
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB,
GL_UNSIGNED_BYTE, image);
glGenerateMipmap (GL_TEXTURE_2D) ;
SOIL_free_image_data (image) ;
glBindTexture (GL_TEXTURE_2D, O0);

7.6 Applying textures

For the upcoming sections we will use the rectangle shape drawn with glDrawElement s from
the final part of the Hello-Triangle tutorial. We need to inform OpenGL how to sample the texture
so we’ll have to update the vertex data with the texture coordinates:


http://www.learnopengl.com/#!Getting-started/Hello-Triangle
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GLfloat vertices]|]

.5f£, 0.5¢£, 0.0£f, 1.0f, 0.0£, 0.0f, 1.0£, 1.0f,
oBiE, =0.5%, 0.0, 0,05, 1L.0f, 0.0E, 1.0, 0,.0%,

B, =0.5&, 0.0, 0.0£, 0.0, 1L,0%&, O0.0i&, 0.0%f,
.5¢, 0.5£, 0.0£f, 1.0£f, 1.0£, 0.0£f, 0.0£, 1.0f

Since we’ve added an extra vertex attribute we again have to notify OpenGL of the new vertex
format:

VERTEX 1 VERTEX 2 VERTEX 3

X ¥ Z R G B ST X Y Z R GB STXYZ R G B ST

POSITION: =———— S5TRIDE: 32 ——)

- OFFSET: 0 |
COLOR: pe——— STRIDE: 32 =)

- OFFSET:12 ¥ ;

TEXTURE: ~———— STRIDE: 32—y

——— OFFSET: 24 ——%

glVertexAttribPointer (2, 2, GL_FLOAT,GL_FALSE, 8 IS f (GLfloat), (GLvoid
*) (6 x si f(GLfloat)));

glEnableVertexAttribArray (2) ;

Note that we have to adjust the stride parameter of the previous two vertex attributes to 8 =
sizeof (GLfloat) as well.

Next we need to alter the vertex shader to accept the texture coordinates as a vertex attribute
and then forward the coordinates to the fragment shader:

#version 330 core
layout (location = 0

layout (location 1) in wvec3 color;
layout (location 2) in vec2 texCoord;

in vec3 position;

out vec3 ourColor;
out vec2 TexCoord;

id main ()

gl_Position = vec4d (position, 1.0f);
ourColor = color;
TexCoord = texCoord;

The fragment shader should then accept the TexCoord output variable as an input variable.

The fragment shader should also have access to the texture object, but how do we pass the
texture object to the fragment shader? GLSL has a built-in data-type for texture objects called
a sampler that takes as a postfix the texture type we want e.g. samplerlD, sampler3D orin
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our case sampler2D. We can then add a texture to the fragment shader by simply declaring a
uniform sampler2D that we later assign our texture to.

#version 330 core
in vec3 ourColor;
in vec2 TexCoord;

out vecd color;

uniform sampler2D ourTexture;

void main ()
{
color = texture (ourTexture, TexCoord);

}

To sample the color of a texture we use GLSL’s built-in texture function that takes as its
first argument a texture sampler and as its second argument the corresponding texture coordinate.
The texture function then samples the corresponding color value using the texture parameters
we set earlier. The output of this fragment shader is then the (filtered) color of the texture at the
(interpolated) texture coordinate.

All that’s left to do now is to bind the texture before calling the g1DrawElement s and it will
then automatically assign the texture to the fragment shader’s sampler:

glBindTexture (GL_TEXTURE_2D, texture);
glBindVertexArray (VAO) ;

glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_INT, O0);
glBindVertexArray (0) ;

If you did everything right you should see the following image:

If your rectangle is completely white or black you probably made an error along the way. Check
your shader logs and try to compare your code with the application’s source code.


http://learnopengl.com/code_viewer.php?code=getting-started/textures
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To get a little funky we can also mix the resulting texture color with the vertex colors. We
simply multiply the resulting texture color with the vertex color in the fragment shader to mix both
colors:

color = texture (ourTexture, TexCoord) =x vecd (ourColor, 1.0f);

The result should be a mixture of the vertex’s color and the texture’s color:

I guess you could say our container likes to disco.

7.7 Texture Units

You probably wondered why the sampler2D variable is a uniform if we didn’t even assign it
some value with g1Uniform. Using glUniformli we can actually assign a location value to
the texture sampler so we can set multiple textures at once in a fragment shader. This location of a
texture is more commonly known as a texture unit. The default texture unit for a texture is O which
is the default active texture unit so we did not had to assign a location in the previous section.

The main purpose of texture units is to allow us to use more than 1 texture in our shaders. By
assigning texture units to the samplers, we can bind to multiple textures at once as long as we
activate the corresponding texture unit first. Just like g1BindTexture we can activate texture
units using glActiveTexture passing in the texture unit we’d like to use:

glActiveTexture (GL_TEXTUREO) ;

glBindTexture (GL_TEXTURE_2D, texture);

After activating a texture unit, a subsequent g1BindTexture call will bind that texture to
the currently active texture unit. Texture unit GL_TEXTUREO is always by default activated, so we
didn’t had to activate any texture units in the previous example when using g1BindTexture.
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OpenGL should have a at least a minimum of 16 texture units for you to use which
you can activate using GL,_ TEXTUREO to GL_TEXTURE15. They are defined in order
so we could also get GL_TEXTURES via GL_TEXTUREO + 8 for example, which is
useful when we’d have to loop over several texture units.

We still however need to edit the fragment shader to accept another sampler. This should be
relatively straightforward now:

#version 330 core

uniform sampler2D ourTexturel;
uniform sampler2D ourTexture2;

void main ()

{
color = mix (texture (ourTexturel, TexCoord), texture (ourTexture2,
TexCoord), 0.2);

The final output color is now the combination of two texture lookups. GLSL’s built-in mix
function takes two values as input and linearly interpolates between them based on its third argument.
If the third value is 0. 0 it returns the first input; if it’s 1. O it returns the second input value. A
value of 0. 2 will return 80% of the first input color and 20% of the second input color, resulting in
a mixture of both our textures.

We now want to load and create another texture; you should be familiar with the steps now.
Make sure to create another texture object, load the image and generate the final texture using
glTexImage2D. For the second texture we’ll use an image of your facial expression while
learning OpenGL.

To use the second texture (and the first texture) we’d have to change the rendering procedure a
bit by binding both textures to the corresponding texture unit and specifying which uniform sampler
corresponds to which texture unit:

glActiveTexture (GL_TEXTUREO) ;

glBindTexture (GL_TEXTURE_2D, texturel);

glUniformli (glGetUniformLocation (ourShader.Program,
glActiveTexture (GL_TEXTUREL) ;

glBindTexture (GL_TEXTURE_2D, texture?);

glUniformli (glGetUniformLocation (ourShader.Program,

glBindVertexArray (VAO) ;
glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_INT, O0);
glBindVertexArray (0) ;

Note that we’re using g1Uniformli to set the location or texture-unit of the uniform samplers.
By setting them via g1Uniformli we make sure each uniform sampler corresponds to the proper
texture unit. You should get the following result:


http://learnopengl.com/img/textures/awesomeface.png
http://learnopengl.com/img/textures/awesomeface.png
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You probably noticed that the texture is flipped upside-down! This happens because OpenGL ex-
pects the 0 . 0 coordinate on the y-axis to be on the bottom side of the image, but images usually have
0. 0 at the top of the y-axis. Some image loaders like DevIL have options to reposition the y-origin
during loading, but SOIL doesn’t. SOIL does have a function called SOIL_load_OGL_texture
that loads and generates a texture with a flag called SOIL_FLAG_INVERT_Y that solves our
problem. This function does however use features that are not available in modern OpenGL so
we’d have to stick with SOTIL_1oad_image for now and do the texture generation ourselves.

So to fix our little issue we have 2 options:

1. We can alter the texture coordinates in the vertex data and swap the y values (subtract the v
coordinates from 1).

2. We can edit the vertex shader to swap the y-coordinate automatically by replacing the TexCo-
ord assignment with TexCoord = vec2 (texCoord.x, 1.0f - texCoord.y);.

The provided solutions are small little hacks to get the picture flipped. This works in
most cases, but is still implementation/texture-dependent so the best solution is to alter
your image loader or edit your texture images in such a way that their y-origin suits
OpenGL’s needs.

Once you’ve either edited the vertex data or swapped the y-coordinate in the vertex shader you
should get the following result:


http://openil.sourceforge.net/tuts/tut_10/index.htm
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If you see one happy container, you did things right. You can compare it with the source code
and the vertex or fragment shader.

Exercises

To get more comfortable with textures it is advised to work through these exercises before continu-
ing.

e Make sure only the happy face looks in the other/reverse direction by changing the fragment
shader: solution.

e Experiment with the different texture wrapping methods by specifying texture coordinates in
therange 0.0f to 2. 0f instead of 0.0f to 1.0£. See if you can display 4 smiley faces on
a single container image clamped at its edge: solution, result. See if you can experiment with
other wrapping methods as well.

e Try to display only the center pixels of the texture image on the rectangle in such a way that
the individual pixels are getting visible by changing the texture coordinates. Try to set the
texture filtering method to GL_NEAREST to see the pixels more clearly: solution.

e Use a uniform variable as the mix function’s third parameter to vary the amount the two
textures are visible. Use the up and down arrow keys to change how much the container or
the smiley face is visible: solution, fragment shader.


http://learnopengl.com/code_viewer.php?code=getting-started/textures_combined
http://learnopengl.com/code_viewer.php?type=vertex&code=getting-started/texture
http://learnopengl.com/code_viewer.php?type=fragment&code=getting-started/texture
http://learnopengl.com/code_viewer.php?code=getting-started/textures-exercise1
http://learnopengl.com/code_viewer.php?code=getting-started/textures-exercise2
http://learnopengl.com/img/getting-started/textures_exercise2.png
http://learnopengl.com/code_viewer.php?code=getting-started/textures-exercise3
http://learnopengl.com/code_viewer.php?code=getting-started/textures-exercise4
http://learnopengl.com/code_viewer.php?code=getting-started/textures-exercise4_fragment
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We now know how to create objects, color them and/or give them a detailed appearance using
textures, but they’re still not that interesting since they’re all static objects. We could try and
make them move by changing their vertices and re-configuring their buffers each frame, but that’s
cumbersome and costs quite some processing power. There are much better ways to transform an
object and that’s by using (multiple) matrix objects. This doesn’t mean we’re going to talk about
kungfu and a large digital artificial world.

Matrices are very powerful mathematical constructs that seem scary at first, but once you’ll
grow accustomed to them they’ll prove extremely useful. When discussing matrices, we’ll have to
make a small dive into some mathematics and for the more mathematically inclined readers I’1l
post additional resources for further reading.

However, to fully understand transformations we first have to delve a bit deeper into vectors
before discussing matrices. The focus of this chapter is to give you a basic mathematical background
in topics we will require later on. If the subjects are difficult, try to understand them as much as
you can and come back to this page later to review the concepts whenever you need them.

Vectors

In its most basic definition, vectors are directions and nothing more. A vector has a direction and
a magnitude (also known as its strength or length). You can think of vectors like directions on a
treasure map: ’go left 10 steps, now go north 3 steps and go right 5 steps’; here ’left’ is the direction
and 10 steps’ is the magnitude of the vector. The directions for the treasure map thus contains
3 vectors. Vectors can have any dimension, but we usually work with dimensions of 2 to 4. If a
vector has 2 dimensions it represents a direction on a plane (think of 2D graphs) and when it has 3
dimensions it can represent any direction in a 3D world.

Below you’ll see 3 vectors where each vector is represented with (x, y) as arrows in a 2D
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graph. Because it is more intuitive to display vectors in 2D (than in 3D) you can think of the 2D
vectors as 3D vectors with a z coordinate of 0. Since vectors represent directions, the origin of the
vector does not change its value. In the graph below we can see that the vectors v and w are equal
even though their origin is different:

= K W = O

i
=
L]

When describing vectors mathematicians generally prefer to describe vectors as character
symbols with a little bar over their head like 7. Also, when displaying vectors in formulas they are
generally displayed as follows:

<
I

Because vectors are specified as directions it is sometimes hard to visualize them as positions.
What we basically visualize is we set the origin of the directionto (0, 0, 0) and then point towards
a certain direction that specifies the point, making it a position vector (we could also specify a
different origin and then say: ’this vector points to that point in space from this origin’). The
position vector (3, 5) would then point to (3, 5) on the graph with an origin of (0, 0). Using
vectors we can thus describe directions and positions in 2D and 3D space.

Just like with normal numbers we can also define several operations on vectors (some of which
you’ve already seen).

Scalar vector operations

A scalar is a single digit (or a vector with 1 component if you’d like stay in vector-land). When
adding/subtracting/multiplying or dividing a vector with a scalar we simply add/subtract/multiply
or divide each element of the vector by the scalar. For addition it would look like this:
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Where + can be +,—,- or = where - is the multiplication operator. Keep in mind that for the —
and + operator order the reverse order is not defined.

8.3 Vector negation

Negating a vector results in a vector in the reversed direction. A vector pointing north-east would
point south-west after negation. To negate a vector we add a minus-sign to each component (you
can also represent it as a scalar-vector multiplication with a scalar value of —1):

V_X —V_X

8.4 Addition and subtraction

Addition of two vectors is defined as component-wise addition, that is each component of one
vector is added to the same component of the other vector like so:

1 4 144 5
S i+k= =
3 6 3+6 9

<
I

-
I

Visually, it looks like this on vectors v= (4, 2) and k= (1, 2):

= N W = O

Just like normal addition and subtraction, vector subtraction is the same as addition with a
negated second vector:
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Subtracting two vectors from each other results in a vector that’s the difference of the positions
both vectors are pointing at. This proves useful in certain cases where we need to retrieve a vector
that’s the difference between two points.

- (0.5,3.5)

= K W = O

8.5 Length

To retrieve the length/magnitude of a vector we use the Pythagoras theorem that you might
remember from your math classes. A vector forms a triangle when you visualize its individual x
and y component as two sides of a triangle:

= K W = O
T

Since the length of the two sides (x, y) are known and we want to know the length of the
tilted side v we can calculate it using the Pythagoras theorem as:

Il = v/ 52

Where ||7]| is denoted as the length of vector v. This is easily extended to 3D by adding z* to
the equation.

In this case the length of vector (4, 2) equals:
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|[7]] = v/ 22 =16+4=+20=447

Whichis 4.47.

There is also a special type of vector that we call a unit vector. A unit vector has one extra
property and that is that its length is exactly 1. We can calculate a unit vector 7i from any vector by
dividing each of the vector’s components by its length:

‘<|

SEl

We call this normalizing a vector. Unit vectors are displayed with a little roof over their head
and are generally easier to work with, especially when we only care about their directions (the
direction does not change if we change a vector’s length).

=

Vector-vector multiplication

Multiplying two vectors is a bit of a weird case. Normal multiplication isn’t really defined on
vectors since it has no visual meaning, but we have two specific cases that we could choose from
when multiplying: one is the dot product denoted as v - k and the other is the cross product denoted
as v x k.

Dot product

The dot product of two vectors is equal to the scalar product of their lengths times the cosine of the
angle between them. If this sounds confusing take a look at its formula:

v-k=|[9]|-||k|| - cos 6

Where the angle between them is represented as theta (6). Why is this interesting? Well,
imagine if ¥ and k are unit vectors then their length would be equal to 1. This would effectively
reduce the formula to:

v-k=1-1-cos@ =cos0

Now the dot product only defines the angle between both vectors. You might remember that
the cosine or cos function becomes 0 when the angle is 90 degrees or 1 when the angle is 0. This
allows us to easily test if the two vectors are orthogonal or parallel to each other using the dot
product (orthogonal means the vectors are at a right-angle to each other). In case you want to know
more about the sin or the cosine functions I’d suggest the following Khan Academy videos
about basic trigonometry.

You can also calculate the angle between two non-unit vectors, but then you’d have to
divide the lengths of both vectors from the result to be left with cos6.


https://www.khanacademy.org/math/trigonometry/basic-trigonometry/basic_trig_ratios/v/basic-trigonometry
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So how do we calculate the dot product? The dot product is a component-wise multiplication
where we add the results together. It looks like this with two unit vectors (you can verify that both
their lengths are exactly 1):

0.6 0
_ . =(0.6%0) + (— 0x0) =—-0.8
0 0

To calculate the degree between both these unit vectors we use the inverse of the cosine function
cos~! and this results in 143 .1 degrees. We now effectively calculated the angle between these
two vectors. The dot product proves very useful when doing lighting calculations.

Cross product

The cross product is only defined in 3D space and takes two non-parallel vectors as input and
produces a third vector that is orthogonal to both the input vectors. If both the input vectors are
orthogonal to each other as well, a cross product would result in 3 orthogonal vectors. This will
prove useful in the upcoming tutorials. The following image shows what this looks like in 3D space:
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Unlike the other operations, the cross product isn’t really intuitive without delving into linear
algebra so it’s best to just memorize the formula and you’ll be fine (or don’t, you’ll probably be
fine as well). Below you’ll see the cross product between two orthogonal vectors A and B:

A_x B x B z7—A_z-
X =|Az-Bx—A x-B z
A_z B z A_x- B x

As you can see, it doesn’t really seem to make sense. However, if you just follow these steps
you’ll get another vector that is orthogonal to your input vectors.

Matrices

Now that we’ve discussed almost all there is to vectors it is time to enter the matrix! A matrix is
basically a rectangular array of numbers, symbols and/or expressions. Each individual item in a
matrix is called an element of the matrix. An example of a 2x3 matrix is shown below:
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1 2 3

4 5 6
Matrices are indexed by (i, j) where 1 is the row and j is the column, that is why the above
matrix is called a 2x3 matrix (3 columns and 2 rows, also known as the dimensions of the matrix).

This is the opposite of what you’re used to when indexing 2D graphs as (x, y) . To retrieve the
value 4 we would index it as (2, 1) (second row, first column).

Matrices are basically nothing more than that, just rectangular arrays of mathematical expres-
sions. They do have a very nice set of mathematical properties and just like vectors we can define
several operations on matrices, namely: addition, subtraction and multiplication.

Addition and subtraction

Addition and subtraction between a matrix and a scalar is defined as follows:

1 2 n
3 4
The scalar value is basically added to each individual element of the matrix. The same applies
for matrix-scalar subtraction:

5 -

Matrix addition and subtraction between two matrices is done on a per-element basis. So the
same general rules apply that we’re familiar with for normal numbers, but done on the elements of
both matrices with the same index. This does mean that addition and subtraction is only defined for
matrices of the same dimensions. A 3x2 matrix and a 2x3 matrix (or a 3x3 matrix and a 4x4 matrix)
cannot be added or subtracted together. Let’s see how matrix addition works on two 2x2 matrices:

BRI G B O

The same rules apply for matrix subtraction:

e e
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Matrix-scalar products

Just like addition and subtraction, a matrix-scalar product multiples each element of the matrix by a
scalar. The following example illustrates the multiplication:

Now it also makes sense as to why those single numbers are called scalars. A scalar basically
scales all the elements of the matrix by its value. In the previous example, all elements were scaled
by 2.

So far so good, all of our cases weren’t really too complicated. That is, until we start on
matrix-matrix multiplication.

Matrix-matrix multiplication

Multiplying matrices is not necessarily complex, but rather difficult to get comfortable with. Matrix
multiplication basically means to follow a set of pre-defined rules when multiplying. There are a
few restrictions though:
1. You can only multiply two matrices if the number of columns on the left-hand side matrix is
equal to the number of rows on the right-hand side matrix.
2. Matrix multiplication is not commutative that is A- B # B - A.

Let’s get started with an example of a matrix multiplication of 2 2x2 matrices:

1 2] [5 6] _[1-5+2:7 1-6+2:8] _[19 22
7 8] T [3:5447 3-6+4.8]  [43 50

Right now you’re probably trying to figure out what the hell just happened? Matrix multiplica-
tion is a combination of normal multiplication and addition using the left-matrix’s rows with the
right-matrix’s columns. Let’s try discussing this with the following image:

_ ‘E‘ _ [T 5+2-7) 1-6+2-8] _ 22
3 _4)| ||7) 8] 3-5+4-7 3-6+4-8 43 (50

We first take the upper row of the left matrix and then take a column from the right matrix. The
row and column that we picked decides which output value of the resulting 2x2 matrix we’re going
to calculate. If we take the first row of the left matrix the resulting value will end up in the first row
of the result matrix, then we pick a column and if it’s the first column the result value will end up
in the first column of the result matrix. This is exactly the case of the red pathway. To calculate
the bottom-right result we take the bottom row of the first matrix and the rightmost column of the
second matrix.

To calculate the resulting value we multiply the first element of the row and column together
using normal multiplication, we do the same for the second elements, third, fourth etc. The results
of the individual multiplications are then summed up and we have our result. Now it also makes
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sense that one of the requirements is that the size of the left-matrix’s columns and the right-matrix’s
rows are equal, otherwise we can’t finish the operations!

The result is then a matrix that has dimensions of (n, m) where n is equal to the number of
rows of the left-hand side matrix and m is equal to the columns of the right-hand side matrix.

Don’t worry if you have difficulties imagining the multiplications inside your head. Just keep
trying to do the calculations by hand and return to this page whenever you have difficulties. Over
time, matrix multiplication becomes second nature to you.

Let’s finish the discussion of matrix-matrix multiplication with a larger example. Try to
visualize the pattern using the colors. As a useful exercise, see if you can come up with your own
answer of the multiplication and then compare them with the resulting matrix (once you try to do a
matrix multiplication by hand you’ll quickly get the grasp of them).

4 2 0] [4 2 1] [44+42240-9 4.242.0+0-4 4-14+2-440-2 20 8
2 0 4|={04+82+1-9 1484412 ={25 4
010 (94 2] [04+1:240:9 02410404 0-1+1-4+40-2 2 0

As you can see, matrix-matrix multiplication is quite a cumbersome process and very prone to
errors (which is why we usually let computers do this) and this gets problematic real quick when
the matrices become larger. If you’re still thirsty for more and you’re curious about some more of
the mathematical properties of matrices I strongly suggest you take a look at these Khan Academy
videos about matrices.

Anyways, now that we know how to multiply matrices together, we can start getting to the good
stuff.

Matrix-Vector multiplication

Up until now we’ve had our fair share of vectors these tutorials. We used vectors to represent
positions, colors and even texture coordinates. Let’s move a bit further down the rabbit hole and
tell you that a vector is basically a Nx1 matrix where N is the vector’s number of components
(also known as an N-dimensional vector). If you think about it, it makes a lot of sense. Vectors
are just like matrices an array of numbers, but with only 1 column. So, how does this new piece
of information help us? Well, if we have a MxN matrix we can multiply this matrix by our Nx1
vector, since the columns of our matrix are equal to the number of rows of our vector, thus matrix
multiplication is defined.

But why do we care if we can multiply matrices with a vector? Well, it just so happens that
there are lots of interesting 2D/3D transformations we can place inside a matrix and multiplying
that matrix with our vector basically transforms our vector. In case you’re still a bit confused, let’s
start with some examples and you’ll soon see what we mean.

12
34


https://www.khanacademy.org/math/algebra2/algebra-matrices
https://www.khanacademy.org/math/algebra2/algebra-matrices
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Identity matrix

In OpenGL we usually work with 4x4 transformation matrices for several reasons and one of them
is that most of the vectors are of size 4. The most simple transformation matrix that we can think of
is the identity matrix. The identity matrix is an NxN matrix with only Os except on its diagonal. As
you’ll see, this transformation matrix leaves a vector completely unharmed:

100 0] [ 1-1 1

2| |2
00 1 0l |3 1-3 3
000 1] [4 14| |4

The vector seems completely untouched. This becomes obvious from the rules of multiplication:
the first result element is each individual element of the first row of the matrix multiplied with
each element of the vector. Since each of the row’s elements are 0 except the first one, we get:
1-1+0-240-3+0-4 =1 and the same applies for the other 3 elements of the vector.

You might be wondering what the use is of a transformation matrix that does not trans-
form? The identity matrix is usually a starting point for generating other transformation
matrices and if we dig even deeper into linear algebra, a very useful matrix for proving
theorems and solving linear equations.

Scaling

When we’re scaling a vector we are increasing the length of the arrow by amount we’d like to scale,
keeping its direction the same. Since we’re working in either 2 or 3 dimensions we can define
scaling by a vector of 2 or 3 scaling variables, each scaling one axis (x, y or z).

Let’s try scaling the vector v = (3,2). We will scale the vector along the x-axis by 0. 5, thus
making it twice as narrow; and we’ll scale the vector by 2 along the y-axis, making it twice as high.
Let’s see what it looks like if we scale the vector by (0.5, 2) as §:

- N W = O

Keep in mind that OpenGL usually operates in 3D space so for this 2D case we could set the
z-axis scale to 1 thus leaving it unharmed. The scaling operation we just performed is a non-uniform
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scale, because the scaling factor is not the same for each axis. If the scalar would be equal on all
axes it would be called a uniform scale.

Let’s start building a transformation matrix that does the scaling for us. We saw from the
identity matrix that each of the diagonal elements were multiplied with its corresponding vector
element. What if we were to change the 1s in the identity matrix to 3s? In that case, we would
be multiplying each of the vector elements by a value of 3 and thus effectively scale the vector by
3. If we represent the scaling variables as (S_1,5 2.S_3) we can define a scaling matrix on any
vector (x,y,z) as:

S1 0 0 0 x S 1-x
0 S2 0 0 y| S22y
0 0 S30 z| | S3z
0 0 0 1 1 1

Note that the 4th scaling vector stays 1, since it’s undefined to scale the w component in a 3D
space. The w component is used for other purposes as we’ll see later on.

Translation

Translation is the process of adding another vector on top of the original vector to return a new
vector with a different position, thus moving the vector based on a translation vector. We’ve already
discussed vector addition so this shouldn’t be too new.

Just like the scaling matrix there are several locations on a 4-by-4 matrix that we can use to
perform certain operations and for translation those are the top-3 values of the 4th column. If we
represent the scaling vector as (7_x,7 v, T_z) we can define the translation matrix by:

1 0 0 T x X x+T x
0O 1 0 Ty y y+7T y
0 0 1 Tz Z z+T_z
0 0 1 1 1

This works because all of the translation values are multiplied by the vector’s w column and
added to the vector’s original values (remember the matrix-multiplication rules). This wouldn’t
have been possible with a 3-by-3 matrix.

Homogeneous coordinates

The w component of a vector is also known as a homogeneous coordinate. To get the
3D vector from a homogeneous vector we divide the x, v and z coordinate by its w
coordinate. We usually do not notice this since the w component is 1 . 0 most of the time.
Using homogeneous coordinates has several advantages: it allows us to do translations
on 3D vectors (without a w component we can’t translate vectors) and in the next chapter
we’ll use the w value to create 3D visuals.

Also, whenever the homogeneous coordinate is equal to O the vector is specifically
known as a direction vector since a vector with a w coordinate of 0 cannot be translated.
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With a translation matrix we could move objects in any of the 3 directions (x, vy, z) we’d like,
making it a very useful transformation matrix for our transformation toolKkit.

Rotation

The last few transformations were relatively easy to understand and visualize in 2D or 3D space,
but rotations are a bit trickier. If you want to know exactly how these matrices are constructed I'd
recommend that you watch the rotation items of Khan Academy’s linear algebra videos.

First let’s define what a rotation of a vector actually is. A rotation in 2D or 3D is represented
with an angle. An angle could be in degrees or radians where a whole circle has 360 degrees or 2
PI radians. I personally prefer to work in degrees, since they seem to make more sense to me.

Most rotation functions require an angle in radians, but luckily degrees are easily
converted to radians:

angle in degrees = angle in radians = (180.0f / PI)

angle in radians = angle in degrees % (PI / 180.0f)

Where PT equals (sort of) 3.14159265359.

Rotating half a circle would rotate us 360/2 = 180 degrees and rotating 1/5th to the right means
we rotate 360/5 = 72 degrees to the right. This is demonstrated for a basic 2D vector where v is
rotated 72 degrees to the right from

rotation axis (0,0,1)

Rotations in 3D are specified with an angle and a rotation axis. The angle specified will rotate
the object along the rotation axis given. Try to visualize this by spinning your head a certain degree
while continually looking down a single rotation axis. When rotating 2D vectors in a 3D world for
example, we set the rotation axis to the z-axis (try to visualize this).

Using trigonometry it is possible to transform vectors to new rotated vectors given an angle.
This is usually done via a smart combination of the sine and cosine function (commonly
abbreviated to sin and cos). A discussion of how the transformation matrices are generated is
out of the scope of this tutorial.

A rotation matrix is defined for each unit axis in 3D space where the angle is represented as the
theta symbol 6.

Rotation around the X-axis:


https://www.khanacademy.org/math/linear-algebra/matrix_transformations
http://en.wikipedia.org/wiki/Pi
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1 0 0 0 X X
— y _
0 sin® cos6 O z sin@ -y+cos6 -z
0 0 0 1 1 1
Rotation around the Y-axis:
cosO O sinf6 O X cosO-x+sinf -z
Y| — y
—sin@ 0 cos® O z —sin@-x+cosO -z
0 0 0 1 1 1
Rotation around the Z-axis:
cos® —sinf 0 O X cos@-x—sin6 -y
y p—
0 0 1 0 z z
0 0 0 1 1 1

Using the rotation matrices we can transform our position vectors around one of the three unit
axes. It is also possible to combine them by first rotating around the X-axis and then the Y-axis for
example. However, this quickly introduces a problem called Gimbal lock. We won’t discuss the
details, but a better solution is to rotate around an arbitrary unit axis e.g. (0.662,0.2,0.722)
(note that this is a unit vector) right away instead of combining the rotation matrices. Such a (nasty)

matrix exists and is given below with (R _x, R_z) as the arbitrary rotation axis:
cos@ +R_x*(1 —cosH) R x R _zsin® R_xR_z(1—cosB)+ 0
R_x(1—cosB)+R_zsin6 cos 0 + R_z(1 —cos@)—R _xsinf 0
R_zR x(1—cosB) — R z R_xsin6 cos 8 +R_z*(1 —cos ) 0
0 0 0 1

A mathematical discussion of generating such a matrix is out of the scope of this tutorial. Keep
in mind that even this matrix does not completely prevent gimbal lock (although it gets a lot harder).
To truly prevent Gimbal locks we have to represent rotations using quaternions, that are not only
safer, but also more computationally friendly. However, a discussion of quaternions is reserved for
a later tutorial.

Combining matrices

The true power from using matrices for transformations is that we can combine multiple transfor-
mations in a single matrix thanks to matrix-matrix multiplication. Let’s see if we can generate a
transformation matrix that combines several transformations. Say we have a vector (x, vy, z) and
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we want to scale it by 2 and then translate it by (1,2, 3). We need a translation and a scaling
matrix for our required steps. The resulting transformation matrix would then look like:

1 0 01 2.0 00 2 0 01
Trans.Scale:OOI3.0020:0023
00 01 00 01 0 0 01
Note that we first do a translation and then a scale transformation when multiplying matrices.
Matrix multiplication is not commutative, which means their order is important. When multiplying
matrices the right-most matrix is first multiplied with the vector so you should read the multi-
plications from right to left. It is advised to first do scaling operations, then rotations and lastly
translations when combining matrices otherwise they might (negatively) affect each other. For

example, if you would first do a translation and then scale, the translation vector would also scale!

Running the final transformation matrix on our vector results in the following vector:

2 0 0 1 X 2x+1
Y| _
00 2 3 Z 2743
0 0 0 1 1 1
Great! The vector is first scaled by two and then translated by (1,2, 3).

In practice

Now that we’ve explained all the theory behind transformations, it’s time to see how we can
actually use this knowledge to our advantage. OpenGL does not have any form of matrix or vector
knowledge built in, so we have to define our own mathematics classes and functions. In the tutorials
we’d rather abstract from all the tiny mathematical details and simply use pre-made mathematics
libraries. Luckily, there is an easy-to-use and tailored-for-OpenGL mathematics library called
GLM.

GLM

Clm

GLM stands for OpenGL Mathematics and is a header-only library, which means that we only have
to include the proper header files and we’re done; no linking and compiling necessary. GLM can be
downloaded from their website. Copy the root directory of the header files into your includes folder
and let’s get rolling.

Most of GLM’s functionality that we need can be found in only 3 headers files that we’ll include
as follows:

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <glm/gtc/type_ptr.hpp>



http://glm.g-truc.net/0.9.5/index.html
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Let’s see if we can put our transformation knowledge to good use by translating a vector of
(1,0,0) by (1,1,0) (note that we define it as a glm: : vec4 with its homogenous coordinate
setto 1.0:

glm: :vecd4 vec(l1.0f, 0.0f, 0.0f, 1.0f);
glm: :mat4 trans;
trans = glm::translate(trans, glm::vec3(1.0f, 1.0f, 0.0f));

vec = trans *x vec;
std::cout << vec.x << vec.y << vec.z << std::endl;

We first define a vector named vec using GLM’s built-in vector class. Next we define a mat 4
which is a 4-by-4 identity matrix by default. The next step is to create a transformation matrix by
passing our identity matrix to the glm: : t ranslate function, together with a translation vector
(the given matrix is then multiplied with a translation matrix and the resulting matrix is returned).

Then we multiply our vector by the transformation matrix and output the result. If we still
remember how matrix translation works then the resulting vector should be (1+1, 0+1, 0+0)
whichis (2, 1, 0). This snippet of code outputs 210 so the translation matrix did its job.

Let’s do something more interesting and scale and rotate the container object from the previous
tutorial. First we’ll rotate the container by 90 degrees counter-clockwise. Then we scale it by 0. 5,
thus making it twice as small. Let’s create the transformation matrix first:

glm: :mat4 trans;
trans = glm::rotate(trans, 90.0f, glm::vec3(0.0, 0.0, .0Y))
)

trans = glm::scale(trans, glm::vec3(0.5, 0.5, 0.5

)i

First we scale the container by 0.5 on each axis and then rotate the container 90 degrees
around the Z-axis. Note that the textured rectangle is on the XY plane so we want to rotate around
the Z-axis. Because we pass the matrix to each of GLM’s functions, GLM automatically multiples
the matrices together, resulting in a transformation matrix that combines all the transformations.

Some versions of GLM take the angle in radians instead of degrees in which case you
can convert it to radians with glm: : radians (90.0f).

The next big question is: how do we get the transformation matrix to the shaders? We shortly
mentioned before that GLSL also has a mat4 type. So we’ll adapt the vertex shader to accept a
mat 4 uniform variable and multiply the position vector by the matrix uniform:

#version 330 core

layout (location = in vec3 position;
layout (location = in vec3 color;
layout (location in vec2 texCoord;

out vec3 ourColor;
out vec2 TexCoord;

uniform mat4 transform;

d main ()

gl _Position = transform » vec4 (position, 1.0f);
ourColor = color;
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TexCoord = vec2 (texCoord.x, 1.0 - texCoord.y);

GLSL also has mat2 and mat3 types that allow for swizzling-like operations just
like vectors. All the aforementioned math operations (like scalar-matrix multiplication,
matrix-vector multiplication and matrix-matrix multiplication) are allowed on the matrix
types. Wherever special matrix operations are used we’ll be sure to explain what’s
happening.

We added the uniform and multiplied the position vector with the transformation matrix before
passing it to g1_Position. Our container should now be twice as small and rotated 90 degrees
(tilted to the left). We still need to pass the transformation matrix to the shader though:

GLuint transformLoc = glGetUniformLocation (ourShader.Program,

glUniformMatrix4fv (transformLoc, 1, GL_FALSE, glm::value_ptr(trans));

We first query the location of the uniform variable and then send the matrix data to the shaders
via glUniform function with Mat rix4 fv as its postfix. The first argument should be familiar
by now which is the uniform’s location. The second argument tells OpenGL how many matrices
we’d like to send, which is 1. The third argument asks us if we want to transpose our matrix, that is
to swap the columns and rows. OpenGL uses an internal matrix layout that’s called column-major
ordering for their matrices under the hood. GLM already defines its matrices using column-major
ordering so there is no need to transpose the matrices, we can keep it at GL_FALSE. The last
parameter is the actual matrix data, but GLM stores their matrices not in the exact way that OpenGL
likes to receive them so we first transform them with GLM’s built-in function value_ptr.

We created a transformation matrix, declared a uniform in the vertex shader and sent the matrix
to the shaders where we transform our vertex coordinates. The result should look something like
this:
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Perfect! Our container is indeed tilted to the left and twice as small so the transformation was
successful. Let’s get a little more funky and see if we can rotate the container over time and for fun
we’ll also reposition the container at the bottom-right side of the window. To rotate the container
over time we have to update the transformation matrix in the game loop because it needs to update
each render iteration. We use GLFW’s time function to get the angle over time:

glm: :mat4 trans;

trans = glm::translate(trans, glm::vec3(0.5f, -0.5f, 0.0f));

3(
trans = glm::rotate (trans, (GLfloat)glfwGetTime () * 50.0f, glm::vec3(0.0f,
0.0f, 1.0f));

Keep in mind that in the previous case we could declare the transformation matrix anywhere,
but now we have to create it every iteration so we continuously update the rotation. This means
we have to re-create the transformation matrix in each iteration of the game loop. Usually when
rendering scenes we have several transformation matrices that are re-created with new values each
render iteration.

Here we first rotate the container around the origin (0, 0, 0) and once it’s rotated, we translate
its rotated version to the bottom-right corner of the screen. Remember that the actual transformation
order should be read in reverse: even though in code we first translate and then later rotate, the actual
transformations first apply a rotation and then a translation. Understanding all these combinations
of transformations and how they apply to objects is difficult to understand. Try and experiment
with transformations like these and you’ll quickly get a grasp of it.

If you did things right you should get the following result:
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And there you have it. A translated container that’s rotated over time, all done by a single
transformation matrix! Now you can see why matrices are such a powerful construct in graphics
land. We can define an infinite amount of transformations and combine them all in a single matrix
that we can re-use as often as we’d like. Using transformations like this in the vertex shader saves
us the effort of re-defining the vertex data and saves us some processing time as well, since we
don’t have to re-send our data all the time (which is quite slow).

If you didn’t get the right result or you're stuck somewhere else. Take a look at the source code
together with the vertex and fragment shader.

In the next tutorial we’ll discuss how we can use matrices to define different coordinate spaces
for our vertices. This will be our first step into real-time 3D graphics!

8.19 Exercises

e Using the last transformation on the container, try switching the order around by first rotating
and then translating. See what happens and try to reason why this happens: solution.

e Try drawing a second container with another call to glDrawElements but place it at a
different position using transformations only. Make sure this second container is placed at
the top-left of the window and instead of rotating, scale it over time (using the sin function
is useful here; note that using sin will cause the object to invert as soon as a negative scale
is applied): solution.


http://learnopengl.com/code_viewer.php?code=getting-started/transformations
http://learnopengl.com/code_viewer.php?code=getting-started/transformations&type=vertex
http://learnopengl.com/code_viewer.php?code=getting-started/transformations&type=fragment
http://learnopengl.com/code_viewer.php?code=getting-started/transformations-exercise1
http://learnopengl.com/code_viewer.php?code=getting-started/transformations-exercise2

In the last tutorial we learned how we can use matrices to our advantage by transforming all vertices
with transformation matrices. OpenGL expects all the vertices, that we want to become visible, to
be in normalized device coordinates after each vertex shader run. That is, the x, v and z coordinates
of each vertex should be between —1 . 0 and 1. 0; coordinates outside this range will not be visible.
What we usually do, is specify the coordinates in a range we configure ourselves and in the vertex
shader transform these coordinates to NDC. These NDC coordinates are then given to the rasterizer
to transform them to 2D coordinates/pixels on your screen.

Transforming coordinates to NDC and then to screen coordinates is usually accomplished in a
step-by-step fashion where we transform an object’s vertices to several coordinate systems before
finally transforming them to screen coordinates. The advantage of transforming them to several
intermediate coordinate systems is that some operations/calculations are easier in certain coordinate
systems as will soon become apparent. There are a total of 5 different coordinate systems that are
of importance to us:

Local space (or Object space)
World space
View space (or Eye space)
Clip space
Screen space
Those are all a different state at which our vertices will be transformed in before finally ending
up as fragments.

You’re probably quite confused by now by what a space or coordinate system actually is so
we’ll explain them in a more understandable fashion by showing the total picture and what each
specific space actually does.



9.1

9.1 The global picture 96

The global picture

To transform the coordinates in one space to the next coordinate space we’ll use several transforma-
tion matrices of which the most important are the model, view and projection matrix. Our vertex
coordinates first start in local space as local coordinates and are then further processed to world
coordinates, view coordinates, clip coordinates and eventually end up as screen coordinates. The
following image displays the process and shows what each transformation does:

g camara
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1. Local coordinates are the coordinates of your object relative to its local origin; they’re the
coordinates your object begins in.

2. The next step is to transform the local coordinates to world-space coordinates which are
coordinates in respect of a larger world. These coordinates are relative to a global origin of
the world, together with many other objects also placed relative to the world’s origin.

3. Next we transform the world coordinates to view-space coordinates in such a way that each
coordinate is as seen from the camera or viewer’s point of view.

4. After the coordinates are in view space we want to project them to clip coordinates. Clip
coordinates are processed to the —1 .0 and 1. 0 range and determine which vertices will end
up on the screen.

5. And lastly we transform the clip coordinates to screen coordinates in a process we call
viewport transform that transforms the coordinates from —1.0 and 1. 0 to the coordinate
range defined by g1lViewport. The resulting coordinates are then send to the rasterizer to
turn them into fragments.

You probably got a slight idea what each individual space is used for. The reason we’re
transforming our vertices into all these different spaces is that some operations make more sense or
are easier to use in certain coordinate systems. For example, when modifying your object it makes
most sense to do this in local space, while calculating certain operations on the object with respect
to the position of other objects makes most sense in world coordinates and so on. If we want, we
could define one transformation matrix that goes from local space to clip space all in one go, but
that leaves us with less flexibility.

We’ll discuss each coordinate system in more detail below.



9.2

9.3

9.4

9.5

9.2 Local space 97

Local space

Local space is the coordinate space that is local to your object, i.e. where your object begins in.
Imagine that you’ve created your cube in a modeling software package (like Blender). The origin
of your cube is probably at (0, 0, 0) even though your cube might end up at a different location
in your final application. Probably all the models you’ve created all have (0, 0, 0) as their initial
position. All the vertices of your model are therefore in local space: they are all local to your object.

The vertices of the container we’ve been using were specified as coordinates between —0 . 5
and 0.5 with 0. 0 as its origin. These are local coordinates.

World space

If we would import all our objects directly in the application they would probably all be somewhere
stacked on each other around the world’s origin of (0, 0, 0) which is not what we want. We want
to define a position for each object to position them inside a larger world. The coordinates in world
space are exactly what they sound like: the coordinates of all your vertices relative to a (game)
world. This is the coordinate space where you want your objects transformed to in such a way that
they’re all scattered around the place (preferably in a realistic fashion). The coordinates of your
object are transformed from local to world space; this is accomplished with the model matrix.

The model matrix is a transformation matrix that translates, scales and/or rotates your object to
place it in the world at a location/orientation they belong to. Think of it as transforming a house by
scaling it down (it was a bit too large in local space), translating it to a suburbia town and rotating it
a bit to the left on the y-axis so that it neatly fits with the neighboring houses. You could think of
the matrix in the previous tutorial to position the container all over the scene as a sort of model
matrix as well; we transformed the local coordinates of the container to some different place in the
scene/world.

View space

The view space is what people usually refer to as the camera of OpenGL (it is sometimes also
known as the camera space or eye space). The view space is the result of transforming your
world-space coordinates to coordinates that are in front of the user’s view. The view space is thus
the space as seen from the camera’s point of view. This is usually accomplished with a combination
of translations and rotations to translate/rotate the scene so that certain items are transformed to the
front of the camera. These combined transformations are generally stored inside a view matrix that
transforms world coordinates to view space. In the next tutorial we’ll extensively discuss how to
create such a view matrix to simulate a camera.

Clip space

At the end of each vertex shader run, OpenGL expects the coordinates to be within a specific
range and any coordinate that falls outside this range is clipped. Coordinates that are clipped are
discarded, so the remaining coordinates will end up as fragments visible on your screen. This is
also where clip space gets its name from.
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Because specifying all the visible coordinates to be within the range —1.0 and 1.0 isn’t really
intuitive, we specify our own coordinate set to work in and convert those back to NDC as OpenGL
expects them.

To transform vertex coordinates from view to clip-space we define a so called projection matrix
that specifies a range of coordinates e.g. —1000 and 1000 in each dimension. The projection
matrix then transforms coordinates within this specified range to normalized device coordinates
(=1.0,1.0). All coordinates outside this range will not be mapped between —1.0 and 1.0 and
therefore be clipped. With this range we specified in the projection matrix, a coordinate of (1250,
500, 750) would not be visible, since the x coordinate is out of range and thus gets converted to a
coordinate higher than 1. 0 in NDC and is therefore clipped.

Note that if only a part of a primitive e.g. a triangle is outside the clipping volume
OpenGL will reconstruct the triangle as one or more triangles to fit inside the clipping
range.

This viewing box a projection matrix creates is called a frustum and each coordinate that ends
up inside this frustum will end up on the user’s screen. The total process to convert coordinates
within a specified range to NDC that can easily be mapped to 2D view-space coordinates is called
projection since the projection matrix projects 3D coordinates to the easy-to-map-to-2D normalized
device coordinates.

Once all the vertices are transformed to clip space a final operation called perspective division
is performed where we divide the %, y and z components of the position vectors by the vector’s
homogeneous w component; perspective division is what transforms the 4D clip space coordinates
to 3D normalized device coordinates. This step is performed automatically at the end of each vertex
shader run.

It is after this stage where the resulting coordinates are mapped to screen coordinates (using the
settings of glViewport) and turned into fragments.

The projection matrix to transform view coordinates to clip coordinates can take two different
forms, where each form defines its own unique frustum. We can either create an orthographic
projection matrix or a perspective projection matrix.

Orthographic projection

An orthographic projection matrix defines a cube-like frustum box that defines the clipping space
where each vertex outside this box is clipped. When creating an orthographic projection matrix we
specify the width, height and length of the visible frustum. All the coordinates that end up inside
this frustum after transforming them to clip space with the orthographic projection matrix won’t be
clipped. The frustum looks a bit like a container:
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The frustum defines the visible coordinates and is specified by a width, a height and a near and
far plane. Any coordinate in front of the near plane is clipped and the same applies to coordinates
behind the far plane. The orthographic frustum directly maps all coordinates inside the frustum
to normalized device coordinates since the w component of each vector is untouched; if the w
component is equal to 1 . 0 perspective division doesn’t change the coordinates.

To create an orthographic projection matrix we make use of GLM’s built-in function glm: : ortho:

glm::ortho(0.0£, 800.0£f, 0.0f, 600.0f, 0.1f, 100.0f);

The first two parameters specify the left and right coordinate of the frustum and the third and
fourth parameter specify the bottom and top part of the frustum. With those 4 points we’ve defined
the size of the near and far planes and the 5th and 6th parameter then define the distances between
the near and far plane. This specific projection matrix transforms all coordinates between these x,
y and z range values to normalized device coordinates.

An orthographic projection matrix directly maps coordinates to the 2D plane that is your
screen, but in reality a direct projection produces unrealistic results since the projection doesn’t
take perspective into account. That is something the perspective projection matrix fixes for us.

9.5.2 Perspective projection

If you ever were to enjoy the graphics the real life has to offer you’ll notice that objects that are
farther away appear much smaller. This weird effect is something we call perspective and it happens
because we see the world from two different viewports: one eye each. Perspective is especially
noticeable when looking down the end of an infinite motorway or railway as seen in the following
image:
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As you can see, due to perspective the lines seem to coincide the farther they’re away. This is
exactly the effect perspective projection tries to mimic and it does so using a perspective projection
matrix. The projection matrix maps a given frustum range to clip space, but also manipulates the w
value of each vertex coordinate in such a way that the further away a vertex coordinate is from the
viewer, the higher this w component becomes. Once the coordinates are transformed to clip space
they are in the range —w to w (anything outside this range is clipped). OpenGL requires that the
visible coordinates fall between the range —1.0 and 1. 0 as the final vertex shader output, thus
once the coordinates are in clip space, perspective division is applied to the clip space coordinates:

x/w
out = | y/w
z/w

Each component of the vertex coordinate is divided by its w component giving smaller vertex
coordinates the further away a vertex is from the viewer. This is another reason why the w
component is important, since it helps us with perspective projection. The resulting coordinates
are then in normalized device space. If you’re interested to figure out how the orthographic and
perspective projection matrices are actually calculated (and aren’t too scared of mathematics) I can
recommend this excellent article by Songho.

A perspective projection matrix can be created in GLM as follows:

glm: :mat4 proj = glm::perspective (45.0f, (float)width/(float)height, 0.1f,

100.0f) ;

What glm: : perspective does is again create a large frustum that defines the visible space,
anything outside the frustum will not end up in the clip space volume and will thus become clipped.
A perspective frustum can be visualized as a non-uniformly shaped box from where each coordinate
inside this box will be mapped to a point in clip space. An image of a perspective frustum is seen
below:


http://www.songho.ca/opengl/gl_projectionmatrix.html
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Its first parameter defines the fov value, that stands for field of view and sets how large the
viewspace is. For a realistic view it is usually set at 45 . 0 £, but for more doom-style results you
could set it to a higher value. The second parameter sets the aspect ratio which is calculated by
dividing the viewport’s width by its height. The third and fourth parameter set the near and far
plane of the frustum. We usually set the near distance to 0. 1f and the far distance to 100.0f.
All the vertices between the near and far plane and inside the frustum will be rendered.

Whenever the near value of your perspective matrix is set a bit too high (like 10.0f),
OpenGL will clip all coordinates close to the camera (between 0.0f and 10.0f),
which gives a familiar visual result in videogames in that you can see through certain
objects if you move too close to them.

When using orthographic projection, each of the vertex coordinates are directly mapped to clip
space without any fancy perspective division (it still does perspective division, but the w component
is not manipulated (it stays 1) and thus has no effect). Because the orthographic projection doesn’t
use perspective projection, objects farther away do not seem smaller, which produces a weird
visual output. For this reason the orthographic projection is mainly used for 2D renderings and for
some architectural or engineering applications where we’d rather not have vertices distorted by
perspective. Applications like Blender that are used for 3D modelling sometimes use orthographic
projection for modelling, because it more accurately depicts each object’s dimensions. Below you’ll
see a comparison of both projection methods in Blender:
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You can see that with perspective projection, the vertices farther away appear much smaller,
while in orthographic projection each vertex has the same distance to the user.

Putting it all together

We create a transformation matrix for each of the aforementioned steps: model, view and projection
matrix. A vertex coordinate is then transformed to clip coordinates as follows:

V_clip = M_projection- M_view - M_model -V _local

Note that the order of matrix multiplication is reversed (remember that we need to read matrix
multiplication from right to left). The resulting vertex should then be assigned to g1_Position
in the vertex shader and OpenGL will then automatically perform perspective division and clipping.

And then?

The output of the vertex shader requires the coordinates to be in clip-space which is what
we just did with the transformation matrices. OpenGL then performs perspective division
on the clip-space coordinates to transform them to normalized-device coordinates.
OpenGL then uses the parameters from glViewPort to map the normalized-device
coordinates to screen coordinates where each coordinate corresponds to a point on your
screen (in our case a 800x600 screen). This process is called the viewport transform.

This is a difficult topic to understand so if you’re still not exactly sure about what each space
is used for you don’t have to worry. Below you’ll see how we can actually put these coordinate
spaces to good use and enough examples will follow in these tutorials.

Going 3D

Now that we know how to transform 3D coordinates to 2D coordinates we can start showing our
objects as real 3D objects instead of a lame 2D plane we’ve been showing so far.
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To start drawing in 3D we’ll first create a model matrix. The model matrix consists of
translations, scaling and/or rotations we’d like to apply to transform all object’s vertices it to the
global world space. Let’s transform our plane a bit by rotating it on the x-axis so it looks like it’s
laying on the floor. The model matrix then looks like this:

glm: :mat4 model;

model = glm::rotate (model, -55.0f, glm::vec3(1.0f, 0.0f, 0.0f));

By multiplying the vertex coordinates with this model matrix we’re transforming the vertex
coordinates to world coordinates. Our plane that is slightly on the floor thus represents the plane in
the global world.

Next we need to create a view matrix. We want to move slightly backwards in the scene so
the object becomes visible (when in world space we’re located at the origin (0, 0, 0) ). To move
around the scene, think about the following:

e To move a camera backwards, is the same as moving the entire scene forward.

That is exactly what a view matrix does, we move the entire scene around inversed to where we
want the camera to move.

Because we want to move backwards and since OpenGL is a right-handed system we have to
move in the positive z-axis. We do this by translating the scene towards the negative z-axis. This
gives the impression that we are moving backwards.
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Right-handed system

By convention, OpenGL is a right-handed system. What this basically says is that

the positive x-axis is to your right, the positive y-axis is up and the positive z-axis

is backwards. Think of your screen being the center of the 3 axes and the posi-

tive z-axis going through your screen towards you. The axes are drawn as follows:
+Y

' +X

+7

To understand why it’s called right-handed do the following:

e Stretch your right-arm along the positive y-axis with your hand up top.

e [et your thumb point to the right.

e [ et your pointing finger point up.

e Now bend your middle finger downwards 90 degrees.
If you did things right, your thumb should point towards the positive x-axis, the pointing
finger towards the positive y-axis and your middle finger towards the positive z-axis. If
you were to do this with your left-arm you would see the z-axis is reversed. This is known
as a left-handed system and is commonly used by DirectX. Note that in normalized
device coordinates OpenGL actually uses a left-handed system (the projection matrix
switches the handedness).

We’ll discuss how to move around the scene in more detail in the next tutorial. For now the
view matrix looks like this:

glm: :mat4 view;

view = glm::translate(view, glm::vec3(0.0f, O.

The last thing we need to define is the projection matrix. We want to use perspective projection
for our scene so we’ll declare the projection matrix like this:

glm: :mat4 projection;
projection = glm::perspective (45.0f, screenWidth / screenHeight, 0.1f,

100.0f%) ;
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Again, be careful when specifying degrees in glm. Here we set the fov parameter to 45
degrees, but some implementations of GLM take the fov in radians in which case you
need to setitas glm: : radians (45.0).

Now that we created the transformation matrices we should pass them to our shaders. First let’s
declare the transformation matrices as uniforms in the vertex shader and multiply them with the

vertex coordinates:

#version 330 core
layout (location = 0) in vec3 position;

uniform mat4 model;
uniform mat4d view;
uniform mat4 projection;

void main ()

{

gl_Position = projection % view x model x vec4 (position, 1.0f);

We should also send the matrices to the shader (this is usually done each render iteration since
transformation matrices tend to change a lot):

GLint modellLoc = glGetUniformLocation (ourShader.Program, ));
glUniformMatrix4fv (modelLoc, 1, GL_FALSE, glm::value_ptr (model));

Now that our vertex coordinates are transformed via the model, view and projection matrix the
final object should be:
e Tilted backwards to the floor.

e A bit farther away from us.
e Be displayed with perspective (it should get smaller, the further its vertices are).

Let’s check if the result actually does fulfill these requirements:
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It does indeed look like the plane is a 3D plane that’s resting at some imaginary floor. If you’re
not getting the same result check the complete source code and the vertex and fragment shader.

9.8 More 3D

So far we’ve been working with a 2D plane, even in 3D space, so let’s take the adventurous route
and extend our 2D plane to a 3D cube. To render a cube we need a total of 36 vertices (6 faces * 2
triangles * 3 vertices each). 36 vertices are a lot to sum up so you can retrieve them from here. Note
that we’re omitting the color values, since we’ll only be using textures to get the final color value.

For fun, we’ll let the cube rotate over time:

model = glm::rotate (model, (GLfloat)glfwGetTime() % 50.0f, glm::vec3(0.5f,
1.0£, 0.0f));

And then we’ll draw the cube using glDrawArrays, but this time with a count of 36 vertices.

glDrawArrays (GL_TRIANGLES, 0, 36);

You should get something similar to the following:


http://learnopengl.com/code_viewer.php?code=getting-started/coordinate_systems
http://learnopengl.com/code_viewer.php?code=getting-started/transform&type=vertex
http://learnopengl.com/code_viewer.php?code=getting-started/transform&type=fragment
http://learnopengl.com/code_viewer.php?code=getting-started/cube_vertices
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It does resemble a cube slightly but something’s off. Some sides of the cubes are being drawn
over other sides of the cube. This happens because when OpenGL draws your cube triangle-by-
triangle, it will overwrite its pixels even though something else might’ve been drawn there before.
Because of this, some triangles are drawn on top of each other while they’re not supposed to overlap.

Luckily, OpenGL stores depth information in a buffer called the z-buffer that allows OpenGL
to decide when to draw over a pixel and when not to. Using the z-buffer we can configure OpenGL
to do depth-testing.

Z-buffer

OpenGL stores all its depth information in a z-buffer, also known as a depth buffer. GLFW
automatically creates such a buffer for you (just like it has a color-buffer that stores the colors of the
output image). The depth is stored within each fragment (as the fragment’s z value) and whenever
the fragment wants to output its color, OpenGL compares its depth values with the z-buffer and
if the current fragment is behind the other fragment it is discarded, otherwise overwritten. This
process is called depth testing and is done automatically by OpenGL.

However, if we want to make sure OpenGL actually performs the depth testing we first need to
tell OpenGL we want to enable depth testing; it is disabled by default. We can enable depth testing
using glEnable. The glEnable and glDisable functions allow us to enable/disable certain
functionality in OpenGL. That functionality is then enabled/disabled until another call is made to
disable/enable it. Right now we want to enable depth testing by enabling GL_DEPTH_TEST:

glEnable (GL_DEPTH_TEST) ;
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Since we’re using a depth buffer we also want to clear the depth buffer before each render
iteration (otherwise the depth information of the previous frame stays in the buffer). Just like
clearing the color buffer, we can clear the depth buffer by specifying the DEPTH_BUFFER_BIT
bit in the g1 Clear function:

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Let’s re-run our program and see if OpenGL now performs depth testing:

See video online

There we go! A fully textured cube with proper depth testing that rotates over time. Check the
source code here.

9.8.2 More cubes!

Say we wanted to display 10 of our cubes on screen. Each cube will look the same but will only
differ in where it’s located in the world with each a different rotation. The graphical layout of the
cube is already defined so we don’t have to change our buffers or attribute arrays when rendering
more objects. The only thing we have to change for each object is its model matrix where we
transform the cubes into the world.

First, let’s define a translation vector for each cube that specifies its position in world space.
We’ll define 10 cube positions in a glm: : vec3 array:

::vec3 cubePositions[] = {
.0£, 0.0f, 0.0f),
.0f, 5.0f, -15.0f),
.5f, -2.2f, -2.5f),
.8f, -2.0f, -12.3f),
.4f, -0.4f, -3.5f),

S TiE, 3.0E, =7.5i&),
W IiE, =20, =2.5i),
oD, 2.01E, =2,51%),
oD, 0.2&, =L.5iI)
Wi, 1,0E, =I1.5iE)

4

Now, within the game loop we want to call the g1DrawArrays function 10 times, but this
time send a different model matrix to the vertex shader each time before we render. We will create
a small loop within the game loop that renders our object 10 times with a different model matrix.
Note that we also add a small rotation to each container.

glBindVertexArray (VAO) ;
for (GLuint 1 = 0; 1 < 10; i++4)
{

glm: :mat4 model;

model = glm::translate (model, cubePositions[i]);

GLfloat angle = 20.0f * i;

model = glm::rotate (model, angle, glm::vec3(1.0f, 0.3f, 0.5f));

%)



http://learnopengl.com/code_viewer.php?code=getting-started/coordinate_systems_with_depth
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glUniformMatrix4fv (modelLoc, 5L_FALS glm: :value_ptr (model)) ;

glDrawArrays (GL_TRIANGLES, 0, 36);
}
glBindVertexArray (0) ;

This snippet of code will update the model matrix each time a new cube is drawn and do this
10 times in total. Right now we should be looking into a world filled with 10 oddly rotated cubes:

Perfect! It looks like our container found some likeminded friends. If you’re stuck see if you
can compare your code with the source code and the vertex and fragment shader before continuing.

9.9 Exercises

e Try experimenting with the FoV and aspect-ratio parameters of GLM’s projection
function. See if you can figure out how those affect the perspective frustum.

e Play with the view matrix by translating in several directions and see how the scene changes.
Think of the view matrix as a camera object.

e Try to make every 3rd container (including the 1st) rotate over time, while leaving the other
containers static using just the model matrix: solution.


http://learnopengl.com/code_viewer.php?code=getting-started/coordinate_systems_multiple_objects
http://learnopengl.com/code_viewer.php?code=getting-started/coordinate_systems&type=vertex
http://learnopengl.com/code_viewer.php?code=getting-started/coordinate_systems&type=fragment
http://learnopengl.com/code_viewer.php?code=getting-started/coordinate_systems-exercise3

10.1

In the previous tutorial we discussed the view matrix and how we can use the view matrix to move
around the scene (we moved backwards a little). OpenGL by itself is not familiar with the concept
of a camera, but we can try to simulate one by moving all objects in the scene in the reverse
direction, giving the illusion that we are moving.

In this tutorial we’ll discuss how we can set up a camera in OpenGL. We will discuss an
FPS-style camera that allows you to freely move around in a 3D scene. In this tutorial we’ll also
discuss keyboard and mouse input and finish with a custom camera class.

Camera/View space

When we’re talking about camera/view space we’re talking about all the vertex coordinates as
seen from the camera’s perpective as the origin of the scene: the view matrix transforms all the
world coordinates into view coordinates that are relative to the camera’s position and direction. To
define a camera we need its position in world space, the direction it’s looking at, a vector pointing
to the right and a vector pointing upwards from the camera. A careful reader might notice that
we’re actually going to create a coordinate system with 3 perpendicular unit axes with the camera’s

position as the origin.
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+z +z
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10.1.1 1. Camera position
Getting a camera position is easy. The camera position is basically a vector in world space that
points to the camera’s position. We set the camera at the same position we’ve set the camera in the
previous tutorial:

glm: :vec3 cameraPos = glm::vec3(0.0£f, O.

Don’t forget that the positive z-axis is going through your screen towards you so if we
want the camera to move backwards, we move along the positive z-axis.

10.1.2 2. Camera direction

The next vector required is the camera’s direction e.g. at what direction it is pointing at. For now
we let the camera point to the origin of our scene: (0, 0, 0) . Remember that if we subtract two
vectors from each other we get a vector that’s the difference of these two vectors? Subtracting the
camera position vector from the scene’s origin vector thus results in the direction vector. Since we
know that the camera points towards the negative z direction we want the direction vector to point
towards the camera’s positive z-axis. If we switch the subtraction order around we now get a vector
pointing towards the camera’s positive z-axis:

glm: :vec3 cameraTarget = glm::vec3(0.0f, 0.0f, 0.0f);

glm: :vec3 cameraDirection = glm::normalize (cameraPos — cameraTarget);

The name direction vector is not the best chosen name, since it is actually pointing in
the reverse direction of what it is targeting.

10.1.3 3. Right axis

The next vector that we need is a right vector that represents the positive x-axis of the camera space.
To get the right vector we use a little trick by first specifying an up vector that points upwards (in
world space). Then we do a cross product on the up vector and the direction vector from step 2.
Since the result of a cross product is a vector perpendicular to both vectors, we will get a vector
that points in the positive x-axis’s direction (if we would switch the vectors we’d get a vector that
points in the negative x-axis):

glm::vec3 up = glm::vec3(0.0£f, 1.0f, 0.0f);

glm: :vec3 cameraRight = glm::normalize (glm::cross (up, cameraDirection));

10.1.4 4. Up axis
Now that we have both the x-axis vector and the z-axis vector, retrieving the vector that points in
the camera’s positive y-axis is relatively easy: we take the cross product of the right and direction
vector:

glm: :vec3 cameraUp = glm::cross (cameraDirection, cameraRight) ;
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With the help of the cross product and a few tricks we were able to create all the vectors that
form the view/camera space. For the more mathematically inclined readers, this process is known
as the Gram-Schmidt process in linear algebra. Using these camera vectors we can now create a
LookAt matrix that proves very useful for creating a camera.

Look At

A great thing about matrices is that if you define a coordinate space using 3 perpendicular (or
non-linear) axes you can create a matrix with those 3 axes plus a translation vector and you can
transform any vector to that coordinate space by multiplying it with this matrix. This is exactly
what the LookAt matrix does and now that we have 3 perpendiclar axes and a position vector to
define the camera space we can create our own LookAt matrix:

Rx Ry Rz O 1 0 0 —Px

B ol o1 0 —pry
LookAt=\ ;' by bz ol"lo 0 1 —p
o 0o o0 1] 000 1

Where R is the right vector, U/ is the up vector, D is the direction vector and P is the camera’s
position vector. Note that the position vector is inverted since we eventually want to translate the
world in the opposite direction of where we want to move. Using this LookAt matrix as our view
matrix effectively transforms all the world coordinates to the view space we just defined. The
LookAt matrix then does exactly what it says: it creates a view matrix that looks at a given target.

Luckily for us, GLM already does all this work for us. We only have to specify a camera
position, a target position and a vector that represents the up vector in world space (the up vector
we used for calculating the right vector). GLM then creates the Look At matrix that we can use as
our view matrix:

glm::mat4 view;
view = glm::lookAt (glm::vec3(0.0f, 0.0f, 3.0f),

glm::vec3(0.0£f, 0.0f, 0.0f),
glm::vec3(0.0£, 1.0f, 0.0f));

The glm: : LookAt function requires a position, target and up vector respectively. This creates
a view matrix that is the same as the one used in the previous tutorial.

Before delving into user input, let’s get a little funky first by rotating the camera around our
scene. We keep the target of the scene at (0,0, 0).

We use a little bit of trigonometry to create an x and z coordinate each frame that represents
a point on a circle and we’ll use these for our camera position. By re-calculating the x and y
coordinate we’re traversing all the points in a circle and thus the camera rotates around the scene.
We enlarge this circle by a pre-defined radius and create a new view matrix each render iteration
using GLFW’s g1 fwGet Time function:

GLfloat radius = 10.0f;

GLfloat camX = sin(glfwGetTime ()) =* radius;
GLfloat camZ cos (glfwGetTime ()) = radius;



http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
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glm: :mat4 view;

view = :lookAt (glm: :vec3 (camX, 0.0,

ec3(0.0, 1.0, 0.0));

If you run this code you should get something like this:

% LeamOpenGL - oIEH

With this little snippet of code the camera now circles around the scene over time. Feel free
to experiment with the radius and position/direction parameters to get the feel of how this LookAt
matrix works. Also, check the source code and the vertex and fragment shader if you’re stuck.

10.3 Walk around

Swinging the camera around a scene is fun, but it’s more fun to do all the movement by ourselves!
First we need to set up a camera system, so it is useful to define some camera variables at the top of
our program:

3 cameraPos = n::ve 0.0f, 3.0f);
cameraFront HIH 0.0f£, -1.0f);

’

cameraUp 5 38 1.0f, .0f);

The LookAt function now becomes:

view = glm::lookAt (cameraPos, cameraPos + cameraFront, cameralUp);

First we set the camera position to the previously defined cameraPos. The direction is the
current position + the direction vector we just defined. This ensures that however we move, the


http://learnopengl.com/code_viewer.php?code=getting-started/camera_circle
http://learnopengl.com/code_viewer.php?code=getting-started/coordinate_systems&type=vertex
http://learnopengl.com/code_viewer.php?code=getting-started/coordinate_systems&type=fragment
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camera keeps looking at the target direction. Let’s play a bit with these variables by updating the
cameraPos vector when we press some keys.

We already defined a key_callback function for GLFW’s keyboard input so let’s add some
new key commands to check for:

void key_callback (GLFWwindowx window, int key, int scancode, int action,
int mode)

GLfloat cameraSpeed = 0.05f;
if (key == GLFW_KEY_W)
cameraPos += cameraSpeed x cameraFront;
if (key == GLFW_KEY_S)
cameraPos —= cameraSpeed * cameraFront;
if (key == GLFW_KEY_A)
cameraPos —-= glm::normalize (glm::cross (cameraFront, cameraUp)) =
cameraSpeed;
if (key == GLFW_KEY_D)

cameraPos += glm::normalize (glm::cross (cameraFront, cameraUp)) =
cameraSpeed;

Whenever we press one of the WASD keys the camera’s position is updated accordingly. If we
want to move forward or backwards we add or subtract the direction vector from the position vector.
If we want to move sidewards we do a cross product to create a right vector and we move along the
right vector accordingly. This creates the familiar strafe effect when using the camera.

Note that we normalize the resulting right vector. If we wouldn’t normalize this vec-
tor, the resulting cross product might return differently sized vectors based on the
cameraFront variable. If we would not normalize the vector we would either move
slow or fast based on the camera’s orientation instead of at a consistent movement speed.

If you update the key_callback function with this code fragment you are able to move
along the scene by going forward/backwards or sidewards.

See video online

After fiddling around with this basic camera system you probably noticed that you can’t move
in two directions at the same time (diagonal movement) and when you hold down one of the keys,
it first bumps a little and after a short break starts moving. This happens because most event-input
systems can handle only one keypress at a time and their functions are only called whenever we
activate a key. While this works for most GUI systems, it is not very practical for smooth camera
movement. We can solve the issue by showing you a little trick.

The trick is to only keep track of what keys are pressed/released in the callback function. In the
game loop we then read these values to check what keys are active and react accordingly. So we’re
basically storing state information about what keys are pressed/released and react upon that state in
the game loop. First, let’s create a boolean array representing the keys pressed/released:
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51 keys[1024];

We then have to set the pressed/released keys to true or false in the key_callback
function:

if (action == GLFW_PRESS)
keys[key] = true;

> if (action GLFW_RELEASE)
keys|[key] = fa > ;

And let’s create a new function that we call do_movement where we update the camera
values based on the keys that were pressed:

void do_movement ()

{

GLfloat cameraSpeed = 0.01f;

if (keys [GLEW_KEY_W])
cameraPos += cameraSpeed * cameraFront;

if (keys[GLEFW_KEY_S])
cameraPos —= cameraSpeed * cameraFront;

if (keys [GLFW_KEY_A])
cameraPos —-= glm::normalize (glm::cross (cameraFront, cameraUp)) *
cameraSpeed;

if (keys[GLEW_KEY_D])
cameraPos += glm::normalize (glm::cross (cameraFront, cameraUp)) *
cameraSpeed;

The code from the previous section is now moved to the Do_Movement function. Because all
GLFW’s key-enums are basically just integers, we can use them to index the array.

Last, but not least, we need to add a call to the new function in the game loop:

while (!glfwWindowShouldClose (window) )
{

glfwPollEvents () ;

do_movement () ;

By now, you should be able to move in both directions at the same time and you should be able
to move instantaneously even while holding down the keys. Feel free to check the source code if
you’re stuck.

10.4 Movement speed

Currently we used a constant value for movement speed when walking around. In theory this seems
fine, but in practice people have different processing powers and the result of that is that some
people are able to draw much more frames than others each second. Whenever a user draws more
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frames than another user he also calls do_movement more often. The result is that some people
move really fast and some really slow depending on their setup. When shipping your application
you want to make sure it runs the same on all kinds of hardware.

Graphics applications and games usually keep track of a deltatime variable that stores the time
it takes to render the last frame. We then multiply all velocities with this deltaTime value. The
result is that when we have a large deltaTime in a frame, meaning that the last frame took longer
than average, the velocitoy for that frame will also be a bit higher to balance it all out. When using
this approach it does not matter if you have a very fast or slow pc, the velocity of the camera will
be balanced out accordingly so each user will have the same experience.

To calculate the deltaTime value we keep track of 2 global variables:

GLfloat deltaTime =

GLfloat lastFrame =

Within each frame we then calculate the new deltaTime value for later use:

GLfloat currentFrame = glfwGetTime () ;
deltaTime = currentFrame - lastFrame;
lastFrame currentFrame;

Now that we have del1taTime we can take it into account when calculating the velocities:

void Do_Movement ()
{
GLfloat cameraSpeed = 5.0f % deltaTime;

}

Together with the previous section we should now have a much smoother and more consistent
camera system for moving around the scene:

See video online

And now we have a camera that walks and looks equally fast on any system. Again, check
the source code if you’re stuck. We’ll see the deltaTime value frequently return with anything
movement related.

Look around

Only using the keyboard keys to move around isn’t that interesting. Especially since we can’t turn
around making the movement rather restricted. That’s where the mouse comes in!

To look around the scene we have to change the cameraFront vector based on the input of
the mouse. However, changing the direction vector based on mouse rotations is a little complicated
and requires some trigonemetry. If you do not understand the trigonemetry, don’t worry. You can
just skip to the code sections and paste them in your code; you can always come back later if you
want to know more.


http://learnopengl.com/code_viewer.php?code=getting-started/camera_keyboard_dt
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10.6 Euler angles

Euler angles are 3 values that can represent any rotation in 3D, defined by Leonhard Euler some-
where in the 1700s. There are 3 Euler angles: pitch, yaw and roll. The following image gives them
a visual meaning:

Ya %

The pitch is the angle that depicts how much we’re looking up or down as seen in the first
image. The second image shows the yaw value which represents the magnitude we’re looking to
the left or to the right. The roll represents how much we roll as mostly used in space-flight cameras.
Each of the Euler angles are represented by a single value and with the combination of all 3 of them
we can calculate any rotation vector in 3D.

For our camera system we only care about the yaw and pitch values so we won’t discuss the roll
value here. Given a pitch and a yaw value we can convert them into a 3D vector that represents a
new direction vector. The process of converting yaw and pitch values to a direction vector requires
a bit of trigonemetry and we start with a basic case:

cosB=x/h
sinB=y/h
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If we define the hypotenuse to be of length 1 we know from trigonometry (soh cah toa) that
the adjacant side’s length is cos x/h = cos x/1 = cos x and that the opposing side’s length is
sin y/h =sin y/1 =sin y. This gives us some general formulas for retrieving the length in both
the x and y directions, depending on the given angle. Let’s use this to calculate the components of
the direction vector:



10.6 Euler angles 118

e sin pitch

A pitch
Pl L iz

cos pitch

This triangle looks similar to the previous triangle so if we visualize that we are sitting on the
xz plane and look towards the y axis we can calculate the length / strength of the y direction (how
much we’re looking up or down) based on the first triangle. From the image we can see that the
resulting y value for a given pitch equals sin O:

direction.y = sin(glm::radians (pitch));

Here we only update the y value is affected, but if you look carefully you can also that the x
and z components are affected. From the triangle we can see that their values equal:

direction.x cos (glm: :radians (pitch));

direction.z cos (glm: :radians (pitch));

Let’s see if we can find the required components for the yaw value as well:

Just like the pitch triangle we can see that the x component depends on the cos (yaw) value
and the z value also depends on the sin of the yaw value. Adding this to the previous values
results in a final direction vector based on the pitch and yaw values:

direction.x = cos(glm::radians (pitch)) x cos(glm::radians (yaw));
direction.y sin(glm::radians (pitch));

direction.z cos (glm: :radians (pitch)) * sin(glm::radians(yaw));

This gives us a formula to convert yaw and pitch values to a 3-dimensional direction vector
that we can use for looking around. You probably wondered by now: how do we get these yaw and
pitch values?
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10.7 Mouse input

The yaw and pitch values are obtained from mouse (or controller/joystick) movement where
horizontal mouse-movement affects the yaw and vertical mouse-movement affects the pitch. The
idea is to store the last frame’s mouse positions and in the current frame we calculate how much the
mouse values changed in comparrison with last frame’s value. The higher the horizontal/vertical
difference, the more we update the pitch or yaw value and thus the more the camera should move.

First we will tell GLFW that it should hide the cursor and capture it. Capturing a cursor means
that once the application has focus the mouse cursor stays within the window (unless the application
loses focus or quits). We can do this with one simple configuration call:

glfwSetInputMode (window, GLEFW_CURSOR, GLFW_CURSOR_DISABLED) ;

After this call, wherever we move the mouse it won’t be visible and it should not leave the
window. This is perfect for an FPS camera system.

To calculate the pitch and yaw values we need to tell GLFW to listen to mouse-movement
events. We do this (simliar to keyboard input) by creating a callback function with the following
prototype:

void mouse_callback (GLFWwindowx window, double xpos, double ypos);

Here xpos and ypos represent the current mouse positions. As soon as we register the
callback function with GLFW each time the mouse moves, the mouse_callback function is
called:

glfwSetCursorPosCallback (window, mouse_callback);

When handling mouse input for an FPS style camera there are several steps we have to take
before eventually retrieving the direction vector:

1. Calculate the mouse’s offset since the last frame.

2. Add the offset values to the camera’s yaw and pitch values.

3. Add some constraints to the maximum/minimum yaw/pitch values

4. Calculate the direction vector

The first step is to calculate the offset of the mouse since the last frame. We first have to store
the last mouse positions in the application, which we set to the center of the screen (screen size is
800 by 600) initially:

GLfloat lastX = 400, lastY = 300;

Then in the mouse’s callback function we calculate the offset movement between the last and
current frame:

GLfloat xoffset = xpos - lastX;
GLfloat yoffset lastY - ypos;

lastX Xpos;
lastY ypos;
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GLfloat sensitivity = 0.05f;

xoffset *= sensitivity;
yoffset x= sensitivity;

Note that we multiply the offset values by a sensitivity value. If we omit this multiplica-
tion the mouse movement would be way too strong; fiddle around with the sensitivity value to your
liking.

Next we add the offset values to globally declared pitch and yaw values:

yaw += xoffset;

pitch += yoffset;

In the third step we’d like to add some constraints to the camera so users won’t be able to make
weird camera movements (also prevents a few weird issues). The pitch will be constrained in such
a way that users won’t be able to look higher than 89 degrees (at 90 degrees the view tends to
reverse, so we stick to 89 as our limit) and also not below -89 degrees. This ensures the user will
be able to look up to the sky and down to his feet but not further. The constraint works by just
replacing the resulting value with its constraint value whenever it breaches the constraint:

if (pitch > 89.0f)
pitch = 89.0f;

if (pitch < -89.0f)
pitch = -89.0f;

Note that we set no constraint on the yaw value since we don’t want to constrain the user in
horizontal rotation. However, it’s just as easy to add a constraint to the yaw as well if you feel like
it.

The fourth and last step is to calculate the actual direction vector from the resulting yaw and
pitch value as discussed in the previous section:

glm: :vec3 front;
front.x = cos(glm::radians (pitch)

( * cos (glm::radians (yaw)) ;
front.y sin (glm: :radians (pitch)

7

)
)

front.z cos (glm: :radians (pitch)) * sin(glm::radians (yaw));
t

)i

cameraFront = glm::normalize (fron

This computed direction vector then contains all the rotations calculated from the mouse’s
movement. Since the cameraFront vector is already included in glm’s 1ookAt function we’re
set to go.

If you would now run the code you will notice that the camera makes a large sudden jump
whenever the window first receives focus of your mouse cursor. The cause for the sudden jump is
that as soon as your cursor enters the window the mouse callback function is called with an xpos
and ypos position equal to the location your mouse entered the screen. This is usually a position
that is quite a distance away from the center of the screen resulting in large offsets and thus a large
movement jump. We can circumvent this issue by simply defining a global boo1l variable to check
if this is the first time we receive mouse input and if so, we first update the initial mouse positions to
the new xpos and ypos values; the resulting mouse movements will then use the entered mouse’s
position coordinates to calculate its offsets:
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if (firstMouse)
{
lastX = xpos;

lastY = ypos;
firstMouse = fals

}

The final code then becomes:

id mouse_callback (GLEWwindow* window, double xpos,
if (firstMouse)
{

lastX = xpos;
lastY = ypos;
firstMouse =

GLfloat xoffset = xpos - lastX;
GLfloat yoffset lastY - ypos;
lastX = xpos;
lastY = ypos;

GLfloat sensitivity = 0.05;
xoffset x= sensitivity;
yoffset x= sensitivity;

yaw += xoffset;
pitch += yoffset;

i f (pitch > 89.0f)
pitch = 89.0f;

if(pitch < -89.0f)
pitch = -89.0f;

glm::vec3 front;

front.x = cos(glm::radians(yaw)) = cos(glm::radians (pitch));
front.y = sin(glm::radians (pitch));

front.z = sin(glm::radians(yaw)) = cos(glm::radians (pitch));
cameraFront = glm::normalize (front);

There we go! Give it a spin and you’ll see that we can now freely move through our 3D scene!
If you’re still stuck somewhere, check the source code.

10.8 Zoom

As a little extra to the camera system we’ll also implement a zooming interface. In the previous
tutorial we said the Field of view or fov defines how much we can see of the scene. When the field
of view becomes smaller the scene’s projected space gets smaller giving the illusion of zooming
in. To zoom in, we’re going to use the mouse’s scroll-wheel. Similar to mouse movement and
keyboard input we have a callback function for mouse-scrolling:

scroll_callback (GLFWwindowx window, d le xoffset, « le yoffset)
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if(fov >= 1.0f && fov <= 45.0f)
fov —= yoffset;

if (fov <= 1.0f)
fov = 1.0f;

if (fov >= 45.0f)
fov = 45.0f;
}

When scrolling, the yof fset value represents the amount we scrolled vertically. When
the scroll_callback function is called we change the content of the globally declared fov
variable. Since 45 . 0f is the default fov value we want to constrain the zoom level between 1.0f
and 45.0f.

We now have to upload the perspective projection matrix to the GPU each render iteration but
this time with the fov variable as its field of view:

projection = glm::perspective (fov, (GLfloat)WIDTH/ (GLfloat)HEIGHT, 0.1f,
100.0f) ;

And lastly don’t forget to register the scroll callback function:

glfwSetScrollCallback (window, scroll_callback);

And there you have it. We implemented a simple camera system that allows for free movement
in a 3D environment.

See video online

Feel free to experiment a little and if you’re stuck compare your code with the source code.

Note that a camera system using Euler angles is still not a perfect system. Depending on
your constraints and your setup you could still introduce a Gimbal lock. The best camera
system would be developed using guaternions but we’ll leave that to a later topic.

10.9 Camera class

In the upcoming tutorials we will always use a camera to easily look around the scenes and see
the results from all angles. However, since a camera can take up quite some space on each tutorial
we’ll abstract a little from the details and create our own camera object that does most of the work
for us with some neat little extras. Unlike the Shader tutorial we won’t walk you through creating
the camera class, but just provide you with the (fully commented) source code if you want to know
the inner workings.

Just like the Shader object we create it entirely in a single header file. You can find the camera
object here. You should be able to understand all the code by now. It is advised to at least check the
class out once to see how you could create a camera object like this.
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The camera system we introduced is an FPS-like camera that suits most purposes and
works well with Euler angles, but be careful when creating different camera systems
like a flight simulation camera. Each camera system has its own tricks and quirks so be
sure to read up on them. For example, this FPS camera doesn’t allow for pitch values
higher than 90 degrees and a static up vector of (0, 1, 0) doesn’t work when we take
roll values into account.

The updated version of the source code using the new camera object can be found here.

10.10 Exercises

e See if you can transform the camera class in such a way that it becomes a true fps camera
where you cannot fly; you can only look around while staying on the xz plane: solution.

e Try to create your own LookAt function where you manually create a view matrix as discussed
at the start of this tutorial. Replace glm’s LookAt function with your own implementation
and see if it still acts the same: solution.


http://learnopengl.com/code_viewer.php?code=getting-started/camera_with_class
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Congratulations on reaching the end of the Getting started section. By now you should be able to
create a window, create and compile shaders, send vertex data to your shaders via buffer objects
or uniforms, draw objects, use textures, understand vectors and matrices and combine all that
knowledge to create a full 3D scene with a camera to play around with.

Phew, that is a lot that we learned these last few chapters. Try to play around with the tutorials,
experiment a bit or come up with your own ideas and solutions to some of the problems. As soon
as you feel you got the hang of all the materials we’ve discussed it’s time to move on to the next
tutorials.

Glossary

OpenGL: a formal specification of a graphics API that defines the layout and output of each
function.

GLEW: an extension loading library that loads and sets all OpenGL’s function pointers for us
so we can use all (modern) OpenGL’s functions.

e Viewport: the window where we render to.
e Graphics Pipeline: the entire process a vertex has to walk through before ending up

as a pixel on your screen.
Shader: a small program that runs on the graphics card. Several stages of the graphics
pipeline can use user-made shaders to replace existing functionality.

e Vertex: acollection of data that represent a single point.
e Normalized Device Coordinates: the coordinate system your vertices end up in

after clipping and perspective division is performed on clip coordinates. All vertex positions
in NDC between —1 .0 and 1.0 will not be discarded and end up visible.

Vertex Buffer Object: abuffer object that allocates memory and stores all the vertex
data for the graphics card to use.

Vertex Array Object: stores buffer and vertex attribute state information.


http://www.learnopengl.com/#!Lighting/Colors
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e Element Buffer Object: abuffer object that stores indices for indexed drawing.
e Uniform: aspecial type of GLSL variable that is global (each shader in a shader program

can access this uniform variable) and only has to be set once.

Texture: a special type of image wrapped around objects, giving the illusion an object is
extremely detailed.

Texture Wrapping: defines the mode that specifies how OpenGL should sample textures
when texture coordinates are outside the range: (0, 1).

Texture Filtering: defines the mode that specifies how OpenGL should sample the
texture when there are several texels (texture pixels) to choose from. This usually occurs
when a texture is magnified.

Mipmaps: stored smaller versions of a texture where the appropriate sized version is chosen
based on the distance to the viewer.

e SOIL: image loading library.

Texture Units: allows for multiple textures on a single object by binding multiple
textures each to a different texture unit.

Vector: a mathematical entity that defines directions and/or positions in any dimension.
Matrix: arectangular array of mathematical expressions.

GLM: a mathematics library tailored for OpenGL.

Local Space: the space an object begins in. All coordinates relative to an object’s origin.
World Space: all coordinates relative to a global origin.

View Space: all coordinates as viewed from a camera’s perspective.

Clip Space: all coordinates as viewed from the camera’s perspective but with projection
applied. This is the space the vertex coordinates should end up in, as output of the vertex
shader. OpenGL does the rest (clipping/perspective division).

Screen Space: all coordinates as viewed from the screen. Coordinates range from 0 to
screen width/height.

LookAt: aspecial type of view matrix that creates a coordinate system where all coordinates
are rotated and translated in such a way that the user is looking at a given target from a given
position.

Euler Angles: defined as yaw, pitchand rol1l that allow us to form any 3D direction
vector from these 3 values.
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We briefly mentioned how to work with colors in OpenGL in the previous tutorials, but so far only
touched the surface of colors. Here we’ll extensively discuss what colors are and start building the
scene for the upcoming lighting tutorials.

In the real world, colors can take practically any known color value with each object having its
own color(s). In the digital world we need to map the (infinite) real colors to (limited) digital values
and therefore not all real-world colors can be represented digitally. We can however represent
so many colors that you probably won’t notice the difference anyways. Colors are digitally
represented using a red, green and blue component commonly abbreviated as RGB. Using
different combinations of just those 3 values we can represent almost any color there is. For
example, to get a coral color we define a color vector as:

glm::vec3 coral (1.0f, 0.5f£, 0.31f);

The colors we see in real life are not the colors the objects actually have, but are the colors
reflected from the object; the colors that are not absorbed (rejected) by the objects are the colors we
perceive of them. For example, the light of the sun is perceived as a white light that is the combined
sum of many different colors (as you can see in the image). So if we would shine the white light
on a blue toy, it absorbs all the white color’s sub-colors except the blue color. Since the toy does
not absorb the blue value, it is reflected and this reflected light enters our eye, making it look like
the toy has a blue color. The following image shows this for a coral colored toy where it reflects
several colors with varying intensity:



128

You can see that the white sunlight is actually a collection of all the visible colors and the object
absorbs a large portion of those colors. It only reflects those colors that represent the object’s color
and the combination of those is what we perceive (in this case a coral color).

These rules of color reflection apply directly in graphics-land. When we define a light source in
OpenGL we want to give this light source a color. In the previous paragraph we had a white color
so we’ll give the light source a white color as well. If we would then multiply the light source’s
color with an object’s color value, the resulting color is the reflected color of the object (and thus
its perceived color). Let’s revisit our toy (this time with a coral value) and see how we would
calculate its perceivable color in graphics-land. We retrieve the resulting color vector by doing a
component-wise multiplication on both color vectors:

glm: :vec3 lightColor(1.0f, 1.0f, 1.0f);
glm: :vec3 toyColor(1.0f, .5f, 0.31f);

glm: :vec3 result = lightColor * toyColor;

We can see that the toy’s color absorbs a large portion of the white light, but reflects several red,
green and blue values based on its own color value. This is a representation of how colors would
work in real life. We can thus define an object’s color as the amount of each color component it
reflects from a light source. Now what would happen if we used a green light?

glm: :vec3 lightColor (0.0f, 1.0f, 0.0f);
glm: :vec3 toyColor(1.0f, 0.5f, 0.31f);

glm: :vec3 result = lightColor * toyColor;

As we can see, the toy has no red and blue light to absorb and/or reflect The toy also absorbs
half of the light’s green value, but also still reflects half of the light’s green value. The toy’s color
we perceive would then be a dark-greenish color. We can see that if we use a green light, only the
green color components can be reflected and thus perceived; no red and blue colors are perceived.
The result is that the coral object suddenly becomes a dark-greenish object. Let’s try one more
example with a dark olive-green light:

glm: :vec3 lightColor(0.33f, 0.42f, 0.18f);
f

glm: :vec3 toyColor(1.0f, 0.5f, 0.31f);
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glm: :vec3 result = lightColor * toyColor;

As you can see, we can get unexpected colors from objects by using different light colors. It’s
not hard to get creative with colors.

But enough about colors, let’s start building a scene where we can experiment in.

A lighting scene

In the upcoming tutorials we’ll be creating interesting visuals by simulating real-world lighting
making extensive use of colors. Since now we’ll be using light sources we want to display them as
visual objects in the scene and add at least one object to simulate the lighting on.

The first thing we need is an object to cast the light on and we’ll use the infamous container
cube from the previous tutorials. We will also be needing a light object to show where the light
source is located in the 3D scene. For simplicity’s sake we’ll represent the light source with a cube
as well (we already have the vertex data right?).

So, filling a vertex buffer object, setting vertex attribute pointers and all that weird stuff should
be easy for you by now so we won’t walk you through those steps. If you still have difficulties with
those items I suggest you review the previous tutorials and work through the exercises if possible
before continuing.

So, the first thing we will actually need is a vertex shader to draw the container. The vertex
positions of the container remain the same (although we won’t be needing texture coordinates this
time) so the code should be nothing new. We’ll be using a stripped down version of the vertex
shader from the last tutorials:

#version 330 core

layout (location = 0) in vec3 position;
uniform mat4 model;

uniform mat4d view;

uniform mat4 projection;

void main ()

gl_Position = projection % view * model *x vec4 (position, 1.0f);

Make sure to update your vertex data and attribute pointers to correspond with the new vertex
shader (if you want you can actually keep the texture data and attribute pointers active; we’re just
not using them right now, but it’s not a bad idea to start from a fresh start).

Because we are also going to create a lamp cube, we want to generate a new VAO specifically
for the lamp. We could also represent a lamp using the same VAO and then simply do some
transformations on the mode 1 matrix, but in the upcoming tutorials we’ll be changing the vertex
data and attribute pointers of the container object quite often and we don’t want these changes to
propagate to the lamp object (we only care about the lamp’s vertex positions), so we’ll create a new
VAO:


http://www.learnopengl.com/code_viewer.php?code=getting-started/cube_vertices
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GLuint 1ightVAO;
glGenVertexArrays (1, &lightVAO) ;
glBindVertexArray (1ightVAO) ;

glBindBuffer (GL_ARRAY_ BUFFER, VBO);

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 3 x sizeof (GLfloat), (
GLvoidx*)O0) ;

glEnableVertexAttribArray (0) ;

glBindVertexArray (0) ;

The code should be relatively straightforward. Now that we created both the container and the
lamp cube there is one thing left to define and that is the fragment shader:

#fversion 330 core
out vec4d color;

uniform vec3 objectColor;
uniform vec3 lightColor;

void main ()
{
color = vec4 (lightColor * objectColor, 1.0f);

}

The fragment shader accepts both an object color and a light color from a uniform variable.
Here we multiply the light’s color with the object’s (reflected) color just like we discussed at the
beginning of this tutorial. Again, this shader should be easy to understand. Let’s set the object’s
color to the last section’s coral color with a white light:

GLint objectColorLoc = glGetUniformLocation (lightingShader.Program,
)i
GLint lightColorLoc = glGetUniformLocation (lightingShader.Program,

)
glUniform3f (objectColorLoc, 1.0f, 0.5f, 0.31f);
glUniform3f (lightColorLoc, 1.0f, 1.0f, 1.0f);

One thing left to note is that when we start to change the vertex and fragment shaders, the lamp
cube will change as well and this is not what we want. We don’t want the lamp object’s color to be
affected by the lighting calculations in the upcoming tutorials, but rather keep the lamp isolated
from the rest. We want the lamp to have a constant bright color, unaffected by other color changes
(this makes it look like the lamp really is the source of the light).

To accomplish this we actually need to create a second set of shaders that we will use to draw
the lamp, thus being safe from any changes to the lighting shaders. The vertex shader is the same
as the current vertex shader so you can simply copy the source code for the lamp’s vertex shader.
The fragment shader of the lamp ensures the lamp’s color stays bright by defining a constant white
color on the lamp:

#version 330 core
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out vec4d4 color;

volid main ()

{

color = vec4 (1.0f);

}

When we want to draw our objects, we want to draw the container object (or possibly many
other objects) using the lighting shader we just defined and when we want to draw the lamp, we use
the lamp’s shaders. During the tutorials we’ll gradually be updating the lighting shaders to slowly
achieve more realistic results.

The main purpose of the lamp cube is to show where the light comes from. We usually define
a light source’s position somewhere in the scene, but this is simply a position that has no visual
meaning. To show the actual lamp we draw the lamp cube at the same location of the light source.
This is accomplished by drawing the lamp object with the lamp shader, ensuring the lamp cube
always stays white, regardless of the light conditions of the scene.

So let’s declare a global vec 3 variable that represents the light source’s location in world-space
coordinates:

glm: :vec3 lightPos(1.2f, 1.0f, 2.0f);

We then want to translate the lamp’s cube to the light source’s position before drawing it and
we’ll also scale it down a bit to make sure the lamp isn’t too dominant:

model glm: :mat4 () ;
model = glm::translate (model, lightPos);
model glm: :scale (model, glm::vec3(0.2f));

The resulting drawing code for the lamp should then look something like this:

lampShader.Use () ;

glBindVertexArray (1ightVAO) ;
glDrawArrays (GL_TRIANGLES, 0, 36);
glBindVertexArray (0) ;

Injecting all the code fragments at their appropriate locations would then result in a clean
OpenGL application properly configured for experimenting with lighting. If everything compiles it
should look like this:
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Not really much to look at right now, but I'll promise it will get more interesting in the upcoming
tutorials.

If you have difficulties finding out where all the code snippets fit together in the application as
a whole, check the source code and carefully work your way through the code/comments.

Now that we have a fair bit of knowledge about colors and created a basic scene for some sexy
lighting stuff we can jump to the next tutorial where the real magic begins.


http://learnopengl.com/code_viewer.php?code=lighting/colors_scene
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Lighting in the real world is extremely complicated and depends on way too many factors, something
we can’t afford to calculate on the limited processing power we have. Lighting in OpenGL is
therefore based on approximations of reality using simplified models that are much easier to process
and look relatively similar. These lighting models are based on the physics of light as we understand
it. One of those models is called the Phong lighting model. The major building blocks of the Phong
model consist of 3 components: ambient, diffuse and specular lighting. Below you can see what
these lighting components actually look like:

ambient diffuse specular combined (Phong)

e Ambient lighting: even when it is dark there is usually still some light somewhere in the
world (the moon, a distant light) so objects are almost never completely dark. To simulate
this we use an ambient lighting constant that always gives the object some color.

e Diffuse lighting: simulates the directional impact a light object has on an object. This is the
most visually significant component of the lighting model. The more a part of an object faces
the light source, the brighter it becomes.

e Specular lighting: simulates the bright spot of a light that appears on shiny objects. Specular
highlights are often more inclined to the color of the light than the color of the object.

To create visually interesting scenes we want to at least simulate these 3 lighting components.
We’ll start with the simplest one: ambient lighting.
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Ambient lighting

Light usually does not come from a single light source, but from many light sources scattered all
around us, even when they’re not immediately visible. One of the properties of light is that it can
scatter and bounce in many directions reaching spots that aren’t in its direct vicinity; light can thus
reflect on other surfaces and have an indirect impact on the lighting of an object. Algorithms that
take this into consideration are called global illumination algorithms, but these are expensive and/or
complicated.

Since we’re not big fans of complicated and expensive algorithms we’ll start by using a very
simplistic model of global illumination, namely ambient lighting. As you’ve seen in the previous
section we use a small constant (light) color that we add to the final resulting color of the object’s
fragments, thus making it look like there is always some scattered light even when there’s not a
direct light source.

Adding ambient lighting to the scene is really easy. We take the light’s color, multiply it with
a small constant ambient factor, multiply this with the object’s color and use it as the fragment’s
color:

1 main ()

float ambientStrength = 0.1f;
vec3 ambient = ambientStrength x lightColor;

vec3 result = ambient x objectColor;
color = vecd (result, 1.0f);

If you’d now run your program, you’ll notice that the first stage of lighting is now successfully
applied to your object. The object is quite dark, but not completely since ambient lighting is applied
(note that the light cube is unaffected because we use a different shader). It should look something
like this:



13.2 Diffuse lighting 135

13.2 Diffuse lighting

Ambient lighting by itself does not produce the most interesting results, but diffuse lighting will
start to give a significant visual impact on the object. Diffuse lighting gives the object more
brightness the closer its fragments are aligned to the light rays from a light source. To give you a
better understanding of diffuse lighting take a look at the following image:
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To the left we find a light source with a light ray targeted at a single fragment of our object.
We then need to measure at what angle the light ray touches the fragment. If the light ray is
perpendicular to the object’s surface the light has the greatest impact. To measure the angle between
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the light ray and the fragment we use something called a normal vector that is a vector perpendicular
to the fragment’s surface (here depicted as a yellow arrow); we’ll get to that later. The angle between
the two vectors can then easily be calculated with the dot product.

You might remember from the transformations tutorial that the lower the angle between two
unit vectors, the more the dot product is inclined towards a value of 1. When the angle between
both vectors is 90 degrees, the dot product becomes 0. The same applies to 0: the larger 6 becomes,
the less of an impact the light should have on the fragment’s color.

Note that to get (only) the cosine of the angle between both vectors we will work with
unit vectors (vectors of length 1) so we need to make sure all the vectors are normalized,
otherwise the dot product returns more than just the cosine (see Transformations).

The resulting dot product thus returns a scalar that we can use to calculate the light’s impact on
the fragment’s color, resulting in differently lit fragments, based on their orientation towards the
light.

So, what do we need to calculate diffuse lighting?

e Normal vector: a vector that is perpendicular to the vertex’ surface.

e The directed light ray: a direction vector that is the difference vector between the light’s
position and the fragment’s position. To calculate this light ray we need the light’s position
vector and the fragment’s position vector.

13.3 Normal vectors

A normal vector is a (unit) vector that is perpendicular to the surface of a vertex. Since a vertex
by itself has no surface (it’s just a single point in space) we retrieve a normal vector by using its
surrounding vertices to figure out the surface of the vertex. We can use a little trick to calculate the
normal vectors for all the cube’s vertices by using the cross product, but since a 3D cube is not a
complicated shape we can simply manually add them to the vertex data. The updated vertex data
array can be found here. Try to visualize that the normals are indeed vectors perpendicular to the
plane’s surfaces of the cube (a cube consists of 6 planes).

Since we added extra data to the vertex array we should update the lighting’s vertex shader:

#version 330 core

layout (location in vec3 position;

layout (location in vec3 normal;

Now that we added a normal vector to each of the vertices and updated the vertex shader we
should update the vertex attribute pointers as well. Note that the lamp object uses the same vertex
array for its vertex data, but the lamp shader has no use of the newly added normal vectors. We
don’t have to update the lamp’s shaders or attribute configurations, but we have to at least modify
the vertex attribute pointers to reflect the new vertex array’s size:

glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat), (

GLvoidx)O0);
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glEnableVertexAttribArray (0) ;

We only want to use the first 3 floats of each vertex and ignore the last 3 floats so we only need
to update the stride parameter to 6 times the size of a GLf1oat and we’re done.

It may look inefficient using vertex data that is not completely used by the lamp shader,
but the vertex data is already stored in the GPU’s memory from the container object so
we don’t have to store new data into the GPU’s memory. This actually makes it more
efficient compared to allocating a new VBO specifically for the lamp.

All the lighting calculations are done in the fragment shader so we need to forward the normal
vectors from the vertex shader to the fragment shader. Let’s do that:
out vec3 Normal;

vold main ()

{

gl_Position = projection % view * model x vec4 (position, 1.0f);
Normal = normal;

What’s left to do is declare the corresponding input variable in the fragment shader:

in vec3 Normal;

13.4 Calculating the diffuse color

We now have the normal vector for each vertex, but we still need the light’s position vector and the
fragment’s position vector. Since the light’s position is just a single static variable we can simply
declare it as a uniform in the fragment shader:

uniform vec3 lightPos; ‘

And then update the uniform in the game loop (or outside since it doesn’t change). We use the
lightPos vector declared in the previous tutorial as the location of the light source:

GLint lightPosLoc = glGetUniformLocation (lightingShader.Program,
)i

glUniform3f (lightPosLoc, lightPos.x, lightPos.y, lightPos.z);

Then the last thing we need is the actual fragment’s position. We’re going to do all the lighting
calculations in world space so we want a vertex position that is in world space. We can accomplish
this by multiplying the vertex position attribute with the model matrix only (not the view and
projection matrix) to transform it to world space coordinates. This can easily be accomplished in
the vertex shader so let’s declare an output variable and calculate its world space coordinates:

out vec3 FragPos;
out vec3 Normal;

void main ()
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gl_Position = projection % view x model * vec4 (position, 1.0f);
FragPos = vec3 (model x vec4 (position, 1.0f));

Normal = normal;

And lastly add the corresponding input variable to the fragment shader:

in vec3 FragPos; ‘

Now that all the required variables are set we can start with the lighting calculations in the
fragment shader.

The first thing we need to calculate is the direction vector between the light source and the
fragment’s position. We mentioned that the light’s direction vector is the difference vector between
the light’s position vector and the fragment’s position vector. As you might remember from the
transformations tutorial we can easily calculate this difference by subtracting both vectors. We also
want to make sure all the relevant vectors end up as unit vectors so we normalize both the normal
and the resulting direction vector:

vec3 norm = normalize (Normal) ;

vec3 lightDir = normalize (lightPos - FragPos);

When calculating lighting we usually do not care about the magnitude of a vector or
their position; we only care about their direction. Because we only care about their
direction almost all the calculations are done with unit vectors since it simplifies most
calculations (like the dot product). So when doing lighting calculations, make sure you
always normalize the relevant vectors to ensure they’re actual unit vectors. Forgetting to
normalize a vector is a popular mistake.

Next we want to calculate the actual diffuse impact the light has on the current fragment by
taking the dot product of the norm and 1ightDir vector. The resulting value is then multiplied
with the light’s color to get the diffuse component, resulting in a darker diffuse component the
greater the angle is between both vectors:

float diff = max(dot (norm, lightDir), 0.0);

vec3 diffuse = diff x lightColor;

If the angle between both vectors is greater than 90 degrees then the result of the dot product
will actually become negative and we end up with a negative diffuse component. For that reason
we use the max function that returns the highest of both its parameters to make sure the diffuse
component (and thus the colors) never become negative. Lighting for negative colors is not really
defined so it’s best to stay away from that, unless you’re one of those eccentric artists.

Now that we have both an ambient and a diffuse component we add both colors to each other
and then multiply the result with the color of the object to get the resulting fragment’s output color:

vec3 result = (ambient + diffuse) x objectColor;

color = vec4d (result, 1.0f);
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If your application (and shaders) compiled successfully you should see something like this:
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You can see that with diffuse lighting the cube starts to look like an actual cube again. Try
visualizing the normal vectors in your head and move around the cube to see that the larger the
angle between them and the light’s direction, the darker a fragment becomes.

Feel free to compare your source code with the complete source code here and the fragment
shader’s code here if you’re stuck.

One last thing

As of now we’ve been passing the normal vectors directly from the vertex shader to the fragment
shader. However, the calculations we’ve been doing in the fragment shader are all done in world
space coordinates, so shouldn’t we transform the normal vectors to world space coordinates as
well? Basically yes, but it’s not as simple as simply multiplying it with a model matrix.

First of all, normal vectors are only direction vectors and do not represent a specific position in
space. Also, normal vectors do not have a homogeneous coordinate (the w component of a vertex
position). This means that translations do and should not have any effect on the normal vectors. So
if we want to multiply the normal vectors with a model matrix we want to remove the translation
part of the matrix by taking the upper-left 3x3 matrix of the model matrix (note that we could
also set the w component of a normal vector to 0 and multiply with the 4x4 matrix; this removes
translation as well). The only transformations we want to apply to normal vectors are scale and
rotation transformations.
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Second, if the model matrix would perform a non-uniform scale, the vertices would be changed
in such a way that the normal vector is not perpendicular to the surface anymore, so we can’t
transform the normal vectors with such a model matrix. The following image shows the effect such
a model matrix (with non-uniform scaling) has on a normal vector:

Scale by
(0.6, 1.4)

Whenever we apply a non-uniform scale (note: uniform scales won’t hurt the normals since
their directions do not change, just their magnitude which is easily fixed by normalizing them)
the normal vectors are not perpendicular to the corresponding surface anymore which distorts the
lighting.

The trick of fixing this behavior is to use a different model matrix specifically tailored for
normal vectors. This matrix is called the normal matrix and uses a few linear algebraic operations
to remove the effect of wrongly scaling the normal vectors. If you want to know how this matrix is
actually calculated I suggest the following article.

The normal matrix is defined as ’the transpose of the inverse of the upper-left corner of the
model matrix’. Phew, that’s a mouthful and if you don’t really understand what that means, don’t
worry; we haven’t discussed inverse and transpose matrices yet. Note that most resources define
the normal matrix as these operations applied to the model-view matrix, but since we’re working in
world space (and not in view space) we only use the model matrix.

In the vertex shader we can generate this normal matrix ourselves by using the inverse and
transpose functions in the vertex shader that work on any matrix type. Note that we also cast
the matrix to a 3x3 matrix to ensure it loses its translation properties and that it can multiply with
the vec3 normal vector:

Normal = mat3 (transpose (inverse (model))) * normal;

In the diffuse lighting section the lighting was just fine because we did not perform any scaling
operation on the object itself so there was not really a need to use a normal matrix and could’ve just
multiplied the normals with the model matrix. If you are doing a non-uniform scale however, it is
essential that you multiply your normal vector with the normal matrix.
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Inversing matrices is a costly operation even for shaders so wherever possible, try to
avoid doing inverse operations in shaders since they have to be done on each vertex of
your scene. For learning purposes this is fine, but for an efficient application you’ll likely
want to calculate the normal matrix on the CPU and send it to the shaders via a uniform
before drawing (just like the model matrix).

13.6 Specular Lighting

If you’re not already exhausted by all the lighting calculations we can start finishing the Phong
lighting model by adding specular highlights.

Just like diffuse lighting, specular lighting is based on the light’s direction vector and the
object’s normal vectors, but this time it is also based on the view direction e.g. from what direction
the player is looking at the fragment. Specular lighting is based on the reflective properties of light.
If we think of the object’s surface as a mirror, the specular lighting is the strongest wherever we
would see the light reflected on the surface. You can see this effect in the following image:
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We calculate a reflection vector by reflecting the light direction around the normal vector. Then
we calculate the angular distance between this reflection vector and the view direction and the
closer the angle between them, the greater the impact of the specular light. The resulting effect is
that we see a bit of a highlight when we’re looking at the light’s direction reflected via the object.

The view vector is the one extra variable we need for specular lighting which we can calculate
using the viewer’s world space position and the fragment’s position. Then we calculate the
specular’s intensity, multiply this with the light color and add this to the resulting ambient and
diffuse components.
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We chose to do the lighting calculations in world space, but most people tend to prefer
doing lighting in view space. The added advantage of calculating in view space is that
the viewer’s position is always at (0, 0, 0) so you already got the position of the viewer
for free. However, I find calculating lighting in world space more intuitive for learning
purposes. If you still want to calculate lighting in view space you want to transform
all the relevant vectors with the view matrix as well (don’t forget to change the normal
matrix too).

To get the world space coordinates of the viewer we simply take the position vector of the
camera object (which is the viewer of course). So let’s add another uniform to the fragment shader
and pass the corresponding camera position vector to the fragment shader:

uniform vec3 viewPos; ‘

GLint viewPosLoc = glGetUniformLocation (lightingShader.Program,
glUniform3f (viewPosLoc, camera.Position.x, camera.Position.y, camera.

Position.z);

Now that we have all the required variables we can calculate the specular intensity. First we
define a specular intensity value to give the specular highlight a medium-bright color so that it
doesn’t have too much of an impact:

float specularStrength = 0.5f;

If we would set this to 1. 0f we’d get a really bright specular component which is a bit too
much for a coral cube. In the next tutorial we’ll talk about properly setting all these lighting
intensities and how they affect the objects. Next we calculate the view direction vector and the
corresponding reflect vector along the normal axis:

vec3 viewDir = normalize (viewPos - FragPos);

vec3 reflectDir = reflect (-lightDir, norm);

Note that we negate the 1ightDir vector. The reflect function expects the first vector to
point from the light source towards the fragment’s position, but the 1 ightD1ir vector is currently
pointing the other way around from the fragment towards the light source (depends on the order of
subtraction earlier on when we calculated the 1 ightDir vector). To make sure we get the correct
reflect vector we reverse its direction by negating the 1ightDir vector first. The second
argument expects a normal vector so we supply the normalized norm vector.

Then what’s left to do is to actually calculate the specular component. This is accomplished
with the following formula:

float spec = pow (max(dot (viewDir, reflectDir), 0.0), 32);

vec3 specular = specularStrength x spec x lightColor;

We first calculate the dot product between the view direction and the reflect direction (and make
sure it’s not negative) and then raise it to the power of 32. This 32 value is the shininess value of
the highlight. The higher the shininess value of an object, the more it properly reflects the light
instead of scattering it all around and thus the smaller the highlight becomes. Below you can see an
image that shows the visual impact of different shininess values:
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We don’t want the specular component to be too dominant so we keep the exponent at 32. The
only thing left to do is to add it to the ambient and diffuse components and multiply the combined
result with the object’s color:

vec3 result = (ambient + diffuse + specular) x objectColor;

color = vecd (result, 1.0f);

We now calculated all the lighting components of the Phong lighting model. Based on your
point of view you should see something like this:
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You can find the complete source code of the application here and the corresponding shaders
here: vertex and fragment.

In the earlier days of lighting shaders, developers used to implement the Phong lighting
model in the vertex shader. The advantage of doing lighting in the vertex shader is that it
is a lot more efficient since there are generally a lot less vertices than fragments, so the
(expensive) lighting calculations are done less frequently. However, the resulting color
value in the vertex shader is the resulting lighting color of that vertex only and the color
values of the surrounding fragments are then the result of interpolated lighting colors.
The result was that the lighting was not very realistic unless large amounts of vertices
were used:

Gouruad

When the Phong lighting model is implemented in the vertex shader it is called Gouraud
shading instead of Phong shading. Note that due to the interpolation the lighting looks a
bit off. The Phong shading gives much smoother lighting results.
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By now you should be starting to see just how powerful shaders are. With little information
shaders are able to calculate how lighting affects the fragment’s colors for all our objects. In the
next tutorials we’ll be delving much deeper into what we can do with the lighting model.

13.7 Exercises

e Right now the light source is a boring static light source that doesn’t move. Try to move
the light source around the scene over time using either sin or cos. Watching the lighting
change over time gives you a good understanding of Phong’s lighting model: solution.

e Play around with different ambient, diffuse and specular strengths and see how they impact
the result. Also experiment with the shininess factor. Try to comprehend why certain values
have a certain visual output.

e Do Phong shading in view space instead of world space: solution.

e Implement Gouraud shading instead of Phong shading. If you did things right the lighting
should look a bit off (especially the specular highlights) with the cube object. Try to reason
why it looks so weird: solution.
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In the real world, each object reacts differently to light. Steel objects are often shinier than a clay
vase for example and a wooden container does not react the same to light as a steel container. Each
object also responds differently to specular highlights. Some objects reflect the light without too
much scattering resulting in a small highlights and others scatter a lot giving the highlight a larger
radius. If we want to simulate several types of objects in OpenGL we have to define material
properties specific to each object.

In the previous tutorial we specified an object and light color to define the visual output of the
object, combined with an ambient and specular intensity component. When describing objects we
can define a material color for each of the 3 lighting components: ambient, diffuse and specular
lighting. By specifying a color for each of the components we have fine-grained control over the
color output of the object. Now add a shininess component to those 3 colors and we have all the
material properties we need:

#version 330 core

struct Material {
vec3 ambient;
vecl3 diffuse;
vec3 specular;
float shininess;

bi

uniform Material material;

In the fragment shader we create a struct to store the material properties of the object.
We can also store them as individual uniform values, but storing them as a struct keeps it more
organized. We first define the layout of the struct and then simply declare a uniform variable with
the newly created struct as its type.

As you can see, we define a color vector for each of the Phong lighting’s components. The
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ambient material vector defines what color this object reflects under ambient lighting; this is
usually the same as the object’s color. The di f fuse material vector defines the color of the object
under diffuse lighting. The diffuse color is (just like ambient lighting) set to the desired object’s
color. The specular material vector sets the color impact a specular light has on the object (or
possibly even reflect an object-specific specular highlight color). Lastly, the shininess impacts
the scattering/radius of the specular highlight.

With these 4 components that define an object’s material we can simulate many real-world
materials. A table as found at devernay.free.fr shows several material properties that simulate real
materials found in the outside world. The following image shows the effect several of these real
world materials have on our cube:

Pearl Bronze Gold

Cyan Plastic Red Plastic Green Rubber Yellow Rubber

As you can see, by correctly specifying the material properties of an object it seems to change
the perception we have of the object. The effects are clearly noticeable, but for the most realistic
results we will eventually need more complicated shapes than a cube. In the following tutorial
sections we’ll discuss more complicated shapes.

Getting the right materials for an object is a difficult feat that mostly requires experimentation
and a lot of experience so it’s not that uncommon to completely destroy the visual quality of an
object by a misplaced material.

Let’s try implementing such a material system in the shaders.

Setting materials

We created a uniform material struct in the fragment shader so next we want to change the lighting
calculations to comply with the new material properties. Since all the material variables are stored
in a struct we can access them from the material uniform:

void main ()

{
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vec3 ambient = lightColor * material.ambient;

vec3 norm = normalize (Normal) ;

vec3 lightDir = normalize(lightPos - FragPos);

float diff = max(dot (norm, lightDir), 0.0);

vec3 diffuse = lightColor x (diff » material.diffuse);

vec3 viewDir = normalize (viewPos - FragPos);
norm) ;
t spec = pow(max (dot (viewDir, reflectDir), 0.0), material.shininess

vec3 specular = lightColor % (spec » material.specular);

vec3 result = ambient + diffuse + specular;
color = vecd (result, 1.0f);

As you can see we now access all of the material struct’s properties wherever we need them
and this time calculate the resulting output color with the help of the material’s colors. Each of the
object’s material attributes are multiplied with their respective lighting components.

We can set the material of the object in the application by setting the appropriate uniforms. A
struct in GLSL however is not special in any regard when setting uniforms. A struct only acts as an
encapsulation of uniform variables so if we want to fill the struct we still have to set the individual
uniforms, but this time prefixed with the struct’s name:

GLint matAmbientLoc glGetUniformLocation (lightingShader.Program,
)i

GLint matDiffuselLoc glGetUniformLocation (lightingShader.Program,
)i

GLint matSpecularLoc = glGetUniformLocation (lightingShader.Program,
)i

GLint matShineLoc = glGetUniformLocation (lightingShader.Program,

)i

glUniform3f (matAmbientLoc, 1.0f, 0.5f, 0.31f);
glUniform3f (matDiffuseloc, 1.0f, 0.5f, 0.31f);
glUniform3f (matSpecularlLoc, 0.5f, 0.5f, 0.5f);
glUniformlf (matShineLoc, 32.0f);

We set the ambient and diffuse component to the color we’d like the object to have and set the
specular component of the object to a medium-bright color; we don’t want the specular component
to be too strong on this specific object. We also keep the shininess at 32. We can now easily
influence the object’s material from the application.

Running the program gives you something like this:
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It doesn’t really look right though?

Light properties

The object is way too bright. The reason for the object being too bright is that the ambient, diffuse
and specular colors are reflected with full force from any light source. Light sources also have
different intensities for their ambient, diffuse and specular components respectively. In the previous
tutorial we solved this by varying the ambient and specular intensities with a strength value. We
want to do something similar, but this time by specifying intensity vectors for each of the lighting
components. If we’d visualize 1ightColor as vec3 (1.0) the code would look like this:

vec3 ambient . * material.ambient;
vec3 diffuse * (diff * material.diffuse);

vec3 specular * (spec * material.specular);

So each material property of the object is returned with full intensity for each of the light’s
components. These vec3 (1.0) values can be influenced individually as well for each light
source and this is usually what we want. Right now the ambient component of the object is fully
influencing the color of the cube, but the ambient component shouldn’t really have such a big
impact on the final color so we can restrict the ambient color by setting the light’s ambient intensity
to a lower value:

vec3 result = vec3(0.1f) * material.ambient;

We can influence the diffuse and specular intensity of the light source in the same way. This is
closely similar to what we did in the previous previous tutorial; you could say we already created
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some light properties to influence each lighting component individually. We’ll want to create
something similar to the material struct for the light properties:

struct Light {
vec3 position;

vecl3 ambient;
vec3 diffuse;
vec3 specular;

bi

uniform Light light;

A light source has a different intensity for its ambient, diffuse and specular light. The
ambient light is usually set to a low intensity because we don’t want the ambient color to be too
dominant. The diffuse component of a light source is usually set to the exact color we’d like a
light to have; often a bright white color. The specular component is usually kept at vec3 (1.0£)
shining at full intensity. Note that we also added the light’s position vector to the struct.

Just like with the material uniform we need to update the fragment shader:

vec3 ambient = light.ambient * material.ambient;
vec3 diffuse = light.diffuse x (diff % material.diffuse);
vec3 specular = light.specular x (spec * material.specular);

We then want to set the light intensities in the application:

GLint lightAmbientLoc glGetUniformLocation (lightingShader.Program,
)i
GLint lightDiffuseloc = glGetUniformLocation (lightingShader.Program,
)i
GLint lightSpecularLoc = glGetUniformlLocation (lightingShader.Program,
)i

glUniform3f (lightAmbientLoc, 0.2f, 0.2f, 0.2f);
glUniform3f (lightDiffuseloc, 0.5f, 0.5f, 0.5f);

glUniform3f (lightSpecularLoc, 1.0f, 1.0f, 1.0f);

Now that we modulated how the light influences all the objects’ materials we get a visual output
that looks much like the output from the previous tutorial. This time however we got full control
over the lighting and the material of the object:
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Changing the visual aspects of objects is relatively easy right now. Let’s spice things up a bit!

14.3 Different light colors

So far we used light colors to only vary the intensity of their individual components by choosing
colors that range from white to gray to black, not affecting the actual colors of the object (only its
intensity). Since we now have easy access to the light’s properties we can change their colors over
time to get some really interesting effects. Since everything is already set up in the fragment shader,
changing the light’s colors is easy and immediately creates some funky effects:
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As you can see, a different light color greatly influences the object’s color output. Since the
light color directly influences what colors the object can reflect (as you might remember from the
Colors tutorial) it has a significant impact on the visual output.

We can easily change the light’s colors over time by changing the light’s ambient and diffuse
colors via sin and gl fwGet Time:

glm: :vec3 lightColor;

lightColor.x = sin(glfwGetTime () x 2.0f);
lightColor.y = sin(glfwGetTime () x 0.7f);
lightColor.z = sin(glfwGetTime () % 1.3f);

glm: :vec3 diffuseColor = lightColor % glm::vec3(0.5f);

glm: :vec3 ambientColor = diffuseColor x glm::vec3(0.2f);

glUniform3f (lightAmbientLoc, ambientColor.x, ambientColor.y, ambientColor.z
)

glUniform3f (lightDiffuseloc, diffuseColor.x, diffuseColor.y, diffuseColor.z
)i

Try and experiment with several lighting and material values and see how they affect the visual
output. You can find the source code of the application here and the fragment shader here.

14.4 Exercises

e Can you simulate some of the real-world objects by defining their respective materials like
we’ve seen at the start of this tutorial? Note that the table’s ambient values are not the same
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as the diffuse values; they didn’t take light intensities into account. To correctly set their

values you’d have to set all the light intensities to vec3 (1.0f) to get the same output:
solution of cyan plastic container.
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In the previous tutorial we discussed the possibility of each object having a unique material of its
own that reacts differently to light. This is great for giving each object a unique look in comparison
with other objects in a lighted scene, but still doesn’t offer too much flexibility on the visual output
of an object.

In the previous tutorial we defined a material for an entire object as a whole, but objects in
the real world usually do not consist of a single material, but consist of several materials. Think
of a car: its exterior consists of a shiny fabric, it has windows that partly reflect the surrounding
environment, its tires are all but shiny so they don’t have specular highlights and it has rims that are
super shiny (if you actually washed your car alright). The car also has diffuse and ambient colors
that are not the same for the entire object; a car displays many different ambient/diffuse colors. All
by all, such an object has different material properties for each of its different parts.

So the material system in the previous tutorial isn’t sufficient for all but the simplest models so
we need to extend the previous system by introducing diffuse and specular maps. These allow us to
influence the diffuse (and indirectly the ambient component since they’re almost always the same
anyways) and the specular component of an object with much more precision.

Diffuse maps

What we want is some way to set the diffuse color of an object for each individual fragment. Some
sort of system where we can retrieve a color value based on the fragment’s position on the object?

This should probably all sound extremely familiar and to be honest we’ve been using such a
system for a while now. This sounds a lot like fextures we’ve extensively discussed in one of the
earlier tutorials and it basically is just that: a texture. We’re just using a different name for the same
underlying principle: using an image wrapped around an object that we can index for unique color
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values per fragment. In lighted scenes this is usually called a diffuse map (this is generally how 3D
artists call them) since a texture image represents all of the object’s diffuse colors.

To demonstrate diffuse maps we’re going to use the following image of a wooden container

with a steel border:

Using a diffuse map in shaders is exactly the same as with the texture tutorials. This time
however we store the texture as a sampler2D inside the Material struct. We replace the earlier

defined vec3 diffuse color vector with the diffuse map.

Keep in mind that sampler2D is a so called opaque type which means we can’t
instantiate these types, but only define them as uniforms. If we would instantiate this
struct other than as a uniform (like a function parameter) GLSL could throw strange

errors; the same thus applies to any struct holding such opaque types.

We also remove the ambient material color vector since the ambient color is in almost all cases
equal to the diffuse color so there’s no need to store it separately:

struct Material {

sampler2D diffuse;
vec3 specular;
shininess;

in vec2 TexCoords;

If you’re a bit stubborn and still want to set the ambient colors to a different value (other
than the diffuse value) you can keep the ambient vec3, but then the ambient colors
would still remain the same for the entire object. To get different ambient values for
each fragment you’d have to use another texture for ambient values alone.


http://learnopengl.com/img/textures/container2.png
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Note that we are going to need texture coordinates again in the fragment shader, so we declared
an extra input variable. Then we simply sample from the texture to retrieve the fragment’s diffuse
color value:

vec3 diffuse = light.diffuse x diff % vec3 (texture (material.diffuse,

TexCoords) ) ;

Also, don’t forget to set the ambient material’s color equal to the diffuse material’s color as
well:

vec3 ambient = light.ambient * vec3 (texture (material.diffuse, TexCoords)) ; ‘

And that’s all it takes to use a diffuse map. As you can see it is nothing new, but it does provide
a dramatic increase in visual quality. To get it working we do need to update the vertex data with
texture coordinates, transfer them as vertex attributes to the fragment shader, load the texture and
bind the texture to the appropriate texture unit.

The updated vertex data can be found here. The vertex data now includes vertex positions,
normal vectors and texture coordinates for each of the cube’s vertices. Let’s update the vertex
shader to accept texture coordinates as a vertex attribute and forward them to the fragment shader:

#version 330 core

layout (location = 0) in vec3 position;

layout (location 1) in vec3 normal;
5
L

layout (location ) in vec2 texCoords;
out vec2 TexCoords;

void main ()

{

TexCoords = texCoords;

Be sure to update the vertex attribute pointers of both VAOs to match the new vertex data and
load the container image as a texture. Before drawing the container we want to assign the preferred
texture unit to the material.diffuse uniform sampler and bind the container texture to this
texture unit:

glUniformli (glGetUniformLocation (lightingShader.Program,
), 0);

glActiveTexture (GL_TEXTUREO) ;
glBindTexture (GL_TEXTURE_2D, diffuseMap);

Now using a diffuse map we get an enormous boost in detail again and this time with added
lighting the container really starts to shine (quite literally). Your container now probably looks
something like this:
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You can find the full source code of the application here.

15.2 Specular maps

You probably noticed that the specular highlight looks a bit off since our object is a container that
mostly consists of wood and we know that wood doesn’t give such specular highlights. We can fix
this by setting the specular material of the object to vec3 (0.0£f) but that would mean that the
steel borders of the container would stop showing specular highlights as well and we also know
that steel should show some specular highlights. Again, we would like to control what parts of the
object should show a specular highlight with varying intensity. This is a problem that looks really
familiar to the diffuse maps discussion. Coincidence? I think not.

We can also use a texture map just for specular highlights. This means we need to generate a
black and white (or colors if you feel like it) texture that defines the specular intensities of each part
of the object. An example of a specular map is the following image:
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The intensity of a specular highlight is retrieved by the brightness of each pixel in the image.
Each pixel of the specular map can be displayed as a color vector where black represents the color
vector vec3 (0.0f) and gray the color vector vec3 (0.5f) for example. In the fragment shader
we then sample the corresponding color value and multiply this value with the light’s specular
intensity. The more *white’ a pixel thus is, the higher the result of the multiplication and thus the
brighter the specular component of an object becomes.

Because the container mostly consists of wood, and wood as a material should have no specular
highlights, the entire wooden section of the diffuse texture was converted to black: black sections
do not have any specular highlight. The steel border of the container has varying specular intensities
with the steel itself being relatively susceptible to specular highlights while the cracks are not.

Technically wood also has specular highlights although with a much lower shininess
value (more light scattering) and less impact, but for learning purposes we can just
pretend wood doesn’t have any reaction to specular light.

Using tools like Photoshop or Gimp it is relatively easy to transform a diffuse texture to a
specular image like this by cutting out some parts, transforming it to black and white and increasing
the brightness/contrast.

Sampling specular maps

A specular map is just like any other texture so the code is similar to the diffuse map code. Make
sure to properly load the image and generate a texture object. Since we’re using another texture
sampler in the same fragment shader we have to use a different texture unit (see Textures) for the
specular map so let’s bind it to the appropriate texture unit before rendering:

glUniformli (glGetUniformLocation (lightingShader.Program,
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glActiveTexture (GL_TEXTUREL) ;

glBindTexture (GL_TEXTURE_2D, specularMap) ;

Then update the material properties of the fragment shader to accept a sampler2D as its
specular component instead of a vec3:

struct Material {
sampler2D diffuse;
sampler2D specular;

shininess;

And lastly we want to sample the specular map to retrieve the fragment’s corresponding specular
intensity:

vec3 ambient = light.ambient * vec3 (texture (material.diffuse, TexCoords)) ;
vec3 diffuse = light.diffuse x diff % vec3 (texture (material.diffuse,
TexCoords) ) ;

vec3 specular = light.specular x* spec * vec3(texture (material.specular,
TexCoords) ) ;
color = vec4d (ambient + diffuse + specular, 1.0f);

By using a specular map we can specify with enormous detail what parts of an object actually
have shiny properties and we can even set their corresponding intensity. Specular maps thus give us
an added layer of control on top of the diffuse map.

If you don’t want to be too mainstream you could also use actual colors in the specular
map to not only set the specular intensity of each fragment, but also the color of the
specular highlight. Realistically, however, the color of the specular highlight is mostly
(to completely) determined by the light source itself so it wouldn’t generate realistic
visuals (that’s why the images are usually black and white: we only care about the
intensity).

If you would now run the application you can clearly see that the container’s material now
closely resembles that of an actual wooden container with steel frames:
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You can find the full source code of the application here. Also compare your shaders with the
vertex and the fragment shader.

Using diffuse and specular maps we can really add an enormous amount of detail into relatively
simple objects. We can even add more detail into the objects using other texture maps like
normal/bump maps and/or reflection maps, but that is something we’ll reserve for later tutorials.
Show your container to all your friends and family and be content with the fact that our container
can one day become even prettier than it already is!

Exercises

e Fool around with the light source’s ambient, diffuse and specular vectors and see how they
affect the visual output of the container.

e Try inverting the color values of the specular map in the fragment shader so that the wood
shows specular highlights and the steel borders do not (note that due to the cracks in the steel
border the borders still show some specular highlight, although with less intensity): solution.

e Try creating a specular map from the diffuse texture that uses actual colors instead of black
and white and see that the result doesn’t look too realistic. You can use this colored specular
map if you can’t generate one yourself: result.

e Also add something they call an emission map which is a texture that stores emission values
per fragment. Emission values are colors an object might emit as if it contains a light source
itself; this way an object can glow regardless of the light conditions. Emission maps are often
what you see when objects in a game glow (like eyes of a robot, or light strips on a container).
Add the following texture (by creativesam) as an emission map onto the container as if the
letters emit light: solution, fragment shader; result.
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16.1

All the lighting we’ve used so far came from a single source that is a single point in space. It gives
good results, but in the real world we have several types of light that each act different. A light
source that casts light upon objects is called a light caster. In this tutorial we’ll discuss several
different types of light casters. Learning to simulate different light sources is yet another tool in
your toolbox to further enrich your environments.

We’ll first discuss a directional light, then a point light which is an extension of what we
had before and lastly we’ll discuss spotlights. In the next tutorial we’ll combine several of these
different light types into one scene.

Directional Light

When a light source is far away the light rays coming from the light source are close to parallel to
each other. It looks like all the light rays are coming from the same direction, regardless of where
the object and/or the viewer is. When a light source is modeled to be infinitely far away it is called
a directional light since all its light rays have the same direction; it is independent of the location of
the light source.

A fine example of a directional light source is the sun as we know it. The sun is not infinitely
far away from us, but it is so far away that we can perceive it as being infinitely far away in the
lighting calculations. All the light rays from the sun are then modelled as parallel light rays as we
can see in the following image:


http://www.learnopengl.com/#!Lighting/Multiple-lights
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Because all the light rays are parallel it does not matter how each object relates to the light
source’s position since the light direction remains the same for each object in the scene. Because
the light’s direction vector stays the same, the lighting calculations will be similar for each object
in the scene.

We can model such a directional light by defining a light direction vector instead of a position
vector. The shader calculations remain mostly the same except this time we directly use the light’s
direction vector instead of calculating the 1ightDir vector with the light’s position
vector:

struct Light ({
vecl3 direction;

vec3 ambient;
vecl3 diffuse;
specular;

bi

void main ()
{

vec3 lightDir = normalize(-light.direction);

}

Note that we first negate the 1ight .direction vector. The lighting calculations we used
so far expect the light direction to be a direction from the fragment towards the light source, but
people generally prefer to specify a directional light as a global direction pointing from the light
source. Therefore we have to negate the global light direction vector to switch its direction; it’s now
a direction vector pointing towards the light source. Also, be sure to normalize the vector since it is
unwise to assume the input vector to be a unit vector.

The resulting 11 ghtDir vector is then used as before in the diffuse and specular computations.

To clearly demonstrate that a directional light has the same effect on all multiple objects we



16.1 Directional Light 163

revisit the container party scene from the end of the Coordinate systems tutorial. In case you missed
the party we first defined 10 different container positions and generated a different model matrix
per container where each model matrix contained the appropriate local-to-world transformations:

for (GLuint i

{

model = glm::mat4();

model = glm::translate (model, cubePositions[i]);
GLfloat angle = 20.0f * 1i;

model = glm::rotate (model, angle, glm::vec3(1.0f, 0.3f, 0.5f));
glUniformMatrix4fv (modellLoc, 1, GL_FALSE, glm::value_ptr (model));

glDrawArrays (GL_TRIANGLES, 0, 36);
}

Also, don’t forget to actually specify the direction of the light source (note that we define the
direction as a direction from the light source; you can quickly see the light’s direction is pointing
downwards):

GLint lightDirPos = glGetUniformLocation (lightingShader.Program,
)

glUniform3f (lightDirPos, -0.2f, -1.0f, -0.3f);

We’ve been passing the light’s position and direction vectors as vec3s for a while now,
but some people tend to prefer to keep all the vectors defined as vec4. When defining
position vectors as a vec4 it is important to set the w component to 1 . 0 so translation
and projections are properly applied. However, when defining a direction vector as a
vecd we don’t want translations to have an effect (since they just represent directions,
nothing more) so then we define the w component to be 0. 0.

Direction vectors are then represented like: vec4 (0.2f, 1.0f, 0.3f, 0.0f).
This can also function as an easy check for light types: you could check if the w
component is equal to 1 . 0 to see that we now have a light’s position vector and if w is
equal to 0. 0 we have a light’s direction vector so adjust the calculations based on that:

if (lightVector.w == 0.0)

else if (lightVector.w == 1.0)

Fun fact: this is actually how the old OpenGL (fixed-functionality) determined if a light
source was a directional light or a positional light source and adjusted its lighting based
on that.

If you’d now compile the application and fly through the scene it looks like there is a sun-like
light source casting light on all the objects. Can you see that the diffuse and specular components
all react as if there was a light source somewhere in the sky? It’ll look something like this:
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You can find the full source code of the application here together with the vertex and fragment
shader’s code.

Point lights

Directional lights are great for global lights that illuminate the entire scene, but aside from a
directional light we usually also want several point lights scattered throughout the scene. A point
light is a light source with a given position somewhere in a world that illuminates in all directions
where the light rays fade out over distance. Think of light bulbs and torches as light casters that act
as a point light.
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In the earlier tutorials we’ve been working with a (simplistic) point light all along. We had a
light source at a given position that scatters light in all directions from that given light position.
However, the light source we defined simulated light rays that never fade out thus making it look
like the light source is extremely strong. In most 3D simulations we’d like to simulate a light source
that only illuminates a certain area close to the light source and not the entire scene.

If you’d add the 10 containers to the lighting scene of the previous tutorial you’d notice that the
container all the way in the back is lit with the same intensity as the container in front of the lamp;
there is no formula defined that diminishes light over distance. We want the container in the back
to only be slightly lit in comparison to the containers close to the light source.

Attenuation

To reduce the intensity of light, over the distance a light ray travels, is generally called attenuation.
One way to reduce the light intensity over distance is to simply use a linear equation. Such an
equation would linearly reduce the light intensity over the distance thus making sure that objects at
a distance are less bright. However, such a linear function tends to look a bit fake. In the real world,
lights are generally quite bright standing close by, but the brightness of a light source diminishes
quickly at the start and the remaining light intensity more slowly diminishes over distance. We are
thus in need of a different formula for reducing the light’s intensity.

Luckily some smart people already figured this out for us. The following formula divides the
light’s intensity of a fragment by a calculated attenuation value based on the distance to the light
source:

1
K c+K Ixd+K_g*d?

F_artt = (16.1)

Here / is the intensity of the light at the current fragment and d represents the distance from
the fragment to the light source. Then to calculate the attenuation value we define 3 (configurable)
terms: a constant term K_c, a linear term K_/ and a quadratic term K_g.
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e The constant term is usually kept at 1 . 0 which is mainly there to make sure the resulting

denominator never gets smaller than 1 since it would otherwise boost the intensity with
certain distances, which is not the effect we’re looking for.

e The linear term is multiplied with the distance value that reduces the intensity in a linear
fashion.

e The quadratic term is multiplied with the quadrant of the distance and sets a quadratic decrease
of intensity for the light source. The quadratic term will be less significant compared to
the linear term when the distance is small, but gets much larger than the linear term as the
distance grows.

Due to the quadratic term the light will diminish mostly at a linear fashion until the distance
becomes large enough for the quadratic term to surpass the linear term and then the light intensity
will decrease a lot faster. The resulting effect is that the light is quite intense when at a close range,
but quickly loses it brightness over distance and eventually loses its brightness at a more slower
pace. The following graph shows the effect such an attenuation has over a distance of 100:

12

InkeEnsin

; L LLT LT T T T o 0

1 10 20 30 40 50 60 70 80 00 100
Dista

You can see that the light has the highest intensity when the distance is small, but as soon as

the distance grows its intensity is significantly reduced and slowly reaches O intensity at around a
distance of 100. This is exactly what we want.

Choosing the right values

But at what values do we set those 3 terms? Setting the right values depends on many factors: the
environment, the distance you want a light to cover, the type of light etc. In most cases, it simply is
a question of experience and a moderate amount of tweaking. The following table shows some of
the values these terms could take to simulate a realistic (sort of) light source that covers a specific
radius (distance). The first column specifies the distance a light will cover with the given terms.
These values are good starting points for most lights, with courtesy of Ogre3D’s wiki:


http://www.ogre3d.org/tikiwiki/tiki-index.php?page=-Point+Light+Attenuation
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Distance Constant Linear Quadratic
7 1.0 0.7 1.8
13 1.0 0.35 0.44
20 1.0 0.22 0.20
32 1.0 0.14 0.07
50 1.0 0.09 0.032
65 1.0 0.07 0.017
100 1.0 0.045 0.0075
160 1.0 0.027 0.0028
200 1.0 0.022 0.0019
325 1.0 0.014 0.0007
600 1.0 0.007 0.0002

3250 1.0 0.0014 0.000007

As you can see, the constant term K_c is kept at 1. O in all cases. The linear term K_/ is usually
quite small to cover larger distances and the quadratic term K_g is even smaller. Try to experiment
a bit with these values to see their effect in your implementation. In our environment a distance of
32 to 100 is generally enough for most lights.

16.3.2 Implementing attenuation

To implement attenuation we’ll be needing 3 extra values in the fragment shader: namely the
constant, linear and quadratic terms of the formula. These are best stored in the Light struct we
defined earlier. Note that we calculate 1ightDir as we did in the previous tutorial and not as in
the earlier Directional Light section.

struct Light {
vec3 position;

vec3 ambient;
vec3 diffuse;
specular;

constant;
t linear;
t quadratic;

Then we set the terms in OpenGL: we want the light to cover a distance of 50 so we’ll use the
appropriate constant, linear and quadratic terms from the table:

glUniformlf (glGetUniformLocation (lightingShader.Program,
1.0f);

glUniformlf (glGetUniformLocation (lightingShader.Program,
0.,09) ¢

glUniformlf (glGetUniformLocation (lightingShader.Program,
, 0.032);

Implementing attenuation in the fragment shader is relatively straightforward: we simply
calculate an attenuation value based on the formula and multiply this with the ambient, diffuse and
specular components.
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We do need the distance to the light source for the formula to work though; remember how we
can calculate the length of a vector? We can retrieve the distance term by retrieving the difference
vector between the fragment and the light source and take the resulting vector’s length. We can use
GLSL’s built-in 1ength function for that purpose:

float distance = length(light.position - Position);
float attenuation = 1.0f / (light.constant + light.linear % distance +

light.quadratic x (distance * distance));

Then we include this attenuation value in the lighting calculations by multiplying the attenuation
value with the ambient, diffuse and specular colors.

We could leave the ambient component alone so ambient lighting is not decreased over
distance, but if we were to use more than 1 light source all the ambient components will
start to stack up so in that case we want to attenuate ambient lighting as well. Simply
play around with what’s best for your environment.

ambient %= attenuation;
diffuse x= attenuation;

specular x= attenuation;

If you’d run the application you’d get something like this:

You can see that right now only the front containers are lit with the closest container being the
brightest. The containers in the back are not lit at all since they’re too far from the light source.
You can find the source code of the application here and the fragment’s code here.


http://learnopengl.com/code_viewer.php?code=lighting/light_casters_point
http://learnopengl.com/code_viewer.php?code=lighting/light_casters_point&type=fragment
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A point light is thus a light source with a configurable location and attenuation applied to its
lighting calculations. Yet another type of light for our lighting arsenal.

Spotlight

The last type of light we’re going to discuss is a spotlight. A spotlight is a light source that is
located somewhere in the environment that, instead of shooting light rays in all directions, only
shoots them in a specific direction. The result is that only the objects within a certain radius of the
spotlight’s direction are lit and everything else stays dark. A good example of a spotlight would be
a street lamp or a flashlight.

A spotlight in OpenGL is represented by a world-space position, a direction and a cutoff angle
that specifies the radius of the spotlight. For each fragment we calculate if the fragment is between
the spotlight’s cutoff directions (thus in its cone) and if so, we lit the fragment accordingly. The
following image gives you an idea of how a spotlight works:

-
=
,@.\

SpotDir
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e LightDir: the vector pointing from the fragment to the light source.

e SpotDir: the direction the spotlight is aiming at.

e Phi ¢: the cutoff angle that specifies the spotlight’s radius. Everything outside this angle is
not lit by the spotlight.

e Theta O: the angle between the LightDir vector and the SpotDir vector. The 6 value
should be smaller than the & value to be inside the spotlight.

So what we basically need to do, is calculate the dot product (returns the cosine of the angle
between two unit vectors remember?) between the L.i ghtD1ir vector and the SpotDir vector
and compare this with the cutoff angle ¢. Now that you (sort of) understand what a spotlight is all
about we’re going to create one in the form of a flashlight.

Flashlight

A flashlight is a spotlight located at the viewer’s position and usually aimed straight ahead from the
player’s perspective. Basically a flashlight is a normal spotlight, but with its position and direction
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continually updated based on the player’s position and orientation.

So, the values we’re going to need for the fragment shader are the spotlight’s position vector (to
calculate the light’s direction vector), the spotlight’s direction vector and the cutoff angle. We can
store these values in the Light struct:

struct Light {
vec3 position;
vec3 direction;

float cutOff;

Next we pass the appropriate values to the shaders:

glUniform3f (lightPosLoc, camera.Position.x, camera.Position.y,
camera.Position.z);

glUniform3f (lightSpotdirLoc, camera.Front.x, camera.Front.y, camera.
Front.z);

glUniformlf (lightSpotCutOffLoc, glm::cos(glm::radians (12.5f)));

As you can see we’re not setting an angle for the cutoff value but calculate the cosine value
based on an angle and pass the cosine result to the fragment shader. The reason for this is that in
the fragment shader we’re calculating the dot product between the LightDir and the SpotDir
vector and the dot product returns a cosine value and not an angle so we can’t directly compare an
angle with a cosine value. To retrieve the angle we then have to calculate the inverse cosine of the
dot product’s result which is an expensive operation. So to save some performance we calculate the
cosine value of a given cutoff angle and pass this result to the fragment shader. Since both angles
are now represented as cosines, we can directly compare between them without any expensive
operations.

Now what’s left to do is calculate the theta 6 value and compare this with the cutoff ¢ value to
determine if we’re in or outside the spotlight:

float theta = dot (lightDir, normalize (-light.direction));

if (theta > light.cutOff)

color = vec4d (light.ambient x vec3 (texture (material.diffuse, TexCoords)),
1.0f);

We first calculate the dot product between the 1 ightDir vector and the negated direction
vector (negated, because we want the vectors to point towards the light source, instead of from). Be
sure to normalize all the relevant vectors.
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You might be wondering why there is a > sign instead of a < sign in the if guard.
Shouldn’t theta be smaller than the light’s cutoff value to be inside the spotlight? That
is right, but don’t forget angle values are represented as cosine values and an angle of 0
is represented as the cosine value of 1.0 while an angle of 90 degrees is represented as
the cosine value of 0. 0 as you can see here:

i Liraph ol v = cos x

180° i 0° Wele

120°

You can now see that the closer the cosine value is to 1 . 0 the smaller its angle. Now it
makes sense why theta needs to be larger than the cutoff value. The cutoff value is
currently set at the cosine of 12 . 5 which is equal to 0. 9978 so a cosine theta value
between 0.9979 and 1. 0 would result in the fragment being lit as inside the spotlight.

Running the application results in a spotlight that only lights the fragments that are directly
inside the cone of the spotlight. It’ll look something like this:



16.6

16.6 Smooth/Soft edges 172

You can find the full source code here and the fragment shader’s source code here.

It still looks a bit fake though, mostly because the spotlight has hard edges. Wherever a fragment
reaches the edge of the spotlight’s cone it is shut down completely instead of with a nice smooth
fade. A realistic spotlight would reduce the light gradually around its edges.

Smooth/Soft edges

To create the effect of a smoothly-edged spotlight we want to simulate a spotlight having an inner
and an outer cone. We can set the inner cone as the cone defined in the previous section, but we
also want an outer cone that gradually dims the light from the inner to the edges of the outer cone.

To create an outer cone we simply define another cosine value that represents the angle between
the spotlight’s direction vector and the outer cone’s vector (equal to its radius). Then, if a fragment
is between the inner and the outer cone it should calculate an intensity value between 0.0 and
1.0. If the fragment is inside the inner cone its intensity is equal to 1. 0 and 0. O if the fragment
is outside the outer cone.

We can calculate such a value using the following formula:

(16.2)

Here € (epsilon) is the cosine difference between the inner (¢) and the outer cone (y) (€ = ¢ — 7).
The resulting I value is then the intensity of the spotlight at the current fragment.


http://learnopengl.com/code_viewer.php?code=lighting/light_casters_spotlight_hard
http://learnopengl.com/code_viewer.php?code=lighting/light_casters_spotlight_hard&type=fragment
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It is a bit hard to visualize how this formula actually works so let’s try it out with a few sample

values:
0 in (ingfler ¢ in (OLzlter vin
0 de- de- de- € 1
rees cut- rees cut- rees
g offy © ofy ©
0.91 - 0.82 0.87 - 0.82 /
0.87 30 0.91 25 0.82 35 - 0.09 0.09 = 0.56
0.91 - 0.82 0.9 - 0.82 /
0.9 26 0.91 25 0.82 35 — 0.09 0.09 = 0.89
0.91 - 0.82 0.97 - 0.82 /
0.97 14 0.91 25 0.82 35 — 0.09 0.09 = 1.67
0.91 - 0.82 0.97 - 0.82 /
0.97 14 0.91 25 0.82 35 - 0.09 0.09 = 1.67
0.91 - 0.82 0.83 - 0.82 /
0.83 34 0.91 25 0.82 35 009 0.09 - 0.11
0.91 - 0.82 0.64 - 0.82 /
0.64 50 0.91 25 0.82 35 0,09 0.09 = -2.0
ooss - 0T
0.966 15 0.997812.5 0.953 17.5 0.953 = 0 6448 _
0.0448 0.29

As you can see we’re basically interpolating between the outer cosine and the inner cosine
based on the 6 value. If you still don’t really see what’s going on, don’t worry, you can simply take
the formula for granted and return here when you’re much older and wiser.

Since we now have an intensity value that is either negative when outside the spotlight, higher
than 1.0 when inside the inner cone and somewhere in between around the edges. If we properly
clamp the values we don’t need an 1 f-else in the fragment shader anymore and we can simply
multiply the light components with the calculated intensity value:

float theta

intensity

= dot (lightDir, normalize(-light.direction));

light.cutOff - light.outerCutOff;
= clamp ((theta - light.outerCutOff)

diffuse *= intensity;

specular %= intensity;

/ epsilon, 0.

Note that we use the c1amp function that clamps its first argument between the values 0. 0
and 1.0. This makes sure the intensity values won’t end up outside the [0, 1] interval.

Make sure you add the outerCutOf £ value to the Light struct and set its uniform value in
the application. For the following image an inner cutoff angle of 12 . 5f and an outer cutoff angle

of 17.5f was used:
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Ahhh, that’s much better. Play around with the inner and outer cutoff angles and try to create a
spotlight that better suits your needs. You can find the source code of the application here and the
fragment’s source code here.

Such a flashlight/spotlight type of lamp is perfect for horror games and combined with direc-
tional and point lights the environment will really start to light up. In the next tutorial we’ll combine
all the lights and tricks we’ve discussed so far.

16.7 Exercises

e Try experimenting with all the different light types and their fragment shaders. Try inverting
some vectors and/or using < instead of >. Try to explain the different visual outcomes.


http://learnopengl.com/code_viewer.php?code=lighting/light_casters_spotlight_soft
http://learnopengl.com/code_viewer.php?code=lighting/light_casters_spotlight_soft&type=fragment
http://www.learnopengl.com/#!Lighting/Multiple-lights

In the previous tutorials we learned quite a lot about lighting in OpenGL. We learned about Phong
shading, materials, lighting maps and different types of light casters. In this tutorial we’re going
to combine all the previously obtained knowledge by creating a fully lit scene with 6 active light
sources. We are going to simulate a sun-like light as a directional light source, 4 point lights
scattered throughout the scene and we’ll be adding a flashlight as well.

To use more than one light source in the scene we want to encapsulate the lighting calculations
into GLSL functions. The reason for that is that the code quickly gets nasty when we want to do
lighting computations with multiple lights with each light type requiring different computations. If
we were to do all these calculations in the ma in function only, the code quickly becomes difficult
to understand.

Functions in GLSL are just like C-functions. We have a function name, a return type and we’d
have to declare a prototype at the top of the code file if the function hasn’t been declared before the
main function yet. We’ll create a different function for each of the light types: directional lights,
point lights and spotlights.

When using multiple lights in a scene the approach is usually as follows: we have a single color
vector that represents the fragment’s output color. For each light, the light’s contribution color of
the fragment is added to the fragment’s output color vector. So each light in the scene will calculate
its individual impact on the aforementioned fragment and contribute to the final output color. A
general structure would look something like this:

out vec4 color;

void main ()

3 output;



17.1

17.1 Directional light 176

output += someFunctionToCalculateDirectionalLight () ;

for(int i = 0; 1 < nr_of point_lights; i++)
output += someFunctionToCalculatePointLight () ;

output += someFunctionToCalculateSpotLight () ;

color = vec4d (output, 1.0);

}

The actual code will likely differ per implementation, but the general structure remains the
same. We define several functions that calculate the impact per light source and add its resulting
color to an output color vector. If for example two light sources are close to the fragment, their
combined contribution would result in a more brightly lit fragment than the fragment being lit by a
single light source.

Directional light

What we want to do is define a function in the fragment shader that calculates the contribution a
directional light has on the corresponding fragment: a function that takes a few parameters and
returns the calculated directional lighting color.

First we need to set the required variables that we minimally need for a directional light source.
We can store the variables in a struct called DirLight and define it as a uniform. The required
variables should be familiar from the previous tutorial:

struct DirLight ({
vec3 direction;

vec3 ambient;

vec3 diffuse;
vec3 specular;
}i

uniform DirLight dirLight;

We can then pass the dirLight uniform to a function with the following prototype:

vec3 CalcDirLight (DirLight light, wvec3 normal, vec3 viewDir);

Just like C and C++ if we want to call a function (in this case inside the main function)
the function should be defined somewhere before the caller’s line number. In this
case we’d prefer to define the functions below the main function so this requirement
doesn’t hold. Therefore we declare the function’s prototypes somewhere above the
main function, just like we would in C.

You can see that the function requires a DirLight struct and two other vectors required for its
computation. If you successfully completed the previous tutorial then the content of this function
should come as no surprise:


http://www.learnopengl.com/#!Lighting/Light-casters
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3 CalcDirLight (DirLight light, wvec3 normal, vec3 viewDir)

vec3 lightDir = normalize(-light.direction);

float diff = max(dot (normal, lightDir), 0.0);

vec3 reflectDir = reflect (-lightDir, normal);
float spec = pow (max(dot (viewDir, reflectDir), 0.0), material.shininess

)i

vec3 ambient = light.ambient * vec3 (texture (material.diffuse, TexCoords
)) i

vec3 diffuse = light.diffuse * diff x vec3 (texture (material.diffuse,
TexCoords)) ;

vec3 specular = light.specular * spec * vec3(texture (material.specular,
TexCoords) ) ;

return (ambient + diffuse + specular);

We basically copied the code from the previous tutorial and used the vectors given as function
arguments to calculate the directional light’s contribution vector. The resulting ambient, diffuse and
specular contributions are then returned as a single color vector.

17.2  Point light

Just like with directional lights we also want to define a function that calculates the contribution a
point light has on the given fragment, including its attenuation. Just like directional lights we want
to define a struct that specifies all the variables required for a point light:

= PointLight {
c3 position;

constant;
t linear;
float quadratic;

vec3 ambient;

vec3 diffuse;
vec3 specular;
bi
#define NR_POINT_LIGHTS 4
uniform PointLight pointLights[NR_POINT_LIGHTS];

As you can see we used a pre-processor directive in GLSL to define the number of point lights
we want to have in our scene. We then use this NR_POINT_LIGHTS constant to create an array
of PointLight structs. Arrays in GLSL are just like C arrays and can be created by the use of
two square brackets. Right now we have 4 PointLight structs to fill with data.

We could also simply define one large struct (instead of different structs per light type)
that contains all the necessary variables for all the different light types and use that struct
for each function, and simply ignore the variables we don’t need. However, I personally
find the current approach more intuitive and aside from a few extra lines of code it could
save up some memory since not all light types need all variables.
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The prototype of the point light’s function is as follows:

vec3 CalcPointLight (PointLight light, vec3 normal, vec3 fragPos, vec3

viewDir);

The function takes all the data it needs as its arguments and returns a vec3 that represents
the color contribution that this specific point light has on the fragment. Again, some intelligent
copy-and-pasting results in the following function:

vec3 CalcPointLight (PointLight light, wvec3 normal, vec3 fragPos, vec3
viewDir)

vec3 lightDir = normalize (light.position - fragPos);
float diff = max(dot (normal, lightDir), 0.0);

vec3 reflectDir = reflect (-lightDir, normal);
= pow (max (dot (viewDir, reflectDir), 0.0), material.shininess

oat distance = length(light.position - fragPos);
attenuation = 1.0f / (light.constant + light.linear » distance +
light.quadratic » (distance * distance));

vec3 ambient light.ambient * vec3 (texture (material.diffuse, TexCoords
)) i

vec3 diffuse = light.diffuse *x diff x vec3 (texture (material.diffuse,
TexCoords)) ;

vec3 specular = light.specular x spec % vec3 (texture (material.specular,
TexCoords) ) ;

ambient x= attenuation;

diffuse = attenuation;

specular %= attenuation;

return (ambient + diffuse + specular);

Abstracting this functionality away in a function like this has the advantage that we can
easily calculate the lighting for multiple point lights without the need for nasty duplicated code.
In the main function we simply create a loop that iterates over the point light array that calls
CalcPointLight for each point light.

17.3 Putting it all together

Now that we defined both a function for directional lights and a function for point lights we can put
it all together in the ma in function.

norm = normalize (Normal) ;

viewDir = normalize (viewPos - FragPos);

result = CalcDirLight (dirLight, norm, viewDir);
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for(int 1 = 0; i < NR_POINT_LIGHTS; i++)
result += CalcPointLight (pointLights[i], norm, FragPos, viewDir);

vecd (result, 1.0);

Each light type adds its contribution to the resulting output color until all light sources are
processed. The resulting color contains the color impact of all the light sources in the scene
combined. If you want you could also implement a spotlight and add its effect to the output color
as well. We leave the CalcSpotLight function as an exercise for the reader.

Setting the uniforms for the directional light struct shouldn’t be too unfamiliar, but you might
be wondering how we could set the uniform values of the point lights since the point light uniform
is now an array of PointLight structs. This isn’t something we’ve discussed before.

Luckily for us, it isn’t too complicated. To set the uniform of an array of structs works just like
setting the uniforms of a single struct, although this time we also have to define the appropriate
index when retrieving the uniform’s location:

glUniformlf (glGetUniformLocation (lightingShader.Program,

), 1.0£f);

Here we index the first PointLight struct in the pointLights array and retrieve the
location of its constant variable. This does mean unfortunately that we have to manually set all
the uniforms for each of the 4 point lights, which leads up to 28 uniform calls for the point lights
alone which is a bit tedious. You could try to abstract a bit away from this by defining a point light
class that sets the uniforms for you, but in the end you’d still have to set the all the lights’ uniform
values this way.

Let’s not forget that we also need to define a position vector for each of the point lights so let’s
spread them up a bit around the scene. We’ll define another glm: : vec3 array that contains the
pointlights’ positions:

:vec3 pointLightPositions[] = {
glm:: 7€, 0.2f, 2.0f),
glm: : .3f, -3.3f, -4.0f),

glm: : 3(-4.0f, 2.0f, -12.0f),
glm:: .0f£, 0.0f, -3.0f)

Then index the corresponding PointLight struct from the pointLights array and set
its position attribute as one of the positions we just defined. Also be sure to now draw 4 light
cubes instead of just 1. Simply create a different model matrix for each of the light objects just like
we did with the containers.

If you’d also use a flashlight the result of all the combined lights looks something like this:
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As you can see there appears to be some form of a global light (like a sun) somewhere in the
sky, we have 4 lights scattered throughout the scene and a flashlight is visible from the player’s
perspective. Looks pretty neat doesn’t it?

You can find the full source code of the final application here together with the vertex and
fragment shader’s source code here.

The image shows all the light sources set with the default light properties we’ve used in all the
previous tutorials, but if you’d play around with these values you can get pretty interesting results.
Artists and level editors generally tweak all these lighting variables in a large editor to make sure
the lighting matches the environment. Using the simple lighted environment we just created you
can create some interesting visuals by simply tweaking the lights their attributes:


http://learnopengl.com/code_viewer.php?code=lighting/multiple_lights
http://learnopengl.com/code_viewer.php?code=lighting/lighting_maps&type=vertex
http://learnopengl.com/code_viewer.php?code=lighting/multiple_lights&type=fragment
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factory

horror

We also changed the clear color to better reflect the lighting. You can see that by simply
adjusting some of the lighting parameters you can create completely different atmospheres.

By now you should have a pretty good understanding of lighting in OpenGL. With the knowl-
edge so far we can already create interesting and visually rich environments and atmospheres. Try
playing around with all the different values to create your own atmospheres.

17.4 Exercises

e Create a struct for a spotlight, implement the CalcSpotLight (.. .) function and set the
appropriate uniform values in your application: solution.

e Can you (sort of) re-create the different atmospheres of the last image by tweaking the light’s
attribute values? solution.


http://learnopengl.com/code_viewer.php?code=lighting/multiple_lights-exercise1
http://learnopengl.com/code_viewer.php?code=lighting/multiple_lights-exercise2

18.1

Congratulations on making it this far! I’'m not sure if you noticed, but over all the lighting tutorials
we basically learned nothing new about OpenGL itself except a few minor items like accessing
uniform arrays. All of the tutorials so far were all about manipulating shaders using techniques
and formulas to achieve realistic lighting results. This again shows you the power of shaders.
Shaders are extremely flexible and you witnessed firsthand that with just a few 3D vectors and
some configurable variables we were able to create amazing graphics with just that!

The last few tutorials you learned about colors, the Phong lighting model (that includes ambient,
diffuse and specular lighting), object materials, configurable light properties, diffuse and specular
maps, different types of lights and how to combine all the knowledge into a single application. Be
sure to experiment with different lights, material colors, light properties and try to create your own
environments with the help of a little bit of creativity.

In the next tutorials we’ll be adding more advanced shapes to our scene that look really well in
the lighting models we’ve discussed.

Glossary

e Color vector: a vector portraying most of the real world colors via a combination of
red, green and blue components (abbreviated to RGB). The color of an object is actually the
reflected color components that an object did not absorb.

e Phong lighting model: a model for approximating real-world lighting by computing
an ambient, diffuse and specular component.

e Ambient lighting: approximation of global illumination by giving each object a small
brightness so that objects aren’t completely dark if not lit.

e Diffuse shading: lighting that gets stronger the more a vertex/fragment is aligned to a
light source. Makes use of normal vectors to calculate the angles.

e Normal vector: a (unit) vector that is perpendicular to a surface.
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e Normal matrix: a3x3 matrix that is the model (or model-view) matrix without transla-
tion. It is also modified in such a way (inverse-transpose) that it keeps normal vectors facing
in the correct direction when applying non-uniform scaling. Otherwise normal vectors get
distorted when using non-uniform scaling.

e Specular lighting: sets a specular highlight the closer the viewer is looking at the
reflection of a light source on a surface. Based on the viewer’s direction, the light’s direction
and a shininess value that sets the amount of scattering of the highlight.

e Phong shading: the Phong lighting model applied in the fragment shader.

e Gouraud shading: the Phong lighting model applied in the vertex shader. Produces
noticeable artifacts when using a small number of vertices. Gains efficiency for loss of visual
quality.

e GLSL struct: a C-like struct that acts as a container for shader variables. Mostly used for
organizing input/output/uniforms.

e Material: the ambient, diffuse and specular color an object reflects. These set the colors
an object has.

e Light (properties): the ambient, diffuse and specular intensity of a light. These can
take any color value and define at what color/intensity a light source shines for each specific
Phong component.

e Diffuse map: atexture image that sets the diffuse color per fragment.

e Specular map: atexture map that sets the specular intensity/color per fragment. Allows
for specular highlights only on certain areas of an object.

e Directional 1light: a light source with only a direction. It is modeled to be at an
infinite distance which has the effect that all its light rays seem parallel and its direction
vector thus stays the same over the entire scene.

e Point light: a light source with a location in a scene with light that fades out over
distance.

e Attenuation: the process of light reducing its intensity over distance, used in point lights
and spotlights.

e Spotlight: alight source that is defined by a cone in one specific direction.

e Flashlight: a spotlight positioned from the viewer’s perspective.

e GLSL uniform array: an array of uniform values. Work just like a C-array, except that
they can’t be dynamically allocated.
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In all the scenes so far we’ve been extensively abusing our little container friend in many ways,
but over time even our best friends could get a little boring. In practical graphics applications
there are usually lots of complicated and interesting models that are much prettier to look at than
a static container. However, unlike the container object, we can’t really manually define all the
vertices, normals and texture coordinates of complicated shapes like houses, vehicles or human-like
characters. What we want instead is to import these models into the application; models that were
carefully designed by 3D artists in tools like Blender, 3DS Max or Maya.

These so called 3D modeling tools allow artists to create complicated shapes and apply textures
to them via a process called uv-mapping. The tools then automatically generate all the vertex
coordinates, vertex normals and texture coordinates while exporting them to a model file format.
This way, artists have an extensive toolkit to create high quality models without having to care too
much about the technical details. All the technical aspects are hidden in the exported model file.
We, as graphics programmers, do have to care about these technical details though.

It is thus our job to parse these exported model files and extract all the relevant information so
we can store them in a format that OpenGL understands. A common issue is however that there are
dozens of different file formats where each exports the model data in its own unique way. Model
formats like the Wavefront .obj only contains model data with minor material information like
model colors and diffuse/specular maps, while model formats like the XML-based Collada file
format are extremely extensive and contain models, lights, many types of materials, animation data,
cameras, complete scene information and much more. The wavefront object format is generally
considered to be an easy-to-parse model format. It is recommended to visit the Wavefront’s wiki
page at least once to see how such a file format’s data is structured. This should give you a basic
perception of how model file formats are generally structured.

All by all, there are many different file formats where a common general structure between
them usually does not exist. So if we want to import a model from these file formats we’d have to


http://www.blender.org/
http://www.autodesk.nl/products/3ds-max/overview
http://www.autodesk.com/products/autodesk-maya/overview
http://en.wikipedia.org/wiki/Wavefront_.obj_file
http://en.wikipedia.org/wiki/COLLADA
http://en.wikipedia.org/wiki/COLLADA
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write an importer ourselves for each of the file formats we want to import. Luckily for us, there just
happens to be a library for this.

A model loading library

A very popular model importing library out there is called Assimp that stands for Open Asset Import
Library. Assimp is able to import dozens of different model file formats (and export to some as
well) by loading all the model’s data into Assimp’s generalized data structures. As soon as Assimp
has loaded the model, we can retrieve all the data we need from Assimp’s data structures. Because
the data structure of Assimp stays the same, regardless of the type of file format we imported, it
abstracts us from all the different file formats out there.

When importing a model via Assimp it loads the entire model into a scene object that contains
all the data of the imported model/scene. Assimp then has a collection of nodes where each node
contains indices to data stored in the scene object where each node can have any number of children.
A (simplistic) model of Assimp’s structure is shown below:

mRootNode

mMeshes[]
mMaterials[]

Contains index to a material
in Scene.mMaterialsf]

- Contains index
mcChildrenf] to a mesh in mVertices[]

mMeshes[] Scene.mMeshes[] mNarmai'sﬁ
mTextureCoords[]
mFaces[]

mindices[]

GetTextura(typea)

mMaterialindex

mcChildren[] mcChildrenf]
mMeshes[] mieshes(]

mcChildrenf]
meshes|]

o All the data of the scene/model is contained in the Scene object like all the materials and the
meshes. It also contains a reference to the root node of the scene.

e The Root node of the scene may contain children nodes (like all other nodes) and could have
a set of indices that point to mesh data in the scene object’s mMeshes array. The root node’s
mMeshes array contains the actual Mesh objects, the values in the mMeshes array of a
node are only indices for the scene’s meshes array.

e A Mesh object itself contains all the relevant data required for rendering, think of vertex
positions, normal vectors, texture coordinates, faces and the material of the object.

e A mesh contains several faces. A Face represents a render primitive of the object (triangles,
squares, points). A face contains the indices of the vertices that form a primitive. Because
the vertices and the indices are separated, this makes it easy for us to render via an index
buffer (see Hello Triangle).

e Finally a mesh also contains a Material object that hosts several functions to retrieve the
material properties of an object. Think of colors and/or texture maps (like diffuse and specular
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maps).

So what we want to do is first load an object into a Scene object, recursively retrieve the
corresponding Mesh objects from each of the nodes (we recursively search each node’s children)
and process each Mesh object to retrieve the vertex data, indices and its material properties. The
result is then a collection of mesh data that we want to contain in a single Mode 1 object.

Mesh

When modelling objects in modelling toolkits, artists generally do not create an entire
model out of a single shape. Usually each model has several sub-models/shapes that it
consists of. Each of those single shapes that a model is composed of is called a mesh.
Think of a human-like character: artists usually model the head, limbs, clothes, weapons
all as separate components and the combined result of all these meshes represents the
final model. A single mesh is the minimal representation of what we need to draw an
object in OpenGL (vertex data, indices and material properties). A model (usually)
consists of several meshes.

In the next tutorials we’ll create our own Model and Mesh class that load and store the
imported models using the structure we’ve just described. If we then want to draw a model we
do not render the model as a whole but we render all of the individual meshes that the model is
composed of. However, before we can start importing models we first need to actually include
Assimp in our project.

Building Assimp

You can download Assimp from their download page and choose the corresponding version. As
of this writing the newest Assimp version used was version 3.1.1. It is advised to compile the
libraries by yourself, since their pre-compiled libraries aren’t working on most systems. Review
the Creating a window tutorial if you forgot how to compile a library by yourself via CMake.

A few issues came up though while building Assimp so I’ll note them down here with their
solutions in case any of you get the same errors:
e CMake continually gave errors while retrieving the configuration list about DirectX libraries
missing, messages like:
Could not locate DirectX
CMake Error at cmake-modules/FindPkgMacros.cmake:110 (message) :

Required library DirectX not found! Install the library (including dev
packages)

and try again. If the library is already installed, set the missing
variables
manually in cmake.

The solution here is to install the DirectX SDK in case you haven’t installed this before. You
can download the SDK from here.

e While installing the DirectX SDK a possible error code of s1023 could pop up. In that case
you first want to de-install the C++ Redistributable package(s) before installing the SDK as
explained here.

e Once the configuration is completed you can generate a solution file, open it and compile the
libraries (either as a release version or a debug version, whatever floats your boat).
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e The default configuration builds Assimp as a dynamic library so we need to include the
resulting DLL named assimp.d11 alongside the application’s binaries. You can simply
copy the DLL to the same folder where your application’s executable is located.

o After compilation of Assimp the resulting library and DLL file are located in the code /Debug
or code/Release folder.

e Then simply move the lib and DLL to their appropriate locations, link them from your
solution and be sure not to forget to copy Assimp’s headers to your include directory as
well (the header files are found in the include folder in the files downloaded from Assimp).

If you still received any unreported error, feel free to ask for help in the comments below.

If you want Assimp to use multi-threading for faster performance you could compile
Assimp with Boost. You can find the full installation instructions at their installation

page.

By now you should have compiled Assimp and linked it to your application. Next step:
importing fancy 3D stuff!
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Using Assimp we can load many different models into the application, but once loaded they’re all
stored in Assimp’s data structures. What we eventually want is transform that data to a format that
OpenGL understands so that we can render the objects. We learned from the previous tutorial that a
mesh represents a single drawable entity so let’s start by defining a mesh class of our own.

Let’s review a bit of what we’ve learned so far to think about what a mesh should minimally
have as its data. A mesh should at least need a set of vertices where each vertex contains a position
vector, a normal vector and a texture coordinate vector. A mesh should also contain indices for
indexed drawing and material data in the form of textures (diffuse/specular maps).

Now that we set the minimal requirements for a mesh class we can define a vertex in OpenGL:

struct Vertex {
glm: :vec3 Position;
glm: :vec3 Normal;
glm: :vec2 TexCoords;

We store each of the required vectors in a struct called Ve rt ex that we can use to index each
of the vertex attributes. Aside from a Vertex struct we also want to organize the texture data in a
Texture struct:

struct Texture {
GLuint id;

string type;

}i

We store the id of the texture and its type e.g. a diffuse texture or a specular texture.

Knowing the actual representation of a vertex and a texture we can start defining the structure
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of the mesh class:

vector<Vertex> vertices;
vector<GLuint> indices;
vector<Texture> textures;

Mesh (vector<Vertex> vertices, vector<GLuint> indices, vector<

Texture> textures);
d Draw (Shader shader);
priva

GLuint VAO, VBO, EBO;

setupMesh () ;

As you can see the class isn’t too complicated. In the constructor we give the mesh all the
necessary data, we initialize the buffers in the set upMesh function and finally draw the mesh via
the Draw function. Note that we give a shader to the Draw function; by passing the shader to the
mesh we can set several uniforms before drawing (like linking samplers to texture units).

The function content of the constructor is pretty straightforward. We simply set the class’s public
variables with the constructor’s corresponding argument variables. We also call the setupMesh
function in the constructor:

Mesh (vector<Vertex> vertices, vector<GLuint> indices, vector<Texture>
textures)
->vertices = vertices;
nis->indices = indices;

s—>textures = textures;

this—->setupMesh () ;

Nothing special going on here. Let’s delve right into the set upMe sh function now.

Initialization

Thanks to the constructor we now have large lists of mesh data that we can use for rendering. We
do need to setup the appropriate buffers though and specify the vertex shader layout via vertex
attribute pointers. By now you should have no trouble with these concepts, but we’ve spiced it up a
bit this time with the introduction of vertex data in structs:

id setupMesh ()
glGenVertexArrays (1,

glGenBuffers(l, &this->VBO) ;
glGenBuffers(l, &this->EBO);

glBindVertexArray (this—->VAO) ;
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glBindBuffer (GL_ARRAY BUFFER, this->VBO) ;

glBufferData (GL_ARRAY_BUFFER, this->vertices.size() S (Vertex) ,
&this->vertices[0], GL_STATIC_DRAW) ;

glBindBuffer (GL_ELEMENT_ARRAY_ BUFFER, this->EBO);
glBufferData (GL_ELEMENT_ARRAY_ BUFFER, thi >indices.
GLuint),

&this->indices[0], GL_STATIC_DRAW) ;

glEnableVertexAttribArray (0) ;
glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, (Vertex),
(GLvoid«*)0) ;

glEnableVertexAttribArray (1) ;
glVertexAttribPointer (1, 3, GL_FLOAT, GL_FALSE, si Vertex),
(GLvoidx)offsetof (Vertex, Normal));

glEnableVertexAttribArray (2);
glVertexAttribPointer (2, 2, GL_FLOAT, GL_FALSE, sizeof (Vertex),

(GLvoidx)offsetof (Vertex, TexCoords));

glBindVertexArray (0) ;

The code is not much different than what you’d expect, but a few little tricks were used with
the help of the Vertex struct.

Structs have a great property in C++ that their memory layout is sequential. That is if we were
to represent a struct as an array of data it would only contain the struct’s variables in sequential
order which directly translates to a float (actually byte) array that we want for an array buffer. For
example, if we have a filled Vertex struct its memory layout would be equal to:

Vertex vertex;

vertex.Position = glm::vec3(0.2f, 0.4f, 0.6f);
vertex.Normal = glm::vec3(0.0£f, 1.0f, 0.0f);
vertex.TexCoords = glm::vec2(1.0f, 0.0f);

Thanks to this useful property we can directly pass a pointer to a large list of Vertex structs
as the buffer’s data and they translate perfectly to what g1Buf ferData expects as its argument:

glBufferData (GL_ARRAY_BUFFER, this->vertices.size() x f (Vertex),

&this->vertices[0], GL_STATIC_DRAW) ;

Naturally the sizeof operator can also be used on the struct for the appropriate size in bytes.
This should be 32 bytes (8 floats * 4 bytes each).

Another great use of structs is a preprocessor directive called offsetof (s, m) that takes
as its first argument a struct and as its second argument a variable name of the struct. The macro
returns the byte offset of that variable from the start of the struct. This is perfect for defining the
offset parameter of the glVertexAttribPointer function:

glVertexAttribPointer (1, 3, GL_FLOAT, GL_FALSE, sizeof (Vertex),
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(GLvoidx)offsetof (Vertex, Normal));

The offset is now defined using the of f set of macro that, in this case, sets the byte offset of
the normal vector equal to the byte offset of the normal vector in the struct which is 3 floats and
thus 12 bytes. Note that we also set the stride parameter equal to the size of the Vertex struct.

Using a struct like this does not only provide more readable code but also allows us to easily
extend the structure. If we want another vertex attribute we can simply add it to the struct and due
to its flexible nature, the rendering code won’t break.

20.2 Rendering

The last function we need to define for the Me sh class to be complete is its Draw function. Before
actually rendering the mesh though we first want to bind the appropriate textures before calling
glDrawElements. However, this is actually slightly difficult since we don’t know from the start
how many (if any) textures the mesh has and what type they might have. So how do we set the
texture units and samplers in the shaders?

To solve the issue we’re going to assume a certain naming convention: each diffuse texture is
named texture_diffuseN and each specular texture should be named texture_specularN
where N is any number ranging from 1 to the maximum number of texture samplers allowed. Let’s
say we have 3 diffuse textures and 2 specular textures for a particular mesh, their texture samplers
should then be called:

uniform sampler2D texture_diffusel;
uniform sampler2D texture_diffuse?2;

uniform sampler2D texture_diffuse3;
uniform sampler2D texture_specularl;
uniform sampler2D texture_specular?2;

By this convention we can define as many texture samplers as we want in the shaders and if a
mesh actually does contain (so many) textures we know what their names are going to be. By this
convention we can process any amount of textures on a single mesh and the developer is free to use
as many of those as he wants by simply defining the proper samplers (although defining less would
be a bit of a waste of bind and uniform calls).

There are many solutions to problems like this and if you don’t like this particular
solution it is up to you to get creative and come up with your own solution.

The resulting drawing code then becomes:

bid Draw (Shader shader)

GLuint diffuseNr = 1;
GLuint specularNr g
for (GLuint 1 = 0; i <
{

this->textures.size(); i++)

glActiveTexture (GL_TEXTUREO + 1i);
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stringstream ss;
string number;
string name = this->textures[i].type;

if (name == )
ss << diffuseNr++;
else if (name ==
ss << specularNr++;
number = ss.str();

glUniformlf (glGetUniformLocation (shader.Program, (
name + number).c_str()), 1i);

glBindTexture (GL_TEXTURE_2D, this->textures([i].id);
}
glActiveTexture (GL_TEXTUREOQ) ;

glBindVertexArray (this->VAO) ;
glDrawElements (GL_TRIANGLES, this->indices.size (), GL_UNSIGNED_INT, O0);
glBindVertexArray (0) ;

It’s not the most beautiful code but that is partly to blame to how ugly C++ is when converting
types like ints to strings. We first calculate the N-component per texture type and concatenate it
to the texture’s type string to get the appropriate uniform name. We then locate the appropriate
sampler, give it the location value to correspond with the currently active texture unit and bind the
texture. This is also the reason we need the shader in the Draw function.

We also added "material." to the resulting uniform name because we usually store the
textures in a material struct (this might differ per implementation).

Note that we increment the diffuse and specular counters the moment we transfer
them to the stringstream. In C++ the increment call: variable++ returns the
variable as is and then increments the variable while ++variable first increments
the variable and then returns it. In our case we first pass the original counter value to the
stringstream and then increment it for the next round #TheMore YouKnow.

You can find the full source code of the Mesh class here.
The Mesh class we just defined is a neat abstraction for many of the topics we’ve discussed in

the early tutorials. In the next tutorial we’ll create a model that acts as a container for several mesh
objects and actually implement Assimp’s loading interface.
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Now it is time to get our hands dirty with Assimp and start creating the actual loading and translation
code. The goal of this tutorial is to create another class that represents a model in its entirety, that
is, a model that contains multiple meshes, possibly with multiple objects. A house, that contains
a wooden balcony, a tower and perhaps a swimming pool could still be loaded as a single model.
We’ll load the model via Assimp and translate it to multiple Me sh objects we’ve created in the last
tutorial.

Without further ado, I present you the class structure of the Mode1 class:

s Model

public:
Model (GLcharx path)
{

this->1loadModel (path) ;

d Draw (Shader shader);

vector<Mesh> meshes;

string directory;

id loadModel (string path);
void processNode (aiNode* node, c aiScenex scene);
Mesh processMesh (aiMeshx mesh, c ailScene* scene);
vector<Texture> loadMaterialTextures (aiMaterialx mat, aiTextureType
type,
string typeName) ;

The Model class contains a vector of Mesh objects and requires us to give it a file location
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in its constructor. It then loads the file right away via the 1oadModel function that is called in
the constructor. The private functions are all designed to process a part of Assimp’s import routine
and we’ll cover them shortly. We also store the directory of the file path that we’ll later need when
loading textures.

The Draw function is nothing special and basically loops over each of the meshes to call their
respective Draw function:

void Draw (Shader shader)

{

for (GLuint 1 = 0; 1 < this—->meshes.size(); i++)

this->meshes[i] .Draw (shader);

Importing a 3D model into OpenGL

To import a model and translate it to our own structure we first need to include the appropriate
headers of Assimp so the compiler won’t complain to us:

#include <assimp/Importer.hpp>
e <assimp/scene.h>

#include <assimp/postprocess.h>

The first function we’re calling is 1oadModel that’s directly called from the constructor.
Within 1oadModel we use Assimp to load the model into a data structure of Assimp called a
scene object. You might remember from the first tutorial of the model loading series that this is the
root object of Assimp’s data interface. Once we have the scene object we can access all the data we
need from the loaded model.

The great thing about Assimp is that it neatly abstracts from all the technical details of loading
all the different file formats and does all this with a single one-liner:

Assimp: :Importer importer;
const aiScenex scene = importer.ReadFile (path, aiProcess_Triangulate |

aiProcess_FlipUVs) ;

We first declare an actual Importer object from Assimp’s namespace and then call its
ReadFile function. The function expects a file path and as its second argument several post-
processing options. Aside from simply loading the file, Assimp allows us to specify several options
that forces Assimp to do some extra calculations/operations on the imported data. By setting
aiProcess_Triangulate we tell Assimp that if the model does not (entirely) consist of trian-
gles it should transform all the model’s primitive shapes to triangles. The aiPorcess_F1ipUVs
flips the texture coordinates on the y-axis where necessary during processing (you might remember
from the Textures tutorial that most images in OpenGL were reversed around the y-axis so this little
postprocessing option fixes that for us). A few other useful options are:

e aiProcess_GenNormals : actually creates normals for each vertex if the model didn’t

contain normal vectors.

e aiProcess_SplitLargeMeshes : splits large meshes into smaller sub-meshes which

is useful if your rendering has a maximum number of vertices allowed and can only process
smaller meshes.
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e aiProcess_OptimizeMeshes : actually does the reverse by trying to join several
meshes into one larger mesh, reducing drawing calls for optimization.
Assimp provides a great set of postprocessing instructions and you can find all of them here.
Actually loading a model via Assimp is (as you can see) surprisingly easy. The hard work lies in
using the returned scene object to translate the loaded data to an array of Me sh objects.

The complete 1 oadModel function is listed here:

id loadModel (string path)

Assimp: :Importer import;
t aiScenex scene = import.ReadFile (path, aiProcess_Triangulate |
aiProcess_FlipUVs) ;

if(!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene—>
mRootNode)
{

cout << << import.GetErrorString() << endl;
return;

—>directory = path.substr (0, path.find_ last_of ( ))

i s—>processNode (scene—>mRootNode, scene) ;

After we load the model, we check if the scene and the root node of the scene are not null and
check one of its flags to see if the returned data is incomplete. If any of these error conditions
are met, we report an error via the importer’s Get ErrorString function and return. We also
retrieve the directory path of the given file path.

If nothing went wrong we want to process al of the scene’s nodes so we pass the first node
(root node) to the recursive processNode function. Because each node (possibly) contains a
set of children we want to first process the node in question, and then continue processing all the
node’s children and so on. This fits a recursive structure so we’ll be defining a recursive function.
A recursive function is a function that does some processing and recursively calls the same function
with different parameters until a certain condition is met. In our case the exit condition is met when
all nodes have been processed.

As you might remember from Assimp’s structure each node contains a set of mesh indices
where each index points to a specific mesh located in the scene object. We thus want to retrieve
these mesh indices, retrieve each mesh, process each mesh and then do this all again for each of the
node’s children nodes. The content of the processNode function is shown below:

d processNode (aiNode* node, const aiScenex scene)

for (GLuint i = 0; 1 < node->mNumMeshes; i++)
{

aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
his->meshes.push_back (this->processMesh (mesh, scene));

for (GLuint i = 0; i < node->mNumChildren; i++)

{



http://assimp.sourceforge.net/lib_html/postprocess_8h.html

21.1.1

21.1 Importing a 3D model into OpenGL 197

this->processNode (node->mChildren[i], scene);

We first check each of the node’s mesh indices and retrieve the corresponding mesh by indexing
the scene’s mMe shes array. The returned mesh is then passed to the processMesh function that
returns a Me sh object that we can store in the meshes list/vector.

Once all the meshes have been processed we iterate through all of the node’s children and call
the same processNode function for each of the node’s children. Once a node no longer has any
children the function stops executing.

A careful reader might’ve noticed that we could basically forget about processing any of
the nodes and simply loop through all of the scene’s meshes directly without doing all
this complicated stuff with indices. The reason we’re doing this is that the initial idea
for using nodes like this is that it defines a parent-child relation between meshes. By
recursively iterating through these relations we can actually define certain meshes to be
parents of other meshes.

A use case for such a system is where you want to translate a car mesh and make sure
that all its children (like an engine mesh, a steering wheel mesh and its tire meshes)
translate as well; such a system is easily created using parent-child relations.

Right now however we’re not using such a system, but it is generally recommended to
stick with this approach for whenever you want extra control over your mesh data. These
node-like relations are after all defined by the artists who created the models.

The next step is to actually process Assimp’s data into the Me sh class we created last tutorial.

Assimp to Mesh

Translating an aiMesh object to a mesh object of our own is not too difficult. All we need to do
is access each of the mesh’s relevant properties and store them in our own object. The general
structure of the processMesh function then becomes:

Mesh processMesh (aiMeshx mesh, const aiScenex scene)
{

vector<Vertex> vertices;

vector<GLuint> indices;

vector<Texture> textures;

for (GLuint i = 0; 1 < mesh->mNumVertices;

{

Vertex vertex;

vertices.push_back (vertex) ;

if (mesh->mMaterialIndex >= 0)
{
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urn Mesh (vertices, indices, textures);

Processing a mesh basically consists of 3 sections: retrieving all the vertex data, retrieving the
mesh’s indices and finally retrieving the relevant material data. The processed data is stored in one
of the 3 vectors and from those a Mesh is created and returned to the function’s caller.

Retrieving the vertex data is pretty simple: we define a Vertex struct that we add to the
vertices array after each iteration. We loop for as much vertices there exist within the mesh
(retrieved via mesh—>mNumVert ices). Within the iteration we then want to fill this struct with
all the relevant data. For vertex positions this is done as follows:

glm: :vec3 vector;
vector.x = mesh->mVertices([i].
vector.y = mesh->mVertices[i].

vector.z = mesh->mVertices[i].
vertex.Position = vector;

Note that we define a placeholder vec3 for transferring Assimp’s data to. We need the
placeholder since Assimp maintains its own data types for vector, matrices, strings etc. and they
don’t convert really well to glm’s data types.

Assimp calls their vertex position array mVert ices which isn’t really too intuitive.

The procedure for normals should come as no surprise now:

vector.x = mesh->mNormals[i].x;
vector. = mesh->mNormals[i].v;

vector. mesh->mNormals[i].
vertex.Normal = vector;

Texture coordinates are roughly the same, but Assimp allows a model to have up to 8 different
texture coordinates per vertex which we’re not going to use so we only care about the first set of
texture coordinates. We’ll also want to check if the mesh actually contains texture coordinates
(which might not be always the case):

if (mesh->mTextureCoords[0])

{
glm: :vec2 vec;
vec.x = mesh->mTextureCoords[0] [i].
vec.y = mesh->mTextureCoords[0] [i].y;
vertex.TexCoords = vec;

vertex.TexCoords = glm::vec2(0.0£f, 0.0f);

The vertex struct is now completely filled with the required vertex attributes and we can
push it to the back of the vert ices vector at the end of the iteration. This process is repeated for
each of the mesh’s vertices.
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Indices

Assimp’s interface defined each mesh having an array of faces where each face represents a single
primitive, which in our case (due to the aiProcess_Triangulate option) are always triangles.
A face contains the indices that define which vertices we need to draw in what order for each
primitive so if we iterate over all the faces and store all the face’s indices in the indices vector
we’re all set:

for (GLuint i1 = 0; i1 < mesh->mNumFaces; i++)

{

aiFace face = mesh->mFaces[i];

for (GLuint j = 0; j < face.mNumIndices; Jj++)
indices.push_back (face.mIndices[]j]);

After the outer loop has finished we now have a complete set of vertices and index data for
drawing the mesh via glDrawElements. However, to finish the discussion and to add some
detail to the mesh we want to process the mesh’s material as well.

Material

Just like with nodes, a mesh only contains an index to a material object and to retrieve the actual
material of a mesh we need to index the scene’s mMaterials array. The mesh’s material index
is set in its mMaterial Index property which we can also query to check if the mesh actually
contains a material or not:

1f (mesh->mMaterialIndex >= 0)
{
aiMaterialx material = scene->mMaterials[mesh->mMateriallndex];
vector<Texture> diffuseMaps = this->loadMaterialTextures (material,
aiTextureType DIFFUSE,
)i
textures.insert (textures.end (), diffuseMaps.begin(), diffuseMaps.end())
7
vector<Texture> specularMaps = this->loadMaterialTextures (material,
aiTextureType_SPECULAR,

)
textures.insert (textures.end (), specularMaps.begin(), specularMaps.end

0));

We first retrieve the aiMaterial object from the scene’s mMaterials array. Then we
want to load the mesh’s diffuse and/or specular textures. A material object internally stores an
array of texture locations for each texture type. The different texture types are all prefixed with
aiTextureType_. We use a helper function called 1oadMaterialTextures to retrieve
the textures from the material. The function returns a vector of Texture structs that we then store
at the end of the model’s textures vector.

The loadMaterialTextures function iterates over all the texture locations of the given
texture type, retrieves the texture’s file location and then loads and generates the texture and stores
the information in a Ve rtex struct. It looks like this:
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vector<Texture> loadMaterialTextures (aiMaterialx mat, aiTextureType type,
string typeName)
{
vector<Texture> textures;
for (GLuint i = 0; 1 < mat->GetTextureCount (type);
{
aiString str;
mat->GetTexture (type, i, &str);
Texture texture;
texture.id = TextureFromFile (str.C_Str (), this->directory);
texture.type = typeName;

texture.path = str;
textures.push_back (texture) ;

}

return textures;

We first check the amount of textures stored in the material via its Get TextureCount
function that expects one of the texture types we’ve given. We then retrieve each of the texture’s
file locations via the Get Texture function that stores the result in an aiString. We then use
another helper function called TextureFromFile that loads a texture (with SOIL) for us and
returns the texture’s ID. You can check the complete code listing at the end for its content if you’re
not sure how such a function is written.

Note that we make the assumption that texture file paths in model files are local to the
actual model object e.g. in the same directory as the location of the model itself. We can
then simply concatenate the texture location string and the directory string we retrieved
earlier (in the LloadModel function) to get the complete texture path (that’s why the
GetTexture function also needs the directory string).

Some models found over the internet still use absolute paths for their texture locations
which won’t work on each machine. In that case you probably want to manually edit the
file to use local paths for the textures (if possible).

And that is all there is to importing a model using Assimp. You can find the complete source
code of the Mode1 class here.

A large optimization

We’re not completely done yet, since there is still a large (but not completely necessary) optimization
we want to make. Most scenes re-use several of their textures onto several meshes; think of a house
again that has a granite texture for its walls. This texture could also be applied to the floor, its
ceilings, the staircase, perhaps a table and maybe even a small well close by. Loading textures is
not a cheap operation and in our current implementation a new texture is loaded and generated for
each mesh even though the exact same texture has been loaded several times before. This quickly
becomes the bottleneck of your model loading implementation.

So we’re going to add one small tweak to the model code by storing all of the loaded textures
globally and wherever we want to load a texture we first check if it hasn’t been loaded already. If
so, we take that texture and skip the entire loading routine saving us lots of processing power. To
be able to actually compare textures we need to store their path as well:


http://learnopengl.com/code_viewer.php?code=model_loading/model_unoptimized
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t Texture {
GLuint id;
string type;

aisString path;

Then we store all the loaded textures in another vector declared at the top of the model’s class
file as a private variable:

vector<Texture> textures_loaded;

Then in the 1loadMaterialTextures function we want to compare the texture path with
all the textures in the textures_loaded vector to see if the current texture path is similar to
any of those. If so, we skip the texture loading/generation part and simply use the located texture
struct as the mesh’s texture. The (updated) function is shown below:

vector<Texture> loadMaterialTextures (aiMaterial* mat, aiTextureType type,
string typeName)

vector<Texture> textures;
for (GLuint i = 0; 1 < mat—->GetTextureCount (type) ;
{
aistring str;
mat->GetTexture (type, 1, &str);
GLboolean skip = fals
for (GLuint j = 0; j < textures_loaded.size();
{
if (textures_loaded[]j].path == str)
{

textures.push_back (textures_loaded[]]) ;
= true;

texture;
texture.id = TextureFromFile (str.C_Str (), this->directory);
texture.type = typeName;
texture.path = str;
textures.push_back (texture) ;

this—>textures_loaded.push_back (texture) ;

So now we do not only have an extremely versatile model loading system, but we also have an
optimized one that loads objects quite fast.

Some versions of Assimp tend to load models quite slow when using the debug version
and/or the debug mode of your IDE so be sure to test it out with release versions as well
if you run into slow loading times.
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You can find the complete source code of the optimized Mode1 class here.

No more containers!

So let’s give our implementation a spin by actually importing a model created by genuine artists, not
something done by the creative genius that I am (you got to admit, those containers were probably
one of the most beautiful cubical shapes you’ve seen). Because I don’t want to give myself too
much credit I’ll occasionally allow some other artists to join the ranks and this time we’re going to
load the original nanosuit used by Crytek’s game Crysis. The model is exported as a . ob ] file
together with a . mt 1 file that contains the model’s diffuse, specular and normal maps (more about
those later). You can download the model here, note that all the textures and the model files should
be located in the same directory for the textures to load.

The version you can download from this website is a modified version where each texture
file path was modified to a local relative path instead of an absolute path if downloaded
from the original source.

Now in the code, declare a Mode 1 object and pass in the model’s file location. The model
should then automatically load and (if there were no errors) draw the object in the game loop
using its Draw function and that is it. No more buffer allocations, attribute pointers and render
commands, just a simple one-liner. Then if you create a simple set of shaders where the fragment
shader only outputs the object’s diffuse texture color the result looks a bit like this:

You can find the complete source code here together with its vertex and fragment shader.

We could also get more creative and introduce two point lights to the render equation as we
learned from the Lighting tutorials and together with specular maps get amazing results:


http://learnopengl.com/code_viewer.php?code=model&type=header
http://tf3dm.com/3d-model/crysis-2-nanosuit-2-97837.html
data/models/nanosuit.rar
http://learnopengl.com/code_viewer.php?code=model_loading/model_diffuse
http://learnopengl.com/code_viewer.php?code=model_loading/model&type=vertex
http://learnopengl.com/code_viewer.php?code=model_loading/model&type=fragment
http://www.learnopengl.com/#!Lighting/Light-casters
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Even I have to admit that this is maybe a bit more fancy than the containers we’ve used so far.
Using Assimp you can load tons of models found over the internet. There are quite a few resource
websites that offer free 3D models for you to download in several file formats. Do note that some
models still won’t load properly, have texture paths that won’t work or might simply be exported in
a format even Assimp can’t read.

Exercises

e Can you re-create the last scene with the two point lights?: solution, shaders.


http://learnopengl.com/code_viewer.php?code=model_loading/model-exercise1
http://learnopengl.com/code_viewer.php?code=model_loading/model-exercise1-shaders
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In the coordinate systems tutorial we’ve rendered a 3D container and made use of a depth buffer to
prevent faces rendering to the front while they’re behind other faces. In this tutorial we’re going
to elaborate a bit more on these depth values the depth buffer (or z-buffer) is storing and how it
actually determines if a fragment is indeed behind other fragments.

The depth-buffer is a buffer that, just like the color buffer (that stores all the fragment colors:
the visual output), stores information per fragment and (usually) has the same width and height as
the color buffer. The depth buffer is automatically created by the windowing system and stores its
depth values as 16, 24 or 32 bit floats. In most systems you’ll see a depth buffer with a precision
of 24 bits.

When depth testing is enabled OpenGL tests the depth value of a fragment against the content
of the depth buffer. OpenGL performs a depth test and if this test passes, the depth buffer is updated
with the new depth value. If the depth test fails, the fragment is discarded.

Depth testing is done in screen space after the fragment shader has run (and after stencil
testing has run which we’ll discuss in the next tutorial). The screen space coordinates relate
directly to the viewport defined by OpenGL’s g1Viewport function and can be accessed via
GLSL’s built-in g1_FragCoord variable in the fragment shader. The x and y components of
gl_FragCoord represent the fragment’s screen-space coordinates (with (0,0) being the bottom-
left corner). The g1_FragCoord also contains a z-component which contains the actual depth
value of the fragment. This z value is the value that is compared to the depth buffer’s content.


http://www.learnopengl.com/#!Getting-started/Coordinate-Systems
http://www.learnopengl.com/#!Advanced-OpenGL/Stencil-testing
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Today most GPUs support a hardware feature called early depth testing. Early depth
testing allows the depth test to run before the fragment shader runs. Wherever it is clear
a fragment is never going to be visible (it is behind other objects) we can prematurely
discard the fragment.

Fragment shaders are usually quite expensive so wherever we can avoid running them we
should. A restriction on the fragment shader for early depth testing is that you shouldn’t
write to the fragment’s depth value. If a fragment shader would write to its depth value,
early depth testing is impossible; OpenGL won’t be able to figure out the depth value
beforehand.

Depth testing is disabled by default so to enable depth testing we need to enable it with the
GL_DEPTH_TEST option:

glEnable (GL_DEPTH_TEST) ;

Once enabled OpenGL automatically stores fragments their z-values in the depth buffer if they
passed the depth test and discards fragments if they failed the depth test accordingly. If you have
depth testing enabled you should also clear the depth buffer before each render iteration using the
GL_DEPTH_BUFFER_BIT, otherwise you're stuck with the written depth values from last render
iteration:

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER_BIT);

There are certain scenarios imaginable where you want to perform the depth test on all fragments
and discard them accordingly, but not update the depth buffer. Basically, you’re using a read-only
depth buffer. OpenGL allows us to disable writing to the depth buffer by setting its depth mask to
GL_FALSE:

glDepthMask (GL_FALSE) ;

Note that this only has effect if depth testing is enabled.

Depth test function

OpenGL allows us to modify the comparison operators it uses for the depth test. This allows us to
control when OpenGL should pass or discard fragments and when to update the depth buffer. We
can set the comparison operator (or depth function) by calling glDepthFunc:

glDepthFunc (GL_LESS) ;

The function accepts several comparison operators that are listed in the table below:
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Function Description
GL_ALWAYS The depth test always passes.
GL_NEVER The depth test never passes.
GL_LESS Passes if the fragment’s depth value is less than the stored depth value.
GL_EQUAL Passes if the fragment’s depth value is equal to the stored depth value.
Passes if the fragment’s depth value is less than or equal to the stored depth
GL_LEQUAL
value.
GL_GREATER Passes if the fragment’s depth value is greater than the stored depth value.
GL_NOTEQUAL Passes if the fragment’s depth value is not equal to the stored depth value.
Passes if the fragment’s depth value is greater than or equal to the stored depth
GL_GEQUAL value

By default the depth function GL_LESS is used that discards all the fragments that have a
depth value higher than or equal to the current depth buffer’s value.

Let’s show the effect that changing the depth function has on the visual output. We’ll use a
fresh code setup that displays a basic scene with two textured cubes sitting on a textured floor with
no lighting. You can find the source code here and its shaders here.

Within the source code we changed the depth function to GI._ALWAYS:

glEnable (GL_DEPTH_TEST) ;
glDepthFunc (GL_ALWAYS) ;

This simulates the same behavior we get if we didn’t enable depth testing. The depth test simply
always passes so the fragments that are drawn last are rendered in front of the fragments that were
drawn before, even though they should’ve been at the front. Since we’ve drawn the floor plane as
last the plane’s fragments overwrite each of the container’s fragments:


http://learnopengl.com/code_viewer.php?code=advanced/depth_testing_func
http://learnopengl.com/code_viewer.php?code=advanced/depth_testing_func_shaders
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Depth value precision

The depth buffer contains depth values between 0.0 and 1.0 and it compares its content with
z-value of all the objects in the scene as seen from the viewer. These z-values in view space can
be any value between the projection frustum’s near and far value. We thus need some way to
transform these view-space z-values to the range of [0, 1] and one way is to linearly transform
them to the [0, 1] range. The following (linear) equation then transforms the z-value to a depth
value between 0.0 and 1. 0:

Z—near

F_depth= (22.1)

far — near
Here near and far are the near and far values we used to provide to the projection matrix to set
the visible frustum (see coordinate Systems). The equation takes a depth value z within the frustum

and transforms it to the range [0, 1]. The relation between the z-value and its corresponding
depth value is presented in the following graph:
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Note that all equations give a depth value close to 0 . 0 when the object is close by and a
depth value close to 1. 0 when the object is close to the far plane.

In practice however, a linear depth buffer like this is almost never used. For correct projection
properties a non-linear depth equation is used that is proportional to 1/z. What this basically does
is give us enormous precision when z is small and much less precision when z is far away. Think
about this for a second: do we really want the depth values that are 1000 units away to have the
same precision as highly-detailed objects at a distance of 1?7 The linear equation doesn’t take this
into account.

Since the non-linear function is proportional to 1/z, z-values between 1 . 0 and 2 . 0 for example
would result in depth values between 1.0 and 0.5 which is half of the precision a float provides
us, giving us enormous precision at small z-values. Z-values between 50.0 and 100 . 0 would
account for only 2% of the float’s precision, this is exactly what we want. Such an equation, that
also takes near and far distances into account, is given below:


http://www.learnopengl.com/#!Getting-started/Coordinate-Systems
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1/z—1/near

1/far—1/near (22.2)

F_depth =

Don’t worry if you don’t know exactly what is going on with this equation. The important thing

to remember is that the values in the depth buffer are not linear in screen-space (they are linear in

view-space before the projection matrix is applied). A value of 0. 5 in the depth buffer does not

mean the object’s z-values are halfway in the frustum; the z-value of the vertex is actually quite

close to the near plane! You can see the non-linear relation between the z-value and the resulting
depth buffer’s value in the following graph:

near=1, far=50

Y

o
e
-

= o
L= =R < =

-
-
-

(=}
-
%
L]
\
LY

Depth va lue

o o o o o
b W = W @
-

=
o =
.

it

1 2 3 4 5 6 7 8 9 10

2= lug

As you can see, the depth values are greatly determined by the small z-values thus giving
us enormous depth precision to the objects close by. The equation to transform z-values (from
the viewer’s perspective) is embedded within the projection matrix so when we transform vertex
coordinates from view to clip and then to screen-space the non-linear equation is applied. If you’re
curious as to what the projection matrix actually does in detail I suggest the following great article

The effect of this non-linear equation quickly becomes apparent when we try to visualize the
depth buffer.

Visualizing the depth buffer

We know that the z-value of the built-in g1_FragCooxrd vector in the fragment shader contains
the depth value of that particular fragment. If we were to output this depth value of the fragment
as a color we could display the depth values of all the fragments in the scene. We can do this by
returning a color vector based on the fragment’s depth value:

void main ()

{

color = vecd (vec3(gl_FragCoord.z), 1.0f);

}



http://www.songho.ca/opengl/gl_projectionmatrix.html
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If you’d then run the same program again you’ll probably notice that everything is white,
making it look like all of our depth values are 1.0 which is the maximum depth value. So why
aren’t any of the depth values closer to 0 . 0 and thus darker?

You might remember from the previous section that the depth values in screen space are non-
linear e.g. they have a very high precision for small z-values and a low precision for large z-values.
The depth value of the fragment increases rapidly over distance so almost all the vertices have
values close to 1. 0. If we were to carefully move really close to objects you might eventually see
the colors getting darker, showing that their z-values are becoming smaller:

This clearly shows the non-linearity of the depth value. Objects close by have a much larger
effect on the depth value than objects far away. Only moving a few inches results in the colors
going from dark to completely white.

We can however, transform the non-linear depth values of the fragment back to their linear
siblings. To achieve this we basically need to reverse the process of projection for the depth
values alone. This means we have to first re-transform the depth values from the range [0, 1]
to normalized device coordinates in the range [-1, 1] (clip space). Then we want to reverse the
non-linear equation (equation 2) as done in the projection matrix and apply this inversed equation
to the resulting depth value. The result is then a linear depth value. Sounds do-able right?

First we want to transform the depth value to NDC which is not too difficult:

z = depth » 2.0 - 1.0;

We then take the resulting z value and apply the inverse transformation to retrieve the linear
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depth value:

float linearDepth = (2.0 * near) / (far + near - z * (far - near));

Note that this equation is not precisely the inverse of equation 2. This equation is derived from
the projection matrix that again uses equation 2 to non-linearize the depth values. This equation
also takes into account that the z-values are supplied in the range [0, 1] instead of [near, far].
This math-heavy article explains the projection matrix in enormous detail for the interested reader;
it also shows where the equations come from.

This is not the exact equation as derived from the projection matrix; this equation is the
result of a division by far. The depth values range all the way to the far plane which
doesn’t fit nicely as a color value between 0.0 and 1.0. Dividing by far maps the
depth values to 0. 0 and 1 . 0 which is better suited for demonstration purposes.

The complete fragment shader that transforms the non-linear depth in screen-space to a linear
depth value is then as follows:

#version 330 core
out vec4 color;

float LinearizeDepth (float depth)
{

f1 near = 0.1;

fl far = 100.0;

fl z = depth % 2 1.0;

0 =
irn (2.0 * near) / (far + near - z * (far — near));

oid main ()

float depth = LinearizeDepth (gl_FragCoord.z) ;
color = vec4d (vec3(depth), 1.0f);

If we’d now run the application we get depth values that are actually linear over distance. Try
moving around the scene to see the depth values change in a linear fashion.


http://www.songho.ca/opengl/gl_projectionmatrix.html
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The colors are mostly black because the depth values range linearly from the near plane which
is 0.1 to the far plane which is 100 that is still quite far away from us. The result is that we’re
relatively close to the near plane and thus get lower (darker) depth values.

Z-fighting

A common visual artifact might occur when two planes or triangles are so closely aligned to each
other that the depth buffer does not have enough precision to figure out which one of the two shapes
is in front of the other. The result is that the two shapes continually seem to switch order which
causes weird glitchy patterns. This is called z-fighting, because it looks like the shapes are fighting
over who gets on top.

In the scene we’ve been using so far there are a few spots where z-fighting is quite noticeable.
The containers were placed at the exact height that the floor was placed which means the bottom
plane of the container is coplanar with the floor plane. The depth values of both planes are then the
same so the resulting depth test has no way of figuring out which is the right one.

If you move the camera inside one of the containers the effects are clearly visible, the bottom
part of the container is constantly switching between the container’s plane and the floor’s plane in a
zigzag pattern:
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Z-fighting is a common problem with depth buffers and is generally stronger when objects are
at a further distance (because the depth buffer has less precision at larger z-values). Z-fighting can’t
be completely prevented, but there are generally a few tricks that will help to mitigate or completely
prevent z-fighting in your scene.

Prevent z-fighting

The first and most important trick is never place objects too close to each other in a way that some
of their triangles closely overlap. By creating a small offset between two objects that is hardly
noticeable by a user you’ll completely remove z-fighting between the two objects. In the case of
the containers and the plane we could’ve easily moved the containers slightly in the positive y
direction. The small change of the container’s positions would probably not be noticeable at all and
completely reduce the z-fighting. However, this requires manual intervention of each of the objects
and thorough testing to make sure no objects in a scene produce z-fighting.

A second trick is to set the near plane as far as possible. In one of the previous sections we’ve
discussed that precision is extremely large when close to the near plane so if we move the near
plane farther from the viewer, we’ll have significantly greater precision over the entire frustum
range. However, setting the near plane too far could cause clipping of near objects so it is usually
a matter of tweaking and experimentation to figure out the best near distance for your scene.

Another great trick at the cost of some performance is to use a higher precision depth buffer.
Most depth buffers have a precision of 24 bits, but most cards nowadays support 32 bit depth
buffers which increases the precision by a significant amount. So at the cost of some performance
you’ll get much more precision with depth testing, reducing z-fighting.
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The 3 techniques we’ve discussed are the most common and easy-to-implement anti z-fighting
techniques. There are some other techniques out there that require a lot more work and still won’t
completely disable z-fighting. Z-fighting is a common issue, but if you use the proper combination
of the listed techniques you probably won’t really need to deal with z-fighting.
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Once the fragment shader has processed the fragment a so called stencil test is executed that, just
like the depth test, has the possibility of discarding fragments. Then the remaining fragments get
passed to the depth test that could possibly discard even more fragments. The stencil test is based
on the content of yet another buffer called the stencil buffer that we’re allowed to update during
rendering to achieve interesting effects.

A stencil buffer (usually) contains 8 bits per stencil value that amounts to a total of 256
different stencil values per pixel/fragment. We can then set these stencil values to values of our
liking and then we can discard or keep fragments whenever a particular fragment has a certain
stencil value.

Each windowing library needs to set up a stencil buffer for you. GLFW does this
automatically so we don’t have to tell GLFW to create one, but other windowing
libraries might not create a stencil library by default so be sure to check your library’s
documentation.

A simple example of a stencil buffer is shown below:
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Color buffer Stencil buffer After stencil test

The stencil buffer is first cleared with zeros and then an open rectangle of 1s is set in the stencil
buffer. The fragments of the scene are then only rendered (the others are discarded) wherever the
stencil value of that fragment contains a 1.

Stencil buffer operations allow us to set the stencil buffer at specific values wherever we’re
rendering fragments. By changing the content of the stencil buffer while we’re rendering, we’re
writing to the stencil buffer. In the same (or following) render iteration(s) we can then read these
values to discard or pass certain fragments. When using stencil buffers you can get as crazy as you
like, but the general outline is usually as follows:

Enable writing to the stencil buffer.
Render objects, updating the content of the stencil buffer.
Disable writing to the stencil buffer.
Render (other) objects, this time discarding certain fragments based on the content of the
stencil buffer.

By using the stencil buffer we can thus discard certain fragments based on the fragments of
other drawn objects in the scene.

You can enable stencil testing by enabling GL_STENCIL_TEST. From that point on, all
rendering calls will influence the stencil buffer in one way or another.

glEnable (GL_STENCIL_TEST) ;

Note that you also need to clear the stencil buffer each iteration just like the color and depth
buffer:

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER_BIT | GL_STENCIL_BUFFER_BIT) ;

Also, just like the depth testing’s g1DepthMask function, there is an equivalent function
for the stencil buffer. The function g1 StencilMask allows us to set a bitmask that is ANDed
with the stencil value about to be written to the buffer. By default this is set to a bitmask of all 1s
unaffecting the output, but if we were to set this to 0x00 all the stencil values written to the buffer
end up as Os. This is equivalent to depth testing’s glDepthMask (GL_FALSE):

glStencilMask (OxFF) ;
glStencilMask (0x00) ;
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Most of the cases you’ll just be writing 0x00 or OxFF as the stencil mask, but it’s good to
know there are options to set custom bit-masks.

Stencil functions

Just like with depth testing, we have a certain amount of control over when a stencil test should
pass or fail and how it should affect the stencil buffer. There are a total of two functions we can use
to configure stencil testing: glStencilFunc and glStencilOp.

The glStencilFunc (GLenum func, GLint ref, GLuint mask) has three pa-
rameters:

e func: sets the stencil test function. This test function is applied to the stored sten-
cil value and the glStencilFunc’s ref value. Possible options are: GI._NEVER,
GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL and
GL_ALWAYS. The semantic meaning of these is similar to the depth buffer’s functions.

e ref: specifies the reference value for the stencil test. The stencil buffer’s content is compared
to this value.

e mask: specifies a mask that is ANDed with both the reference value and the stored stencil
value before the test compares them. Initially set to all 1s.

So in the case of the simple stencil example we’ve shown at the start the function would be set

to:

glStencilFunc (GL_EQUAL, 1, OxFF)

This tells OpenGL that whenever the stencil value of a fragment is equal (GL_EQUAL) to the
reference value 1 the fragment passes the test and is drawn, otherwise discarded.

But glStencilFunc only described what OpenGL should do with the content of the stencil
buffer, not how we can actually update the buffer. That is where g1 StencilOp comes in.

The g1StencilOp (GLenum sfail, GLenum dpfail, GLenum dppass) contains
three options of which we can specify for each option what action to take:

e sfail: action to take if the stencil test fails.

e dpfail: action to take if the stencil test passes, but the depth test fails.
e dppass: action to take if both the stencil and the depth test pass.

Then for each of the options you can take any of the following actions:
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Action Description
GL_KEEP The currently stored stencil value is kept.
GL_ZERO The stencil value is set to 0.
The stencil value is replaced with the reference value set with
GL_REPLACE .
glStencilFunc.
GL_INCR The stencil value is increased by 1 if it is lower than the maximum value.
Same as GL__INCR, but wraps it back to 0 as soon as the maximum value is
GL_INCR_WRAP
exceeded.
GL_DECR The stencil value is decreased by 1 if it is higher than the minimum value.
Same as GL_DECR, but wraps it to the maximum value if it ends up lower
GL_DECR_WRAP
than 0.
GL_INVERT Bitwise inverts the current stencil buffer value.

By default the g1StencilOp function is set to (GL_KEEP, GL_KEEP, GL_KEEP) so
whatever the outcome of any of the tests, the stencil buffer keeps its values. The default behavior
does not update the stencil buffer, so if you want to write to the stencil buffer you need to specify at
least one different action for any of the options.

Sousing glStencilFunc and glStencilOp we can precisely specify when and how we
want to update the stencil buffer and we can also specify when the stencil test should pass or not
e.g. when fragments should be discarded.

Object outlining

It would be unlikely if you completely understood how stencil testing works from the previous
sections alone so we’re going to demonstrate a particular useful feature that can be implemented
with stencil testing alone called object outlining.

Object outlining does exactly what it says it does. For each object (or only one) we’re creating
a small colored border around the (combined) objects. This is a particular useful effect when you
want to select units in a strategy game for example and need to show the user which of the units
were selected. The routine for outlining your objects is as follows:
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1. Set the stencil func to GL_ALWAYS before drawing the (to be outlined) objects, updating the
stencil buffer with 1s wherever the objects’ fragments are rendered.

Render the objects.

Disable stencil writing and depth testing.

Scale each of the objects by a small amount.

Use a different fragment shader that outputs a single (border) color.

Draw the objects again, but only if their fragments’ stencil values are not equal to 1.

. Enable stencil writing and depth testing again.

Th1s process sets the content of the stencil buffer to 1s for each of the object’s fragments
and when we want to draw the borders, we basically draw scaled-up versions of the objects and
wherever the stencil test passes, the scaled-up version is drawn which is around the borders of the
object. We're basically discarding all the fragments of the scaled-up versions that are not part of
the original objects’ fragments using the stencil buffer.

N LA w0

So we’re first going to create a very basic fragment shader that outputs a border color. We
simply set a hardcoded color value and call the shader shaderSingleColor:

void main ()

outColor = vecd4(0.04, O.

We’re only going to add object outlining to the two containers so we’ll leave the floor out of it.
We thus want to first draw the floor, then the two containers (while writing to the stencil buffer)
and then we draw the scaled-up containers (while discarding the fragments that write over the
previously drawn container fragments).

We first want to enable stencil testing and set the actions to take whenever any of the tests
succeed or fail:

glEnable (GL_DEPTH_TEST) ;

glStencilOp (GL_KEEP, GL_KEEP, GL_REPLACE) ;

If any of the tests fail we do nothing, we simply keep the currently stored value that is in the
stencil buffer. If both the stencil test and the depth test succeed however, we want to replace the
stored stencil value with the reference value set via g1 StencilFunc which we later set to 1.

We clear the stencil buffer to 0s and for the containers we update the stencil buffer to 1 for
each fragment drawn:

glStencilFunc (GL_ALWAYS, 1, OxFF);

glStencilMask (OxFF) ;

normalShader.Use () ;
DrawTwoContainers () ;

By using the GL_ALWAYS stencil testing function we make sure that each of the containers’
fragments update the stencil buffer with a stencil value of 1. Because the fragments always pass
the stencil test, the stencil buffer is updated with the reference value wherever we’ve drawn them.
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Now that the stencil buffer is updated with 1s where the containers were drawn we’re going to

draw the upscaled containers, but this time disabling writes to the stencil buffer:

glStencilFunc (GL_NOTEQUAL, 1, OxFF);
glStencilMask (0x00) ;
glDisable (GL_DEPTH_TEST) ;

shaderSingleColor.Use () ;
DrawTwoScaledUpContainers () ;

We set the stencil function to GL_NOTEQUAL which makes sure that we’re only drawing parts
of the containers that are not equal to 1 thus only draw the part of the containers that are outside
the previously drawn containers. Note that we also disable depth testing so the scaled up containers

e.g. the borders do not get overwritten by the floor.
Also make sure to enable the depth buffer again once you’re done.

The total object outlining routine for our scene will then look something like this:

glEnable (GL_DEPTH_TEST) ;
glStencilOp (GL_KEEP, GL_KEEP, GL_REPLACE);

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER_BIT | GL_STENCIL_BUFFER_BIT) ;

glStencilMask (0x00) ;

normalShader.Use () ;
DrawFloor ()

glStencilFunc (GL_ALWAYS, 1, OxFF);

glStencilMask (0xFF) ;
DrawTwoContainers () ;

glStencilFunc (GL_NOTEQUAL, 1, OXFF);
glStencilMask (0x00) ;

glDisable (GL_DEPTH_TEST) ;
shaderSingleColor.Use () ;
DrawTwoScaledUpContainers () ;
glStencilMask (0xFF) ;

glEnable (GL_DEPTH_TEST) ;

As long as you understand the general idea behind stencil testing this fragment of code shouldn’t
be too hard to understand. Otherwise try to carefully read the previous sections again and try to
completely understand what each of the functions does now that you’ve seen an example of its

usage.

The result of this outlining algorithm, in the scene from the depth testing tutorial, then looks

like this:


http://www.learnopengl.com/#!Advanced-OpenGL/Depth-testing
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Check the source code here together with the shaders to see the complete code of the object
outlining algorithm.

You can see that the borders overlap between both containers which is usually the effect
that we want (think of strategy games where we want to select 10 units; merging borders
is usually what we want). If you want a complete border per object you’d have to clear
the stencil buffer per object and get a little creative with the depth buffer.

The object outlining algorithm you’ve seen is quite commonly used in several games to visualize
selected objects (think of strategy games) and such an algorithm can easily be implemented within
a model class. You could then simply set a boolean flag within the model class to draw with borders
or without. If you want to be creative you could even give the borders a more natural look with the
help of post-processing filters like Gaussian Blur.

Stencil testing has many more purposes, beside outlining objects, like drawing textures inside a
rear-view mirror so it neatly fits into the mirror shape or rendering real-time shadows with a stencil
buffer technique called shadow volumes. Stencil buffers provide us with yet another nice tool in
our already extensive OpenGL toolkit.


http://learnopengl.com/code_viewer.php?code=advanced/stencil_testing
http://learnopengl.com/code_viewer.php?code=advanced/depth_testing_func_shaders
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Blending in OpenGL is also commonly known as the technique to implement transparency within
objects. Transparency is all about objects (or parts of them) not having a solid color, but having a
combination of colors from the object itself and any other object behind it with varying intensity. A
colored glass window is a transparent object; the glass has a color of its own, but the resulting color
contains the colors of all the objects behind the glass as well. This is also where the name blending
comes from, since we blend several colors (of different objects) to a single color. Transparency
thus allows us to see through objects.

Full transparent window Partially transparent window

Transparent objects can be completely transparent (it lets all colors through) or partially trans-
parent (it lets colors through, but also shows some of its own colors). The amount of transparency
of an object is defined by its color’s alpha value. The alpha color value is the 4th component of a
color vector that you’ve probably seen quite often now. Until this tutorial, we’ve always kept this
4th component at a value of 1. 0 giving the object 0. O transparency, while an alpha value of 0. 0
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would result in the object having complete transparency. An alpha value of 0. 5 tells us the object’s
color consist of 50% of its own color and 50% of the colors behind the object.

The textures we’ve used so far all consisted of 3 color components: red, green and blue, but
some textures also have an embedded alpha channel that contains an alpha value per texel. This
alpha value tells us exactly which parts of the texture have transparency and by how much. For
example, the following window texture has an alpha value of 0.25 at its glass part (it would
normally be completely red, but since it has 75% transparency it largely shows the website’s
background through it, making it seem a lot less red) and an alpha value of 0. 0 at its corners:

We’ll soon be adding this windowed texture to the scene, but first we’ll discuss an easier
technique to implement transparency for textures that are either fully transparent or fully opaque.

Discarding fragments

Some images do not care about partial transparency, but either want to show something or nothing
at all based on the color value of a texture. Think of grass; to create something like grass with
little effort you generally paste a grass texture onto a 2D quad and place that quad into your scene.
However, grass isn’t exactly shaped like a 2D square so you only want to display some parts of the
grass texture and ignore the others.

The following texture is exactly such a texture where it either is full opaque (an alpha value of
1.0) or it is fully transparent (an alpha value of 0. 0) and nothing in between. You can see that
wherever there is no grass, the image shows the website’s background color instead of its own.


http://learnopengl.com/img/advanced/blending_transparent_window.png
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So when adding vegetation like grass to your scene we don’t want to see a square image of
grass, but rather only show the actual grass and be able to see through the rest of the image. We
want to discard the fragments that show the transparent parts of the texture, not storing the fragment
into the color buffer. Before we get into that we first need to learn how to load a transparent texture.

To load textures with alpha values we need to tell SOIL to load the RGBA components of the
image instead of the RGB components. Note that SOIL will still load most alpha-less textures just
fine, it simply stores an alpha value of 1.0 wherever one is omitted.

unsigned charx image = SOIL_load_image (path, &width, &height, 0,
SOIL_LOAD_RGBA) ;

Don’t forget to change the texture generation procedure as well:

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA,
GL_UNSIGNED_BYTE, image) ;

Also make sure that you retrieve all 4 color components of the texture in the fragment shader,
not just the RGB components:

void main ()

{

color = texture(texturel, TexCoords);
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Now that we know how to load transparent textures it’s time to put it to the test by adding
several of these leaves of grass throughout the basic scene introduced in the depth testing tutorial.

We create a small vector where we add several glm: : vec3 variables to represent the location
of the grass leaves:

vector<glm: :vec3> vegetation;
vegetation.push_back (glm: :vec

vegetation.push_back (glm: :vec
vegetation.push_back (glm::
vegetation.push_back (glm::
vegetation.push_back (glm: :

w w w w w

Each of the grass objects is rendered as a single quad with the grass texture attached to it. It’s
not a perfect 3D representation of grass, but it’s a lot more efficient than actually loading complex
models. With a few tricks, like adding several more rotated grass quads at the same position, you
can still get good results.

Because the grass texture is added to a quad object we’ll need to create another VAO again, fill
the VBO and set the appropriate vertex attribute pointers. Then after we’ve drawn the floor and the
two cubes we’re going to draw the grass leaves:

glBindVertexArray (vegetationVAO) ;
glBindTexture (GL_TEXTURE_2D, grassTexture);
for (GLuint i = 0; 1 < vegetation.size(); i++)
{

model = glm::mat4 () ;

model = glm::translate (model, vegetation[i]);
glUniformMatrix4fv (modelLoc, 1, GL_FALSE, glm::value_ptr (model));
glDrawArrays (GL_TRIANGLES, 0, 6);

}
glBindVertexArray (0) ;

Running your application will now probably look a bit like this:


http://learnopengl.com/#!Advanced-OpenGL/Depth-testing
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This happens because OpenGL by default does not know what to do with alpha values, nor
when to discard them. We have to manually do this ourselves. Luckily this is quite easy thanks to
the use of shaders. GLSL gives us the di scard command that (once called) ensures the fragment
will not be further processed and thus not end up into the color buffer. Thanks to this command we
can check in the fragment shader whether a fragment shader gets an alpha value below a certain
threshold and if so, discard the fragment as if it had never been processed:

#version 330 core
in vec2 TexCoords;
out vec4 color;

uniform sampler2D texturel;

id main ()

vecd texColor = texture (texturel, TexCoords);
if (texColor.a < 0.1)

discard;
color = texColor;

Here we check if the sampled texture color contains an alpha value lower than a threshold of
0.1 and if so, discard the fragment. This fragment shader ensures us that it only renders fragments
that are not (almost) completely transparent. Now it’ll look like it should:
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Note that when sampling textures at their borders, OpenGL interpolates the border values
with the next repeated value of the texture (because we set its wrapping parameters to
GL_REPEAT). This is usually okay, but since we’re using transparent values, the top of
the texture image gets its transparent value interpolated with the bottom border’s solid
color value. The result is then a slightly semi-transparent colored border you might see
wrapped around your textured quad. To prevent this, set the texture wrapping method to
GL_CLAMP_ TO_EDGE whenever you use alpha textures:

glTexParameteri ( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) ;

glTexParameteri ( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) ;

You can find the source code here.

24.2 Blending

While discarding fragments is great and all, it doesn’t give us the flexibility to render semi-
transparent images; we either render the fragment or completely discard it. To render images with
different levels of transparency we have to enable blending. Like most of OpenGL’s functionality
we can enable blending by enabling GL_BLEND:

glEnable (GL_BLEND) ;

Now that we’ve enabled blending we need to tell OpenGL how it should actually blend.

Blending in OpenGL is done with the following equation:


http://learnopengl.com/code_viewer.php?code=advanced/blending_discard
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C_result = C_sourcex F_source +C destination*F_destination 24.1)

e (_source: the source color vector. This is the color vector that originates from the texture.

o C_destination: the destination color vector. This is the color vector that is currently stored

in the color buffer.

e /7 _source: the source factor value. Sets the impact of the alpha value on the source color.

e F_destination: the destination factor value. Sets the impact of the alpha value on the

destination color.

After the fragment shader has run and all the tests have passed, this blend equation is let loose
on the fragment’s color output and with whatever is currently in the color buffer (previous fragment
color stored before the current fragment). The source and destination colors will automatically be
set by OpenGL, but the source and destination factor can be set to a value of our choosing. Let’s
start with a simple example:

(1.0, 0.0, 0.0, 1.0) (0.0, 1.0, 0.0, 0.6)

We have two squares where we want to draw the semi-transparent green square on top of the
red square. The red square will be the destination color (and thus should be first in the color buffer)
and we are now going to draw the green square over the red square.

The question then arises: what do we set the factor values to? Well, we at least want to multiply
the green square with its alpha value so we want to set the F_src equal to the alpha value of
the source color vector which is 0. 6. Then it makes sense to let the destination square have a
contribution equal to the remainder of the alpha value. If the green square contributes 60% to the
final color we want the red square to contribute 40% of the final colore.g. 1.0 — 0.6. So we set
the F_destination equal to one minus the alpha value of the source color vector. The equation thus
becomes:

0.0 1.0

= 1.0 0.0

C_result = 00| * 0.6+ 00| (1-0.6) (24.2)
0.6 1.0

The result is that the combined square fragments contain a color that is 60% green and 40% red
giving a dirty color:
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(0.4, 0.6, 0.0, 0.76)

The resulting color is then stored in the color buffer, replacing the previous color.

So this is great and all, but how do we actually tell OpenGL to use factors like these? Well it
just so happens that there is a function for this called g1BlendFunc.

The glBlendFunc (GLenum sfactor, GLenum dfactor) function expects two pa-
rameters that set the option for the source and destination factor. OpenGL defined quite a few
options for us to set of which we’ll list the most common options below. Note that the constant
color vector C_constant can be separately set via the g1BlendColor function.

Option Value
GL_ZERO Factor is equal to 0.
GL_ONE Factor is equal to 1.
GL_SRC_COLOR Factor is equal to the source color vector C_source.
Factor is equal to 1 minus the source color vector:
GL_ONE_MINUS_SRC_COLOR -
1 —C _source.
Factor is equal to the destination color vector
GL_DST_COLOR

C_destination
Factor is equal to 1 minus the destination color vector:
1 —C _destination.
Factor is equal to the al pha component of the source
GL_SRC_ALPHA —
color vector C_source.

Factor is equal to 1 — al pha of the source color vector

GL_ONE_MINUS_SRC_ALPHA -

GL_ONE_MINUS_DST_COLOR

C_source.
Factor is equal to the al pha component of the
GL_DST_ALPHA o = . .
destination color vector C_destination.
Factor is equal to 1 — al pha of the destination color
GL_ONE_MINUS_DST_ALPHA = L
vector C_destination.
GL_CONSTANT_COLOR Factor is equal to the constant color vector C_constant.
Factor is equal to 1 - the constant color vector
GL_ONE_MINUS_CONSTANT_COLOR =~
C_constant.
Factor is equal to the al pha component of the constant
GL_CONSTANT_ALPHA

color vector C_constant.

Factor is equal to 1 — alpha of the constant color vector
GL_ONE_MINUS_CONSTANT_ALPHA =
C_constant.

To get the blending result we had from the two squares earlier, we want to take the al pha of the
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source color vector for the source factor and 1 — alpha for the destination factor. This translates to
the glBlendFunc as follows:

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

It is also possible to set different options for the RGB and alpha channel individually using
glBlendFuncSeperate:

glBlendFuncSeperate (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ZERO) ; ‘

This function sets the RGB components as we’ve set them previously, but only lets the resulting
alpha component be influenced by the source’s alpha value.

OpenGL gives us even more flexibility by allowing us to change the operator between the
source and destination part of the equation. Right now, the source and destination components
are added together, but we could also subtract them if we want. g1BlendEquation (GLenum
mode) allows us to set this operation and has 3 possible options:

e GL_FUNC_ADD: the default, adds both components to each other: C_result = Src -+ Dst.
e GI_FUNC_SUBTRACT: subtracts both components from each other: C result = Src — Dst.
e GL_FUNC_REVERSE_SUBTRACT: subtracts both components, but reverses order: C_result =
Dst — Src.
Usually we can simply omit a call to glBlendEquation because GL_FUNC_ADD is the
preferred blending equation for most operations, but if you’re really trying your best to break the
mainstream circuit any of the other equations might suit your needs.

24.3 Rendering semi-transparent textures

Now that we know how OpenGL works with regards to blending it’s time to put our knowledge
to the test by adding several semi-transparent windows. We’ll be using the same scene as in the
start of this tutorial, but instead of rendering a grass texture we’re now going to use the transparent
window texture from the start of this tutorial.

First, during initialization we enable blending and set the appropriate blending function:

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

Since we enabled blending there is no need to discard fragments so we’ll reset the fragment
shader to its original version:

#version 330 core
in vec2 TexCoords;

out vecd color;

uniform sampler2D texturel;

void main ()

{



http://learnopengl.com/img/advanced/blending_transparent_window.png
http://learnopengl.com/img/advanced/blending_transparent_window.png
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color = texture(texturel, TexCoords);

This time (whenever OpenGL renders a fragment) it combines the current fragment’s color
with the fragment color currently in the color buffer based on its alpha value. Since the glass part
of the window texture is semi-transparent we should be able to see the rest of the scene by looking
through this window.

e
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If you take a closer look however, you might notice something is off. The transparent parts of
the front window are occluding the windows in the background. Why is this happening?

The reason for this is that depth testing works a bit tricky combined with blending. When
writing to the depth buffer, the depth test does not care if the fragment has transparency or not
so the transparent parts are written to the depth buffer as any other value. The result is that the
entire quad of the window is checked for depth testing regardless of transparency. Even though the
transparent part should show the windows behind it, the depth test discards them.

So we cannot simply render the windows however we want and expect the depth buffer to solve
all our issues for us; this is also where blending gets a little nasty. To make sure the windows show
the windows behind them, we have to draw the windows in the background first. This means we
have to manually sort the windows from furthest to nearest and draw them accordingly ourselves.

Note that with fully transparent objects like the grass leaves we have the option to simply
discard the transparent fragments instead of blending them, saving us a few of these
headaches (no depth issues).
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24.4 Don’t break the order

To make blending work for multiple objects we have to draw the farthest object first and the closest
object as last. The normal non-blended objects can still be drawn as normal using the depth buffer
so they don’t have to be sorted. We do have to make sure those are drawn first before drawing the
(sorted) transparent objects. When drawing a scene with non-transparent and transparent objects
the general outline is usually as follows:

1. Draw all opaque objects first.
2. Sort all the transparent objects.
3. Draw all the transparent objects in sorted order.

One way of sorting the transparent objects is to retrieve the distance of an object from the
viewer’s perspective. This can be achieved by taking the distance between the camera’s position
vector and the object’s position vector. We then store this distance together with the corresponding
position vector in a map data structure from the STL library. A map automatically sorts its
values based on its keys, so once we’ve added all positions with their distance as the key they’re
automatically sorted on their distance value:

std::map<float, glm::vec3> sorted;
for (GLuint i = 0; 1 < windows.size(); i++)

GLfloat distance = glm::length (camera.Position - windows[i]);
sorted[distance] windows [1];

The result is a sorted container object that stores each of the window positions based on their
distance key value from lowest to highest distance.

Then, this time when rendering, we take each of the map’s values in reverse order (from farthest
to nearest) and then draw the corresponding windows in correct order:

for (std: :map<float,glm::vec3>::reverse_iterator it = sorted.rbegin(); it !=
sorted.rend(); ++it)

{
model = glm::mat4();

model = glm::translate (model, it->second);
glUniformMatrix4fv (modelLoc, 1, GL_FALSE, glm::value_ptr (model));
glDrawArrays (GL_TRIANGLES, 0, 6);

We take a reverse iterator from the map to iterate through each of the items in reverse order
and then translate each window quad to the corresponding window position. This relatively simple
approach to sorting transparent objects fixes the previous problem and now the scene looks like
this:
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You can find the complete source code with sorting here.

While this approach of sorting the objects by their distance works well for this specific scenario,
it doesn’t take rotations, scaling or any other transformation into account and weirdly shaped objects
need a different metric than simply a position vector.

Sorting objects in your scene is a difficult feat that depends greatly on the type of scene you
have, let alone the extra processing power it costs. Completely rendering a scene with solid and
transparent objects isn’t all that easy. There are more advanced techniques like order independent
transparency but these are out of the scope of this tutorial. For now you’ll have to live with normally
blending your objects, but if you’re careful and know the limitations you can still get fairly decent
blending implementations.


http://learnopengl.com/code_viewer.php?code=advanced/blending_sorted
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Try mentally visualizing a 3D cube and count the maximum number of faces you’ll be able to see
from any direction. If your imagination is not too creative you probably ended up with a maximum
number of 3. You can view a cube from any position and/or direction, but you would never be able
to see more than 3 faces. So why would we waste the effort of actually drawing those other 3 faces
that we can’t even see. If we could discard those in some way we would save more than 50% of
fragment shader runs!

We say more than 50% instead of 50%, because from certain angles only 2 or even 1
face could be visible. In that case we’d save more than 50%.

This is a really great idea, but there’s one problem we need to solve: how do we know if a face
of an object is not visible from the viewer’s point of view? If we imagine any closed shape, each of
its faces has two sides. Each side would either face the user or show its back to the user. What if
we could only render the faces that are facing the viewer?

This is exactly what face culling does. OpenGL checks all the faces that are front facing towards
the viewer and renders those while discarding all the faces that are back facing saving us a lot of
fragment shader calls (those are expensive!). We do need to tell OpenGL which of the faces we use
are actually the front faces and which faces are the back faces. OpenGL uses a clever trick for this
by analyzing the winding order of the vertex data.

Winding order

When we define a set of triangle vertices we’re defining them in a certain winding order that is
either clockwise or counter-clockwise. Each triangle consists of 3 vertices and we specify those 3
vertices in a winding order as seen from the center of the triangle.
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Clockwise Counter-clockwise
1-22->3 1=3->2

As you can see in the image we first define the vertex 1 and then we can either define vertex 2
or 3 and this choice defines the winding order of this triangle. The following code illustrates this:
GLfloat vertices]|]
vertices[0],
vertices|[1l],

vertices|[2],

vertices|[0],

vertices|[2],
vertices[1]

Each set of 3 vertices that form a triangle primitive thus contain a winding order. OpenGL uses
this information when rendering your primitives to determine if a triangle is a front-facing or a
back-facing triangle. By default, triangles defined with counter-clockwise vertices are processed as
front-facing triangles.

When defining your vertex order you visualize the corresponding triangle as if it was facing
you, so each triangle that you’re specifying should be counter-clockwise as if you’re directly facing
that triangle. The cool thing about specifying all your vertices like this is that the actual winding
order is calculated at the rasterization stage, so when the vertex shader has already run. The vertices
are then seen as from the viewer’s point of view.

All the triangle vertices that the viewer is then facing are indeed in the correct winding order as
we specified them, but the vertices of the triangles at the other side of the cube are now rendered in
such a way that their winding order becomes reversed. The result is that the triangles we’re facing
are seen as front-facing triangles and the triangles at the back are seen as back-facing triangles. The
following image shows this effect:
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In the vertex data we would’ve defined both triangles in counter-clockwise order (the front
triangle as 1, 2, 3 and the back triangle as 1, 2 and 3 as well (if we’d see the triangle from the
front)). However, from the viewer’s direction the back triangle is rendered clockwise if we draw it
in the order of 1, 2 and 3 from the viewer’s current point of view. Even though we specified the
back triangle in counter-clockwise order, it is now rendered in a clockwise order. This is exactly
what we want to cull (discard) non-visible faces!

Face culling

At the start of the tutorial we said that OpenGL is able to discard triangle primitives if they’re
rendered as back-facing triangles. Now that we know how to set the winding order of the vertices
we can start using OpenGL’s face culling option which is disabled by default.

The cube vertex data we used in the last tutorials wasn’t defined with the counter-clockwise
winding order in mind, so I updated the vertex data to reflect a counter-clockwise winding order
which you can copy from here. It’s a good practice to try and visualize that these vertices are indeed
all defined in a counter-clockwise order for each triangle.

To enable face culling we only have to enable OpenGL’s GL_CULL_FACE option:

glEnable (GL_CULL_FACE) ;

From this point on, all the faces that are not front-faces are discarded (try flying inside the cube
to see that all inner faces are indeed discarded). Currently we save over 50% of performance on
rendering fragments, but do note that this only works with closed shapes like a cube. We’ll have to
disable face culling again when we draw the grass leaves from the previous tutorial for example,
since their front and back face should be visible.

OpenGL allows us to change the type of face we want to cull as well. What if we want to cull
front faces and not the back faces? We can define this behavior by calling g1CullFace:

glCullFace (GL_BACK) ;



http://learnopengl.com/code_viewer.php?code=advanced/faceculling_vertexdata
http://www.learnopengl.com/#!Advanced-OpenGL/Blending
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The g1CullFace function has three possible options:

e GL_BACK: Culls only the back faces.

e GI_FRONT: Culls only the front faces.

e GL_FRONT_AND_BACK: Culls both the front and back faces.

The initial value of g1CullFace is GL_BACK. Aside from the faces to cull we can also tell
OpenGL we’d rather prefer clockwise faces as the front-faces instead of counter-clockwise faces
via glFrontFace:

glFrontFace (GL_CCW) ;

The default value is GL_CCW that stands for counter-clockwise ordering with the other option
being GL_CW which (obviously) stands for clockwise ordering.

As a simple test we could reverse the winding order by telling OpenGL that the front-faces are
now determined by a clockwise ordering instead of a counter-clockwise ordering:

glEnable (GL_CULL_FACE) ;
glCullFace (GL_BACK) ;

glFrontFace (GL_CW) ;

The result is that only the back faces are rendered:

o LeamOpenGL - oI EN

Note that you can create the same effect by culling front faces with the default counter-clockwise
winding order:
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glEnable (GL_CULL_FACE) ;

glCullFace (GL_FRONT) ;

As you can see, face culling is a great tool for increasing performance of your OpenGL
applications with minimal effort. You do have to keep track of which objects will actually benefit
from face culling and which objects shouldn’t be culled.

25.3 Exercises

e Can you re-define the vertex data by specifying each triangle in clockwise order and then
render the scene with clockwise triangles set as the front faces: solution


http://learnopengl.com/code_viewer.php?code=advanced/faceculling-exercise1

26.1

So far we’ve used several types of screen buffers: a color buffer for writing color values, a depth
buffer to write depth information and finally a stencil buffer that allows us to discard certain
fragments based on some condition. The combination of these buffers is called a framebuffer and is
stored somewhere in memory. OpenGL gives us the flexibility to define our own framebuffers and
thus define our own color and optionally a depth and stencil buffer.

The rendering operations we’ve done so far were all done on top of the render buffers attached
to the default framebuffer. The default framebuffer is created and configured when you create your
window (GLFW does this for us). By creating our own framebuffer we can get an additional means
to render to.

The application of framebuffers might not immediately make sense, but rendering your scene
to a different framebuffer allows us to create mirrors in a scene or do cool post-processing effects
for example. First we’ll discuss how they actually work and then we’ll use them by implementing
those cool post-processing effects.

Creating a framebuffer

Just like any other object in OpenGL we can create a framebuffer object (abbreviated to FBO) by
using a function called g1GenFramebuffers:

GLuint fbo;

glGenFramebuffers(l, &fbo);

This pattern of object creation and usage is something we’ve seen dozens of times now so
their usage functions are similar to all the other object’s we’ve seen; first we create a framebuffer
object, bind it as the active framebuffer, do some operations and unbind the framebuffer. To bind
the framebuffer we use g1BindFramebuffer:
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glBindFramebuffer (GL_FRAMEBUFFER, fbo);

By binding to the GL,_FRAMEBUFFER target all the next read and write framebuffer operations
will affect the currently bound framebuffer. It is also possible to bind a framebuffer to a read or
write target specifically by binding to GI,_READ_FRAMEBUFFER or GL_DRAW_FRAMEBUFFER
respectively. The framebuffer bound to GL_READ_FRAMEBUFFER is then used for all read
operations like g1ReadPixels and the framebuffer bound to GL_DRAW_FRAMEBUFFER is
used as the destination for rendering, clearing and other write operations. Most of the times you
won’t need to make this distinction though and you generally bind to both with GI,_ FRAMEBUFFER.

Unfortunately, we can’t use our framebuffer yet because it is not complete. For a framebuffer
to be complete the following requirements have to be satisfied:

We have to attach at least one buffer (color, depth or stencil buffer).

There should be at least one color attachment.

All attachments should be complete as well (reserved memory).

Each buffer should have the same number of samples.

Don’t worry if you don’t know what samples are, we’ll get to those in a later tutorial.

From the requirements it should be clear that we need to create some kind of attachment
for the framebuffer and attach this attachment to the framebuffer. After we’ve completed all
requirements we can check if we actually successfully completed the framebuffer by calling
glCheckFramebufferStatus with GL_FRAMEBUFFER. It then checks the currently bound
framebuffer and returns any of these values found in the specification. If it returns GI,_FRAMEBUFFER_COMPLETE
we’re good to go:

if (glCheckFramebufferStatus (GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE)

All subsequent rendering operations will now render to the attachments of the currently bound
framebuffer. Since our framebuffer is not the default framebuffer, the rendering commands will
have no impact on the visual output of your window. For this reason it is called off-screen rendering
while rendering to a different framebuffer. To make sure all rendering operations will have a visual
impact on the main window we need to make the default framebuffer active again by binding to 0:

glBindFramebuffer (GL_FRAMEBUFFER, O0);

When we’re done with all framebuffer operations, do not forget to delete the framebuffer object:

glDeleteFramebuffers(l, &fbo);

Now before the completeness check is executed we need to attach one or more attachments to
the framebuffer. An attachment is a memory location that can act as a buffer for the framebuffer,
think of it as an image. When creating an attachment we have two options to take: textures or
renderbuffer objects.


http://www.learnopengl.com/#!Advanced-OpenGL/Anti-Aliasing
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26.1.1 Texture attachments

When attaching a texture to a framebuffer, all rendering commands will write to the texture as if it
was a normal color/depth or stencil buffer. The advantage of using textures is that the result of all
rendering operations will be stored as a texture image that we can then easily use in our shaders.

Creating a texture for a framebuffer is roughly the same as a normal texture:

GLuint texture;
glGenTextures (1, &texture);
glBindTexture (GL_TEXTURE_2D, texture);

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, 800, 600, 0, GL_RGB,
GL_UNSIGNED_BYTE, NULL);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

The main differences here is that we set the dimensions equal to the screen size (although this
is not required) and we pass NULL as the texture’s data parameter. For this texture, we’re only
allocating memory and not actually filling it. Filling the texture will happen as soon as we render to
the framebuffer. Also note that we do not care about any of the wrapping methods or mipmapping
since we won’t be needing those in most cases.

If you want to render your whole screen to a texture of a smaller or larger size you
need to call glViewport again (before rendering to your framebuffer) with the new
dimensions of your texture, otherwise only a small part of the texture or screen would be
drawn onto the texture.

Now that we’ve created a texture the last thing we need to do is actually attach it to the
framebuffer:

glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D,

texture, 0);

The glFrameBufferTexture2D has the following parameters:

e target: the framebuffer type we’re targeting (draw, read or both).

e attachment: the type of attachment we’re going to attach. Right now we’re attaching
a color attachment. Note that the 0 at the end suggests we can attach more than 1 color
attachment. We’ll get to that in a later tutorial.

e textarget: the type of the texture you want to attach.

e texture: the actual texture to attach.

e level: the mipmap level. We keep this at 0.

Aside from the color attachments we can also attach a depth and a stencil texture to the frame-
buffer object. To attach a depth attachment we specify the attachment type as GL_ DEPTH_ATTACHMENT.
Note that the texture’s format and internalformat type should then become GL_DEPTH_COMPONENT
to reflect the depth buffer’s storage format. To attach a stencil buffer youuse GL_STENCIL_ATTACHMENT
as the second argument and specify the texture’s formats as GL_STENCIL_INDEX.

It is also possible to attach both a depth buffer and a stencil buffer as a single texture. Each 32 bit
value of the texture then consists for 24 bits of depth information and 8 bits of stencil information. To



26.1.2

26.1 Creating a framebuffer 243

attach a depth and stencil buffer as one texture we use the GI,_DEPTH_STENCIL_ATTACHMENT
type and configure the texture’s formats to contain combined depth and stencil values. An example
of attaching a depth and stencil buffer as one texture to the framebuffer is given below:

glTexImage2D (

GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, 800,
GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL
)i

glFramebufferTexture2D (GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
GL_TEXTURE_2D, texture, 0);

Renderbuffer object attachments

Renderbuffer objects were introduced to OpenGL after textures as a possible type of framebuffer
attachments, so textures were the only attachments used in the good old days. Just like a texture
image, a renderbuffer object is an actual buffer e.g. an array of bytes, integers, pixels or whatever.
A renderbuffer object has the added advantage though that it stores its data in OpenGL’s native
rendering format making it optimized for off-screen rendering to a framebuffer.

Renderbuffer objects store all the render data directly into their buffer without any conversions
to texture-specific formats, thus making them faster as a writeable storage medium. However,
renderbuffer objects are generally write-only, thus you cannot read from them (like with texture-
access). It is possible to read from them via g1ReadPixels though that returns a specified area
of pixels from the currently bound framebuffer, but not directly from the attachment itself.

Because their data is already in its native format they are quite fast when writing data or simply
copying their data to other buffers. Operations like switching buffers are thus quite fast when
using renderbuffer objects. The gl fwSwapBuffers function we’ve been using at the end of
each render iteration might as well be implemented with renderbuffer objects: we simply write to a
renderbuffer image, and swap to the other one at the end. Renderbuffer objects are perfect for these
kind of operations.

Creating a renderbuffer object looks similar to the framebuffer’s code:

GLuint rbo;
glGenRenderbuffers(l, &rbo);

And similarly we want to bind the renderbuffer object so all subsequent renderbuffer operations
affect the current rbo:

glBindRenderbuffer (GL_RENDERBUFFER, rbo);

Since renderbuffer objects are generally write-only they are often used as depth and stencil
attachments, since most of the time we don’t really need to read values from the depth and stencil
buffers but still care about depth and stencil testing. We need the depth and stencil values for
testing, but don’t need to sample these values so a renderbuffer object suits this perfectly. When
we’re not sampling from these buffers, a renderbuffer object is generally preferred since it’s more
optimized.
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Creating a depth and stencil renderbuffer object is done by calling the g1RenderbufferStorage
function:

glRenderbufferStorage (GL_RENDERBUFFER, GL_DEPTH24_ STENCIL8, 800, 600);

Creating a renderbuffer object is similar to texture objects, the difference being that this object
is specifically designed to be used as an image, instead of a general purpose data buffer like a
texture. Here we’ve chosen the GI._ DEPTH24_STENCILS as the internal format, which holds
both the depth and stencil buffer with 24 and 8 bits respectively.

Last thing left to do is actually attach the renderbuffer object:

glFramebufferRenderbuffer (GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,

GL_RENDERBUFFER, rbo);

Renderbuffer objects could provide some optimizations in your framebuffer projects, but it is
important to realize when to use renderbuffer objects and when to use textures. The general rule is
that if you never need to sample data from a specific buffer, it is wise to use a renderbuffer object
for that specific buffer. If you need to someday sample data from a specific buffer like colors or
depth values, you should use a texture attachment instead. Performance-wise it doesn’t have an
enormous impact though.

26.2 Rendering to a texture

Now that we know how framebuffers (sort of) work it’s time to put them to good use. We’re going
to render the scene into a color texture attached to a framebuffer object we created and then draw
this texture over a simple quad that spans the whole screen. The visual output is then exactly the
same as without a framebuffer, but this time it’s all printed on top of a single quad. Now why is this
useful? In the next section we’ll see why.

First thing to do is to create an actual framebuffer object and bind it, this is all relatively
straightforward:

GLuint framebuffer;
glGenFramebuffers (1, &framebuffer);

glBindFramebuffer (GL_FRAMEBUFFER, framebuffer);

Next we create a texture image that we attach as a color attachment to the framebuffer. We set
the texture’s dimensions equal to the width and height of the window and keep its data uninitialized:

GLuint texColorBuffer;
glGenTextures (1, &texColorBuffer);
glBindTexture (GL_TEXTURE_2D, texColorBuffer);

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, 800, 600, 0, GL_RGB,
GL_UNSIGNED_BYTE, NULL);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glBindTexture (GL_TEXTURE_2D, O0);
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glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_TEXTURE_2D,
texColorBuffer, 0);

We also want to make sure OpenGL is able to do depth testing (and optionally stencil testing if
you’re into that) so we have to make sure to add a depth (and stencil) attachment to the framebuffer
as well. Since we’ll only be sampling the color buffer and not the other buffers we can create a
renderbuffer object for this purpose. Remember that they’re a good choice when you’re not going
to sample from the specific buffer(s)?

Creating a renderbuffer object isn’t too hard. The only thing we have to remember is that we’re
creating it as a depth and stencil attachment renderbuffer object. We set its internal format to
GL_DEPTH24_STENCILS which is enough precision for our purposes.

GLuint rbo;
glGenRenderbuffers(l, &rbo);
glBindRenderbuffer (GL_RENDERBUFFER, rbo);

glRenderbufferStorage (GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, 800, 600);
glBindRenderbuffer (GL_RENDERBUFFER, O0);

Once we’ve allocated enough memory for the renderbuffer object we can unbind the render-
buffer.

Then, as a final step before we can complete the framebuffer, we attach the renderbuffer object
to the depth and stencil attachment of the framebuffer:

glFramebufferRenderbuffer (GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, rbo);

Then as a final measure we want to check if the framebuffer is actually complete and if it’s not,
we print an error message.

if (glCheckFramebufferStatus (GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
cout << << endl;

glBindFramebuffer (GL_FRAMEBUFFER, O0);

Then also be sure to unbind the framebuffer to make sure we’re not accidentally rendering to
the wrong framebuffer.

Now that the framebuffer is complete all we need to do to render to the framebuffer’s buffers
instead of the default framebuffers is simply bind to the framebuffer object. All subsequent
rendering commands will then influence the currently bound framebuffer. All the depth and stencil
operations will also read from the currently bound framebuffer’s depth and stencil attachments if
they’re available. If you were to omit a depth buffer for example, all depth testing operations will
no longer work, because there’s not a depth buffer present in the currently bound framebuffer.

So, to draw the scene to a single texture we’ll have to take the following steps:

1. Render the scene as usual with the new framebuffer bound as the active framebuffer.
2. Bind to the default framebuffer.
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3. Draw a quad that spans the entire screen with the new framebuffer’s color buffer as its texture.
We’ll draw the same scene we’ve used in the depth testing tutorial, but this time with the
old-school container texture.

To draw the quad we’re going to create a fresh set of simple shaders. We’re not going to include
any fancy matrix transformations since we’ll just be supplying the vertex coordinates as normalized
device coordinates so we can directly specify them as the output of the vertex shader. The vertex
shader looks like this:

#version 330 core
layout (location = in vec2 position;
layout (location in vec2 texCoords;

out vec2 TexCoords;
d main ()

gl_Position = vecd (position.x, position.y, 0.0f, 1.0f);
TexCoords = texCoords;

Nothing too fancy. The fragment shader will be even more basic since the only thing we have
to do is sample from a texture:

#fversion 330 core
in vec2 TexCoords;
out vecd color;

uniform sampler2D screenTexture;
void main ()

{

color = texture(screenTexture, TexCoords);

It is then up to you to create and configure a VAO for the screen quad. A render iteration of the
framebuffer procedure then has the following structure:

glBindFramebuffer (GL_FRAMEBUFFER, framebuffer);
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glEnable (GL_DEPTH_TEST) ;
DrawScene () ;

glBindFramebuffer (GL_FRAMEBUFFER, O0);
glClearColor(1.0£f, 1.0£f, 1.0f, 1.0f);
glClear (GL_COLOR_BUFFER_BIT) ;

screenShader.Use () ;

glBindVertexArray (quadVAO) ;

glDisable (GL_DEPTH_TEST) ;

glBindTexture (GL_TEXTURE_2D, textureColorbuffer);
glDrawArrays (GL_TRIANGLES, 0, 6);
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glBindVertexArray (0) ;

There are a few things to note. First, since each framebuffer we’re using has its own set of
buffers, we want to clear each of those buffers with the appropriate bits set by calling g1Clear.
Second, when drawing the quad, we’re disabling depth testing since we don’t really care about
depth testing because we’re drawing a simple quad; we’ll have to enable depth testing again when
we draw the normal scene though.

There are quite some steps that could go wrong here, so if you have no output, try to debug where
possible and re-read the relevant sections of the tutorial. If everything did work out successfully
you’ll get a visual result that looks like this:

The left shows the visual output which is exactly the same as we’ve seen in the depth testing
tutorial, but this time, rendered to a simple quad. If we render the scene in wireframe it becomes
obvious we’ve only drawn a single quad in the default framebuffer.

You can find the source code of the application here.

So what was the use of this again? Because we can now freely access each of the pixels of the
completely rendered scene as a single texture image, we can create some interesting effects in the
fragment shader. The combination of all these interesting effects are called post-processing effects.

Post-processing

Now that the entire scene is rendered to a single texture we can create some interesting effects
simply by manipulating the texture data. In this section we’ll show you some of the more popular
post-processing effects and how you might create your own with some added creativity.

Let’s start with one of the simplest post-processing effects.

Inversion

We have access to each of the colors of the render output so it’s not so hard to return the inverse of
these colors in the fragment shader. We’re taking the color of the screen texture and inverse it by
subtracting it from 1. 0:
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d main ()

color = vecd (vec3 (1.0 - texture(screenTexture, TexCoords)),

The entire scene now has all its colors inversed with a single line of code in the fragment shader.
Pretty cool huh?

26.3.2 Grayscale

Another interesting effect is to remove all colors from the scene except the white, gray and black
colors effectively grayscaling the entire image. An easy way to do this is simply by taking all the
color components and averaging their results:

voild main ()

color = texture(screenTexture, TexCoords);

float average = (color.r + color.g + color.b) / 3.0;
color = vec4 (average, average, average, 1.0);

This already creates pretty good results, but the human eye tends to be more sensitive to green
colors and the least to blue, so to get the most physically accurate results we’ll need to use weighted
channels:
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void main ()

{

color = texture ( nTexture, TexCoords);
float average = 0.2126 x color.r + 0.7152 x color.g + 0.0722 x color.b;

color average, average, 1.0);

You probably won’t notice the difference right away, but with more complicated scenes, such a
weighted grayscaling effect tends to be more realistic.

26.4 Kernel effects

Another advantage about doing post-processing on a single texture image is that we can actually
sample color values from other parts of the texture. We could for example take a small area around
the current texture coordinate and sample multiple texture values around the current texture value.
We can then create interesting effects by combining them in creative ways.

A kernel (or convolution matrix) is a small matrix-like array of values centered on the current
pixel that multiplies surrounding pixel values by its kernel values and adds them all together to form
a single value. So basically we’re adding a small offset to the texture coordinates in surrounding
directions of the current pixel and combine the results based on the kernel. An example of a kernel
is given below:
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2 2 2
2 —15 2
2 2 2

This kernel takes 8 surrounding pixel values and multiplies them by 2 and the current pixel by
—15. This example kernel basically multiplies the surrounding pixels by a weight determined in the
kernel and balances the result by multiplying the current pixel by a large negative weight.

Most kernels you’ll find over the internet all sum up to 1 if you add all the weights
together. If they don’t add up to 1 it means that the resulting texture color ends brighter
or darker than the original texture value.

Kernels are an extremely useful tool for post-processing since they’re quite easy to use, experi-
ment with and a lot of examples can be found online. We do have to slightly adapt the fragment
shader a bit to actually support kernels. We make the assumption that each kernel we’ll be using is
a 3x3 kernel (which most kernels are):

nst float offset = 1.0 / 300;
d main ()

vec?2 offsets[9] = vec2[] (
vec2 (—offset, offset),
vec2 (0.0f, offset),
offset, offset),
-offset, 0.0f),
vec2 (0.0f, 0.0f),

(

vec?2 (

(

(
vec2 (offset, 0.0f),

(

(

(

vec?2

vec2 (—offset, —-offset),
0.0f, -offset),

offset, —-offset)

vec?2
vec2

1t kernel[9] = float[] (
-1, -1, -1,
71’

vec3 sampleTex[9];
for(int i = 0; 1 < 9; i++)

{

sampleTex[i] = vec3 (texture (screenTexture, TexCoords.st + offsets[i
1))
}
vec3 col;
for(int i = 0; 1 < 9; i++)
col += sampleTex[i] * kernel[i];

color = vecd (col, 1.0);

In the fragment shader we first create an array of 9 vec?2 offsets for each surrounding texture
coordinate. The offset is simply a constant value that you could customize to your liking. Then



26.4 Kernel effects 251

we define the kernel, which in this case is a sharpen kernel that sharpens each color value by
sampling all surrounding pixels in an interesting way. Lastly, we add each offset to the current
texture coordinate when sampling and then multiply these texture values with the weighted kernel
values that we add together.

This particular sharpen kernel looks like this:

This could create some interesting effects of where your player might be on a narcotic adventure.

26.4.1 Blur

A kernel that creates a blur effect is defined as follows:

1
2
1
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1
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1

Because all values add up to 16, simply returning the combined sampled colors would result in
an extremely bright color so we have to divide each value of the kernel by 1 6. The resulting kernel
array would then become:

float kernel[9]
1.0 / 16, 2.
4.

2.0 / 16,
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2.0 / 16, 1.0 / 16

By changing the kernel f1oat array in the fragment shader we’re completely changing the
post-processing effect we’re after. It now looks something like this:

Such a blur effect creates interesting possibilities. We could vary the blur amount over time
for example to create the effect of someone being drunk, or increase the blur whenever the main
character is not wearing glasses. Blurring also give us a useful utility to smooth color values which
we will use in later tutorials.

You can see that once we have such a little kernel implementation in place it is quite easy to
create cool post-processing effects. Let’s show you a last popular effect to finish this discussion.

26.4.2 Edge detection
Below you can find an edge-detection kernel that is similar to the sharpen kernel:

-8 1
1 1

This kernel highlights all edges and darkens the rest, which is quite useful when we only care
about edges in an image.
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It probably does not come as a surprise that kernels like this are used as image-manipulating
tools/filters in tools like Photoshop. Because of a graphic card’s ability to process fragments with
extreme parallel capabilities, we can manipulate images on a per-pixel basis in real-time with relative
ease. Image-editing tools therefore tend to use graphics cards more often for image-processing.

Exercises

e Can you use framebuffers to create a rear-view mirror? For this you’ll have to draw your
scene twice: one with the camera rotated 180 degrees and the other as normal. Try to create
a small quad on the top of your screen to apply the mirror texture on: solution and visual
result.

e Play around with the kernel values and create your own interesting post-processing effects.
Try searching the internet as well for other interesting kernels.
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We’ve been using 2D textures for a while now, but there are even more texture types we haven’t
explored yet and in this tutorial we’ll discuss a texture type that is actually a combination of multiple
textures mapped into a single texture: a cube map.

A cubemap is basically a texture that contains 6 individual 2D textures that each form one side
of a cube: a textured cube. You might be wondering what’s the point of such a cube? Why bother
with combining 6 individual textures into a single entity instead of just using 6 individual textures?
Well, cube maps have the useful property that they can be indexed/sampled using a direction vector.
Imagine we have a 1x1x1 unit cube with the origin of a direction vector residing at its center.
Sampling a texture value from the cube map with an orange direction vector looks a bit like this:
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The magnitude of the direction vector doesn’t matter. As long as a direction is supplied,
OpenGL retrieves the corresponding texels that the direction hits (eventually) and returns
the properly sampled texture value.

If we image we have a cube shape that we attach such a cubemap to, the direction vector to
sample the cubemap would be similar to the (interpolated) vertex position of the cube. This way
we can sample the cubemap using the cube’s actual position vectors as long as the cube is centered
on the origin. We can then retrieve the texture coordinates of all vertices as the vertex positions of
the cube. The result is a texture coordinate that accesses the proper individual face texture of the
cubemap.

Creating a cubemap

A cubemap is a texture like any other texture so to create one we generate a texture and bind
it to the proper texture target before we do any further texture operations. This time binding to
GL_TEXTURE_CUBE_MAP:

GLuint texturelD;
glGenTextures (1, &texturelD);

glBindTexture (GL_TEXTURE_CUBE_MAP, texturelD);

Because a cubemap consists of 6 textures, one for each face, we have to call g1 TexImage2D
six times with their parameters set to values similar to the previous tutorials. This time however,
we have to set the texture farget parameter to a specific face of the cubemap, basically telling
OpenGL which side of the cubemap we’re creating a texture for. This means we have to call
glTexImage2D once for each face of the cubemap.

Since we have 6 faces OpenGL provides us with 6 special texture targets specifically for
targeting a face of the cubemap:

Texture target Orientation
GL_TEXTURE_CUBE_MAP_POSITIVE_X Right
GL_TEXTURE_CUBE_MAP_NEGATIVE_X Left
GL_TEXTURE_CUBE_MAP_POSITIVE_Y Top
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y Bottom
GL_TEXTURE_CUBE_MAP_POSITIVE_Z Back
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z Front

Like many of OpenGL’s enums, their behind-the-scenes int value is linearly incremented
so if we were to have an array or vector of texture locations we could loop over them by starting
with GL_TEXTURE_CUBE_MAP_POSITIVE_X and incrementing the enum by 1 each iteration,
effectively looping through all the texture targets:

width, height;
nhar* image;

for (GLuint 1 = 0; i < textures_faces.size(); 1i++)

{
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image = SOIL_load_image (textures_faces[i], &width, &height, O,
SOIL_LOAD_RGB) ;
glTexImage2D (

GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,

0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image
)i

Here we have a vector called textures_faces that contain the locations of all the
textures required for the cubemap in the order as given in the table. This generates a texture for
each face of the currently bound cubemap.

Because a cubemap is a texture like any other texture we will also specify its wrapping and
filtering methods:

glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
(
(

glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) ;
glTexParameteri (GL_TEXTURE_CUBE_MAP, GIL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

Don’t be scared by the GL_ TEXTURE_WRAP_R, this simply sets the wrapping method for the
texture’s R coordinate which corresponds to the texture’s 3rd dimension (like the z for positions).
We set the wrapping method to GI,_ CLAMP_ TO_EDGE since texture coordinates that are exactly
between two faces might not hit an exact face (due to some hardware limitations) so by using
GL_CLAMP_TO_EDGE OpenGL always return their edge values whenever we sample between
faces.

Then before drawing the objects that will use the cubemap, we activate the corresponding
texture unit and bind the cubemap before rendering, not much of a difference compared to normal
2D textures.

Within the fragment shader we also have to use a different sampler of the type samplerCube
that we sample from using the texture function, but this time using a vec3 direction vector
instead of a vec2. An example of fragment shader using a cubemap looks like this:

in vec3 textureDir;

uniform samplerCube cubemap;

void main ()

{

color = texture (cubemap, textureDir);

}

That is still great and all, but why bother? Well, it just so happens that there are quite a few
interesting techniques that are a lot easier to implement with a cubemap. One of those techniques is
creating a skybox.

Skybox

A skybox is a (large) cube that encompasses the entire scene and contains 6 images of a surrounding
environment, giving the player the illusion that the environment he’s in is actually much larger than
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it actually is. Some examples of skyboxes used in videogames are images of mountains, of clouds
or of a starry night sky. An example of a skybox, using starry night sky images, can be seen in the
following screenshot of the third elder scrolls game:

You probably guessed by now that skyboxes like this suit cubemaps perfectly: we have a cube
that has 6 faces and needs to be textured per face. In the previous image they used several images
of a night sky to give the illusion the player is in some large universe while he’s actually inside a
tiny little box.

There are usually enough resources online where you could find skyboxes like these. This
website for example has plenty of skyboxes. These skybox images usually have the following
pattern:


http://www.custommapmakers.org/skyboxes.php
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If you would fold those 6 sides into a cube you’d get the completely textured cube that simulates
a large landscape. Some resources provide the skyboxes in a format like this in which case you’d
have to manually extract the 6 face images, but in most cases they’re provided as 6 single texture
images.

This particular (high-quality) skybox is what we’ll use for our scene and can be downloaded
here.

27.3 Loading a skybox

Since a skybox is by itself just a cubemap, loading a skybox isn’t too different from what we’ve
seen before. To load the skybox we’re going to use the following function that accepts a vector
of 6 texture locations:

GLuint loadCubemap (vector<const GLcharx> faces)
{
GLuint texturelD;
glGenTextures (1, &texturelD);
glActiveTexture (GL_TEXTUREOQ) ;

int width,height;
unsigned charx image;

glBindTexture (GL_TEXTURE_CUBE_MAP, texturelD);
for (GLuint i = 0; i < faces.size(); i++)

{



http://learnopengl.com/img/textures/skybox.rar
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image = SOIL_load_image (faces[i], &width, &height, 0, SOIL_LOAD_RGB

)i
glTexImage?2D (
GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, O,
GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image
)i
}
glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE) ;
glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE) ;
glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R,
GL_CLAMP_TO_EDGE) ;
glBindTexture (GL_TEXTURE_CUBE_MAP, O0);

return texturelD;

The function itself shouldn’t be too surprising. It is basically all the cubemap code we’ve seen
in the previous section, but combined in a single manageable function.

Then before we call this function we’ll load the appropriate texture paths in a vector in the
order as specified by the cubemap enums:

vector<const GLchar*> faces;
faces.push_back (
faces.push_back
faces.push_back

(
(
faces.push_back (
faces.push_back (
faces.push_back (
GLuint cubemapTexture = loadCubemap (faces) ;

We now loaded the skybox as a cubemap with cubemapTexture as its id. We can now bind
it to a cube to finally replace the lame clear color we’ve been using as the background all this time.

Displaying a skybox

Because a skybox is drawn on a cube we’ll need another VAO, VBO and a fresh set of vertices like
any other object. You can get its vertex data here.

A cubemap used to texture a 3D cube can be sampled using the positions of the cube as the
texture coordinates. When a cube is centered on the origin (0,0,0) each of its position vectors is
also a direction vector from the origin. This direction vector is exactly what we need to get the
corresponding texture value at that specific cube’s position. For this reason we only need to supply
position vectors and don’t need texture coordinates.

To render the skybox we’ll need a new set of shaders which aren’t too complicated. Because
we only have one vertex attribute the vertex shader is quite simple:

#version 330 core


http://learnopengl.com/code_viewer.php?code=advanced/cubemaps_skybox_data
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layout (location = 0) in vec3 position;

out vec3 TexCoords;

uniform mat4 projection;

uniform mat4 view;
main ()

gl_Position = projection % view * vec4d (position, 1.0);
TexCoords = position;

Note that the interesting part of the vertex shader is that we set the incoming position vectors as
the outcoming texture coordinates for the fragment shader. The fragment shader then takes these as
input to sample a samplerCube:

#version 330 core
in vec3 TexCoords;
out vec4 color;

uniform samplerCube skybox;

void main ()
{

color = texture (skybox, TexCoords);

}

The fragment shader is all relatively straightforward. We take the vertex attribute’s position
vectors as the texture’s direction vector and use those to sample the texture values from the cubemap.

Rendering the skybox is easy now that we have a cubemap texture, we simply bind the cubemap
texture and the skybox sampler is automatically filled with the skybox cubemap. To draw the
skybox we’re going to draw it as the first object in the scene and disable depth writing. This way
the skybox will always be drawn at the background of all the other objects.

glDepthMask (GL_FALSE) ;
skyboxShader.Use () ;

glBindVertexArray (skyboxVAO) ;
glBindTexture (GL_TEXTURE_CUBE_MAP, cubemapTexture) ;

glDrawArrays (GL_TRIANGLES, 0, 36);
glBindVertexArray (0) ;
glDepthMask (GL_TRUE) ;

If you run this you will get into difficulties though. We want the skybox to be centered around
the player so that no matter how far the player moves, the skybox won’t get any closer giving
the impression the surrounding environment is extremely large. The current view matrix however
transforms all the skybox’s positions by rotating, scaling and translating them, so if the player
moves, the cubemap moves as well! We want to remove the translation part of the view matrix so
movement doesn’t affect the skybox’s position vectors.

You might remember from the basic lighting tutorial that we could remove the translation


http://www.learnopengl.com/#!Lighting/Basic-Lighting
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section of transformation matrices by taking the upper-left 3x3 matrix of the 4x4 matrix, effectively
removing the translation components. We can achieve this by simply converting the view matrix to
a 3x3 matrix (removing translation) and converting it back to a 4x4 matrix:

glm::mat4 view = glm::maté4 (glm::mat3 (camera.GetViewMatrix()));

This removes any translation, but keeps all rotation transformations so the user can still look
around the scene.

The result is a scene that instantly looks enormous due to our skybox. If you’d fly around the
basic container you immediately get a sense of scale which dramatically improves the realism of
the scene. The result looks something like this:

You can find the complete source code here in case you’re stuck or you’d like to compare the
source code with your own.

Try experimenting with different skyboxes and see how they can have an enormous impact on
the look and feel of your scene.

An optimization

Right now we’ve rendered the skybox first before we rendered all the other objects in the scene.
This works great, but isn’t too efficient. If we render the skybox first we’re running the fragment
shader for each pixel on the screen even though only a small part of the skybox will eventually be
visible; fragments that could have easily been discarded using early depth testing saving us valuable
bandwidth.


http://learnopengl.com/code_viewer.php?code=advanced/cubemaps_skybox
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So to give us a slight performance boost we’re going to render the skybox last. This way, the
depth buffer is completely filled with all the objects’ depth values so we only have to render the
skybox’s fragments wherever the early depth test passes, greatly reducing the calls to the fragment
shader. The problem is that the skybox will most likely fail to render since it’s only a 1x1x1 cube,
failing most depth tests. Simply rendering it without depth testing is not a solution since the skybox
will then overwrite all the other objects in the scene. We need to trick the depth buffer into believing
that the skybox has the maximum depth value of 1. 0 so that it fails the depth test wherever there’s
a different object in front of it.

In the coordinate systems tutorial we said that perspective division is performed after the vertex
shader has run, dividing the g1_Position’s xyz coordinates by its w component. We also know
from the depth testing tutorial that the z component of the resulting division is equal to that vertex’s
depth value. Using this information we can set the z component of the output position equal to its
w component which will result in a z component that is always equal to 1 . 0, because when the
perspective division is applied its z component translates tow /w=1.0:

1 main ()

vecd4 pos = projection x view * vecd (position, 1.0);

gl_Position = pos.xyww;
TexCoords = position;

The resulting normalized device coordinates will then always have a z value equal to 1. 0: the
maximum depth value. The skybox will as a result only be rendered wherever there are no objects
visible (only then it will pass the depth test, everything else is in front of the skybox).

We do have to change the depth function a little by setting it to GL._ LEQUAL instead of the
default GL_LESS. The depth buffer will be filled with values of 1. 0 for the skybox, so we need
to make sure the skybox passes the depth tests with values less than or equal to the depth buffer
instead of less than.

You can find the more optimized version of the source code here.

Environment mapping

We now have the entire surrounding environment mapped in a single texture object and we could
use that information for more than just a skybox. Using a cubemap with an environment, we could
give objects reflective or refractive properties. Techniques that use an environment cubemap like
this are called environment mapping techniques and the two most popular ones are reflection and
refraction.

Reflection

Reflection is the property that an object (or part of an object) reflects its surrounding environment
e.g. the object’s colors are more or less equal to its environment based on the angle of the viewer.
A mirror for example is a reflective object: it reflects its surroundings based on the viewer’s angle.


http://www.learnopengl.com/#!Getting-started/Coordinate-Systems
http://www.learnopengl.com/#!Advanced-OpenGL/Depth-testing
http://learnopengl.com/code_viewer.php?code=advanced/cubemaps_skybox_optimized
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The basics of reflection are not that difficult. The following image shows how we can calculate
a reflection vector and use that vector to sample from a cubemap:

CUBEMAP (TOP FACE)

N\

We calculate a reflection vector < around the object’s normal vector N based on the view
direction vector /. We can calculate this reflection vector using GLSL’s built-in re f1ect function.
The resulting vector £ is then used as a direction vector to index/sample the cubemap returning a
color value of the environment. The resulting effect is that the object seems to reflect the skybox.

Since we already have a skybox setup in our scene, creating reflections isn’t too difficult. We’ll
change the fragment shader used by the container to give the container reflective properties:

#version 330 core
in vec3 Normal;
in vec3 Position;
out vecd color;

uniform vec3 cameraPos;
uniform samplerCube skybox;

= normalize (Position - cameraPos) ;
, = reflect (I, normalize (Normal)) ;
color = texture (skybox, R);

We first calculate the view/camera direction vector I and use this to calculate the reflect vector
R which we then use to sample from the skybox cubemap. Note that we have the fragment’s
interpolated Normal and Position variable again so we’ll need to adjust the vertex shader as
well.

#version 330 core
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layout (location = in vec3 position;
layout (location in vec3 normal;

out vec3 Normal;
out vec3 Position;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

id main ()
gl_Position = projection x view * model x vec4 (position, 1.0f);

Normal = mat3 (transpose (inverse (model))) * normal;
Position = vec3 (model x vec4 (position, 1.0f));

We’re using normal vectors so we’ll want to transform them with a normal matrix again. The
Position output vector is a world-space position vector. This Position output of the vertex
shader is used to calculate the view direction vector in the fragment shader.

Because we’re using normals you’ll want to update the vertex data and update the attribute
pointers as well. Also make sure to set the cameraPos uniform.

Then we also want to bind the cubemap texture before rendering the container:

glBindVertexArray (cubeVAO) ;
glBindTexture (GL_TEXTURE_CUBE_MAP, skyboxTexture) ;

glDrawArrays (GL_TRIANGLES, 0, 36);
glBindVertexArray (0) ;

Compiling and running your code gives you a container that acts like a perfect mirror. The
surrounding skybox is perfectly reflected on the container:


http://learnopengl.com/code_viewer.php?code=lighting/basic_lighting_vertex_data
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You can find the full source code here.

When reflection is applied to an entire object (like the container) the object looks as if it has a
high reflective material like steel or chrome. If we were to load the nanosuit model we used in the
model loading tutorials we’d get the effect that the suit looks to be entirely made out of chrome:

This looks quite awesome, but in reality most models aren’t all completely reflective. We could
for example introduce reflection maps that give the models another extra level of detail. Just like
diffuse and specular maps, reflection maps are texture images that we can sample to determine the
reflectivity of a fragment. Using these reflection maps we can determine which parts of the model
show reflection and by what intensity. In the exercise of this tutorial it’s up to you to introduce
reflection maps in the model loader we created earlier, significantly boosting the detail of the


http://learnopengl.com/code_viewer.php?code=advanced/cubemaps_reflection
http://www.learnopengl.com/#!Model-Loading/Model
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nanosuit model.

Refraction

Another form of environment mapping is called refraction and is similar to reflection. Refraction is
the change in direction of light due to the change of the material the light flows through. Refraction
is what we commonly see with water-like surfaces where the light doesn’t enter straight through,
but bends a little. It’s like looking at your arm when it’s halfway in the water.

Refraction is described by Snell’s law that with environment maps looks a bit like this:

WATER PLAME

CUBEMAP (BOTTOM FACE)

Again, we have a view vector /, a normal vector N and this time a resulting refraction vector
As you can see, the direction of the view vector is slightly bend. This resulting bended vector £ is
then used to sample from the cubemap.

Refraction can easily be implemented by using GLSL’s built-in re fract function that expects
a normal vector, a view direction and a ratio between both materials’ refractive indices.

The refractive index determines the amount light distorts/bends of a material where each
material has its own refractive index. A list of the most common refractive indices are given in the
following table:

Material Refractive index
Air 1.00
Water 1.33
Ice 1.309
Glass 1.52
Diamond 2.42

We use these refractive indices to calculate the ratio between both materials the light passes


http://en.wikipedia.org/wiki/Snell%27s_law
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through. In our case, the light/view ray goes from air to glass (if we assume the container is made
1.00

of glass) so the ratio becomes 55 = 0.658.
We already have the cubemap bound, supplied the vertex data with normals and set the camera

position as a uniform. The only thing we have to change is the fragment shader:

void main ()

{

float ratio = 1.00 / 1.52;

= normalize (Position - cameraPos);

= refract (I, normalize (Normal), ratio);
color = texture (skybox, R);

By changing the refractive indices you can create completely different visual results. Compiling
the application and running the results is not so interesting though since we’re simply using a
basic container, which doesn’t really show the effect refraction has aside that it acts slightly as a
magnifying glass right now. Using the same shaders on the nanosuit model however does show us
the effect we’re looking for: a glass-like object.

You can imagine that with the right combination of lighting, reflection, refraction and vertex
movement you can create pretty neat water graphics. Do note that for physically accurate results
we also should refract the light again when it leaves the object; now we simply used single-side
refraction which is fine for most purposes.

Dynamic environment maps

Right now we’ve been using a static combination of images as the skybox, which looks great, but
doesn’t include the actual scene with possibly moving objects. We didn’t really notice this so far,
because we only used a single object. If we had a mirror-like objects with multiple surrounding
objects, only the skybox would be visible in the mirror as if it was the only object in the scene.

Using framebuffers it is possible to create a texture of the scene for all 6 different angles from
the object in question and store those in a cubemap each render iteration. We can then use this
(dynamically generated) cubemap to create realistic reflection and refractive surfaces that include
all other objects. This is called dynamic environment mapping, because we dynamically create a
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cubemap of an object’s surroundings and use that as its environment map.

While it looks great, it has one enormous disadvantage: we have to render the scene 6 times per
object using an environment map, which is an enormous performance penalty on your application.
Modern applications try to use the skybox as much as possible and where possible pre-compile
cubemaps wherever they can to still sort-of create dynamic environment maps. While dynamic
environment mapping is a great technique, it requires a lot of clever tricks and hacks to get it
working in an actual rendering application without too many performance drops.

27.10 Exercises

e Try to introduce reflection maps into the model loader we created in the model loading
tutorials. You can find the upgraded nanosuit model with reflection maps included here.
There are a few things to note though:

— Assimp doesn’t really seem to like reflection maps in most object formats so we cheated
a little by storing the reflection maps as ambient maps. You can then load the reflection
maps by specifying aiTextureType_AMBIENT as the texture type when loading
materials.

— I sort of hastily created reflection map textures from the specular texture images, so the
reflection maps won’t map exactly to the model in some places :).

— Since the model loader by itself already takes up 3 texture units in the shader, you’ll
have to bind the skybox to a 4th texture unit since we’ll also sample from the skybox in
the same shader.

e You can find the solution source code here together with the updated model and mesh class.
The shaders used for rendering the reflection maps can be found here: vertex shader and
fragment shader.

If you did things right it’1l look something like this.


http://www.learnopengl.com/#!Model-Loading/Assimp
objects/nanosuit_reflection.zip
http://learnopengl.com/code_viewer.php?code=advanced/cubemaps-exercise1
http://learnopengl.com/code_viewer.php?code=advanced/cubemaps-exercise1-model
http://learnopengl.com/code_viewer.php?code=advanced/cubemaps-exercise1-mesh
http://learnopengl.com/code_viewer.php?code=advanced/cubemaps-exercise1-vertex
http://learnopengl.com/code_viewer.php?code=advanced/cubemaps-exercise1-fragment
http://learnopengl.com/img/advanced/cubemaps_reflection_map.png
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We’ve been extensively using buffers in OpenGL to store data for quite some time now. There
are more interesting ways to manipulate buffers and also other interesting methods to pass large
amounts of data to the shaders via textures. This tutorial we’ll discuss some more interesting buffer
functions and how we can use texture objects to store large amounts of data (the texture part of the
tutorial has not yet been written).

A buffer in OpenGL is only an object that manages a certain piece of memory and nothing
more. We give a meaning to a buffer when binding it to a specific buffer target. A buffer is only a
vertex array buffer when we bind it to GL_ARRAY_BUFFER, but we could just as easily bind it to
GL_ELEMENT_ARRAY_BUFFER. OpenGL internally stores a buffer per target and based on the
target, processes the buffers differently.

So far we’ve been filling the memory managed by the buffer objects by calling g1Buf ferData
which allocates a piece of memory and adds data into this memory. If we were to pass NULL as its
data argument, the function would only allocate memory and not fill it. This is useful if we first
want to reserve a specific amount of memory and later come back to this buffer to fill it piece by
piece.

Instead of filling the entire buffer with one function call we can also fill specific regions of the
buffer by calling g1Buf ferSubData. This function expects a buffer target, an offset, the size of
the data and the actual data as its arguments. What’s new with this function is that we can now give
an offset that specifies from where we want to fill the buffer. This allows us to insert/update only
certain parts of the buffer’s memory. Do note that the buffer should have enough allocated memory
so acall to glBufferData is necessary before calling g1Buf ferSubData on the buffer.

glBufferSubData (GL_ARRAY_BUFFER, 24 sizeof (data), &data);
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Yet another method for getting data into a buffer is to ask for a pointer to the buffer’s memory
and directly copy the data to the buffer by yourself. By calling g1MapBuffer OpenGL returns a
pointer to the currently bound buffer’s memory for us to operate on:

bi
glBindBuffer (GL_ARRAY_BUFFER, buffer);

void* ptr = glMapBuffer (GL_ARRAY BUFFER, GL_WRITE_ONLY);

memcpy (ptr, data,

glUnmapBuffer (GL_ARRAY_ BUFFER) ;

By telling OpenGL we’re finished with the pointer operations via glUnmapBuffer OpenGL
knows you’re done. By unmapping, the pointer becomes invalid and the function returns GL_ TRUE
if OpenGL was able to map your data successfully to the buffer.

Using g1MapBuffer is useful to directly map data to a buffer, without first storing it in
temporary memory. Think of directly reading data from file and copying into the buffer’s memory.

Batching vertex attributes

Using glVertexAttribPointer we were able to specify the attribute layout of the vertex
array buffer’s content. Within the vertex array buffer we interleaved the attributes; that is, we placed
the position, normal and/or texture coordinates next to each other for each vertex. Now that we
know a bit more about buffers we could take a different approach.

What we could also do is batch all the vector data into large chunks per attribute type instead of
interleaving them. Inst