
 Android Graphics

Topics
• Android Graphics
• Drawables
> Using an image saved in your project resources
> Using an XML file that defines the Drawable

properties
• ShapeDrawable

Android Graphics

Android Graphics Support
• Android graphics are powered by
> A custom 2D graphics library
> OpenGL ES 1.0 for high performance 3D graphics.

• The most common 2D graphics APIs can be
found in the drawable package.

• OpenGL APIs are available from the Khronos
OpenGL ES package, plus some Android
OpenGL utilities.

Drawables

What is a Drawable?
• A Drawable is a general abstraction for

"something that can be drawn."
• Drawable class extends to define a variety of

specific kinds of drawable graphics, including
> BitmapDrawable, ShapeDrawable, PictureDrawable,

LayerDrawable, and several more.
• You can also extend these to define your own

custom Drawable objects that behave in unique
ways.

Three ways to define & instantiate
Drawables
• Using an image saved in your project resources
• Using an XML file that defines the Drawable

properties
• Using the normal class constructors.

 Drawables:
Using an image saved in
 your project resources

Creating from Resource Images
• A simple way to add graphics by referencing an

image file from your project resources.
• Supported file types are
> PNG (preferred), JPG (acceptable) and GIF

(discouraged).
• Preferred technique for application icons, logos,

or other graphics such as those used in a game
• To use an image resource, just add your file to

the res/drawable/ directory of your project
> From there, you can reference it from your code or

your XML layout using a resource ID, which is the file
name without the file type extension

Build an ImageView that uses an image from
drawable resources and add it to the layout
LinearLayout mLinearLayout;

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create a LinearLayout in which to add the ImageView
 mLinearLayout = new LinearLayout(this);

 // Instantiate an ImageView and define its properties
 ImageView i = new ImageView(this);
 i.setImageResource(R.drawable.my_image);
 i.setAdjustViewBounds(true); // set the ImageView bounds to match the
 // Drawable's dimensions
 i.setLayoutParams(new Gallery.LayoutParams(LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT));

 // Add the ImageView to the layout and set the layout as the content view
 mLinearLayout.addView(i);
 setContentView(mLinearLayout);
}

Handle your image resource as a Drawable
object
Resources res = mContext.getResources();
Drawable myImage = res.getDrawable(R.drawable.my_image);

Add a resource Drawable to an ImageView in
the XML layout
<ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:tint="#55ff0000"
 android:src="@drawable/my_image"/>

Drawables:
Using XML

Creating from Resource XML
• If there is a Drawable object that you'd like to

create, which is not initially dependent on
variables defined by your application code or
user interaction, then defining the Drawable in
XML is a good option.

• Even if you expect your Drawable to change its
properties during the user's experience with
your application, you should consider defining
the object in XML, as you can always modify
properties once it is instantiated.

Creating from Resource XML
• Once you've defined your Drawable in XML,

save the file in the res/drawable/ directory of
your project.

• Then, retrieve and instantiate the object by
calling Resources.getDrawable(), passing it the
resource ID of your XML file.

XML that defines a TransitionDrawable

• Let's assume below is saved as
res/drawable/expand_collapse.xml.

<transition
xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/image_expand">
 <item android:drawable="@drawable/image_collapse">
</transition>

XML that defines a TransitionDrawable

Resources res = mContext.getResources();

TransitionDrawable transition = (TransitionDrawable)
 res.getDrawable(R.drawable.expand_collapse);

ImageView image =
 (ImageView) findViewById(R.id.toggle_image);
image.setImageDrawable(transition);

The above code will instantiate the
TransitionDrawable and set it as the content of an
ImageView

ShapeDrawable

ShapeDrawable
• When you want to dynamically draw some two-

dimensional graphics, a ShapeDrawable object
will probably suit your needs.

• With a ShapeDrawable, you can
programmatically draw primitive shapes and
style them in any way imaginable.

Thank you

Barbara Hecker

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

