
MULTITREADING

What is a thread?
• A thread is a concurrent unit of execution

• Threads share process’s resource but are able to execute
independently

• Each thread has a call stack for methods being invoked

• A VM may run several threads in parallel
• True parallelism for multi-core CPU

• A VM has at least the main thread running when it is
started

Why to use threads
• Multi-thread programming is hard, so why to use it?

• If the execution time of the main thread is higher than 5 s,
then the OS displays an error message (ANR)

• Slow tasks (like file downloading), cannot run in the main
thread; so, in this case you must use multiple threads

• In a multi-core CPU, multiple threads can truly run in
parallel

How to use multi-tread?

• classical Thread programming
• Special care must be taken as only main thread can update the UI,

• Android’s AsyncTask
• It’s a class that simplifies the interaction with the main thread

• Service
• Background work can be performed in a background service, using

notification to inform the user about the next step

How to create a thread
• There are basically two main ways for a Thread to

execute application code.

• One is providing a new class that extends Thread and
overriding its run() method.

• The other is providing a new Thread instance with a
Runnable object during its creation.

• In both cases, the start() method must be called to
actually execute the new Thread.

First method: extending the thread class

Anonymous thread

The start method may
initialize some data, then
the run method is called

The run method hosts
the code to be run in a
thread

What happens if the Activity is stopped?
• A thread has its own

lifetime, independent
from the creator

• If an activity wants to
stop a thread on its
ending, it has somehow
to stop the thread(s) it
launched

• One way is to use a
simple boolean flag in
run method for returning
prematurely

The thread in no longer
anonymous

Check the running
condition

This is a handler of a
button in UI

2nd method: Implementing the runnable
interface

• Another option to get a
thread is implementing
the runnable interface

• The interface has a
single method, run, that
hosts the code to be run
concurrently

• In this way, the thread
could extends other
classes (recall java only
allows single
inheritance)

Interacting with the UI
• The background thread may need to update the UI according

to its progress

• This means that at any time the background thread may need
to communicate with the main thread

• This interaction is achieved through a message based
mechanism

• The background thread sends a message to the main thread
after it obtains a token (permission to send)

• The main thread processes the message

Interacting with the UI

• The UI thread creates a Handler object internal to itself
• The working thread uses this object to obtain an empty message and

send a message to the UI thread

Main thread
Background

thread

Handler

obtainMessage

sendMessage

Example (HandlerThreadDemo)

This is the handler object
internal to the UI thread
It updates a TextView
object

Example (HandlerThreadDemo)

A new thread is started

Send a simple message
that updates the textview

Passing data through the message
• Create a bundle
• Put data in
• Set the data field of the message

• Get bundle from the message
• Get the data

AsyncTask
• AsyncTask is a class that simplifies the interaction with UI

• This class allows to perform background operations and
publishes the results on the UI thread, without having to
manipulate threads and/or handlers.

• An asynchronous task is defined by a computation that
runs on a background thread and whose result is
published on the UI thread.

AsyncTask

Example: (AsyncDemo)

Select from eclipse widgets

Example

Example

Example

Example

publishProgress generates
integers to mean the actual
progress….

