BROADCAST RECEIVER
SERVICE

Broadcast receiver

- A broadcast receiver is a dormant component of the Android
system.

- Only an Intent (for which it is registered) can bring it into action.

- Using a Broadcast Receiver, applications can register for a
particular event. Once the event occurs, the system will notify
all the reqistered applications.

- Examples: Boot completed, Time tick

- The Broadcast Recelver’s job is to activate some sw
component, for example to notify the end user something
occurred.

Registering a receiver

- There are two ways to register a Broadcast Receiver; one
Is Static and the other Dynamic.
- Static:

- Use <receiver> tag in your Manifest file. (AndroidManifest.xml)
- Not all events can be registered statically
- Some events require permission

- Dynamic:

- Use Context.registerReceiver () method to dynamically register an
Instance.

- Note: Unregister when pausing

Broadcast intents

- Broadcast intents are Intent objects that are broadcast via a
call to the sendBroadcast(), sendStickyBroadcast() or
sendOrderedBroadcast() methods of the Activity class.

- In addition to providing a messaging and event system
between application components, broadcast intents are also
used by the Android system to notify interested applications
about key system events (such as the external power supply or
headphones being connected or disconnected).

- When a broadcast intent is created, it must include an action
string in addition to optional data and a category string.

Broadcast intents

- As with standard intents, data is added to a broadcast intent
using key-value pairs in conjunction with the putExtra() method
of the intent object.

- The optional category string may be assigned to a broadcast
Intent via a call to the addCategory() method.

- The action string, which identifies the broadcast event, must be
unique and typically uses the application’s Java package name
syntax. For example, the following code fragment creates and
sends a broadcast intent including a unique action string and
data:

Broadcast intent

Intent intent = new Intent () ;
intent.setAction ("com.example.Broadcast™) ;

intent.putExtra ("HighScore"™, 1000);
sendBroadcast (1ntent) ;

Intent intent = new Intent();
intent. addFlags (Intent.FLAG INCLUDE STOPPED_PHCKAGES] g S

intent.setnction(“com.exampIe.EroadEast"];
intent.putExtra ("HighScore™, 1000); >Android 3.0

sendBroadecast (intent) ;

Type of broadcasts

- Ordered Broadcasts:

- These broadcasts are synchronous and follows the order specified
using android: priority attribute.

- The receivers with greater priority would receive the broadcast
first.

- Normal Broadcasts:
- Normal broadcasts are not orderly.

-
Broadcast receiver

- An application listens for specific broadcast intents by
registering a broadcast receiver.

- Broadcast receivers are implemented by extending the
Android BroadcastReceliver class and overriding the
onReceive() method.

- The broadcast receiver may then be registered, either
within code (for example within an activity), or within a
manifest file.

-
Broadcast receiver

- Part of the registration implementation involves the
creation of intent filters to indicate the specific broadcast
Intents the receiver is required to listen for.

- This is achieved by referencing the action string of the
broadcast intent.

- When a matching broadcast is detected, the onReceive()
method of the broadcast receiver is called, at which point
the method has 5 seconds within which to perform any
necessary tasks before returning.

Broadcast receiver template

package com.exXample.BroadcastDetector;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class MyReceilver extends BroadcastReceiver {

@Override

public void onReceilve (Context context, Intent intent) {
// Implement code here to be performed when
// broadcast is detected

Registering a Broadcast receiver

<?xml version="1.0" encoding="utf-8"?2>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.BroadcastDetector”
android:versionCode="1"
android:versionName="1.0" >

<uses—-sdk android:minSdkVersion="10" />

<application
android:icon="@drawable/ic_launcher"
an i ="@string/app name" >

Lreceiver androld name="MyReceiver" >
<intent-filter
<action android:name="com.example.Broadcast" >
</actionh>
</intent-filt

</application=>
</manifest>

Another example

- An activity creates a broadcast receiver that subscribes
dynamically for TIME_TICK events (fired every minute)

- The receiver is registered to the event when the activity is
started

- The receiver is unregistered when the hosting activity is
paused.

Another example

package com.example.bcastreceiverdemo;

import android.app.Activity;
import android.content.BroadcastReceiver; Creates the recelver
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;

import android.widget.Toast;

public class MainActivity extends Activity {

private final BroadcastReceiver timeBroadcastReceiver = new BroadcastReceiver(){[]

@override Register the receiver

public void onCreate(Bundle sawvedInstanceState) {

super.onCreate(savedInstanceState); tO rECE|Ve tlme t|CkS ‘e

setContentView(R. layout.gctivity main);

}

@rverride
protected void onResume() {

super.onResume();
registerReceiver(timeBroadcastReceiver,new IntentFilter(Intent.ACTION TIME TICK));

¥
@verride

protected void cnPause() {

super .onPause(); Unregister the receiver
unregisterReceiver(timeBroadcastReceiver); When paused

Another example

private final BroadcastReceiver timeBroadcastReceiver = new BroadcastReceiver(){

@override
public void onReceive(Context context, Intent intent) {

Toast.makeText(MainActivity.this, "BroadCast Intent Receiver", Toast.LENGTH SHORT).show();
¥

1s

Good tutorial:
http://www.grokkingandroid.com/android-tutorial-broadcastreceiver/

Another example

- An application generates custom bcast intent
- A receiver registers to receive the intent

package com.example.bcastreceiverexample;
import android.app.Activity;[]
public class MainActivity extends Activity {

@override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);

¥

public wvoid broadcastIntent(View wview)

1
Intent intent = new Intent();
intent.setAction("com.example.SendBroadcast™);
intent.addFlags(Intent.FLAG INCLUDE STOPPED PACKAGES):
sendBroadcast(intent);

h

Another example: the receiver

package com.example.brodacastreceiver;

import android.content.BreoadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class MyReceiver extends BroadcastReceiver {

@override
public woid onReceive(Context context, Intent argl) {

// TODD Auto-generated method stub
Toast.mokeText(context, "Broadcast Intent Detected.”,
Toast.LENGTH LONG).show();

<receiver android:name="MyReceiver” »
<intent-filter:
. . . <action android:name="com.example.SendBroadcast™ >
Add in the manifest file <Jaction>
</intent-filter:>
</receiver:

Service

- The Android Service class is designed specifically to allow
applications to initiate and perform background tasks.

- Unlike broadcast receivers, which are intended to perform
a task quickly and then exit, services are designed to
perform tasks that take a long time to complete

- ...such as downloading a file over an internet connection
or streaming music to the user, but do not require a user
interface.

Service type

- Intent Service
- Simplest form of service
- Created to execute a task in a separate thread and then exit

- Service

- Started Service

- Run until explicitly stopped (in the rare case android needs to kill it, the
service will be restarted as soon as possible)

- Started with startCommand method
- Bound Service

- Allows the exchange data with the interacting software component
through an interface (set of methods)

- Bind to a service interface

Intent service

- As previously outlined, services run by default within the same main thread as the
component from which they are launched. As such, any CPU intensive tasks that
need to be performed by the service should take place within a new thread,
thereby avoiding affecting the performance of the calling application.

- The IntentService class is a convenience class (subclassed from the Service
class) that sets up a worker thread for handling background tasks and handles
each request in an asynchronous manner.

- Once the service has handled all queued requests, it simply exits. All that is
required when using the IntentService class is that the onHandlelntent() method
be implemented containing the code to be executed for each request.

- For services that do not require synchronous processing of requests,
IntentService is the recommended option. Services requiring synchronous
handling of requests will, however, need to subclass from the Service class and
mﬁan_uaII?/ implement and manage threading to handle any CPU intensive tasks
efficiently.

Intent Service: example

protected void onHandleIntent(Intent intent)

. Explicit Intent
M{:uh [z Service
Activity

- The service needs to be registered in the manifest file

- The main activity creates an explicit intent pointing to the service
- The service is started and the onHandlelntent method executed
- Intents are queued and served serially

Intent Service: example

startService(new Intent(this,myIntentService.class));
<service android:name="myIntentService"”/>

package com.example.servicedemo;

import android.app.IntentService;
import android.content.Intent;
import android.media.MediaPlayer;
import android.util.Log;

public class myIntentService extends IntentSerwice{

public myIntentService(){
//name the worker thread, important only for debugging.
super("myIntentService");

h

[@override
protected wvoid onHandleIntent(Intent intent) {

/f TODO Auto-generated method stub
Log.i("TEST","Intent Service....");
MediaPlayer.create(this, R.raw.braincandy).start();

Example

- Testing the weather condition periodically and send a
notification if an alarm occurs

Time tick event

<Z | ntept <Z Broadcast
Service Receiver

Start

If allarm User
Notification

Started service

- Started services are launched by other application components (such
as an activity or even a broadcast receiver) and potentially run
indefinitely in the background until the service is stopped, or is
destroyed by the Android runtime system in order to free up
resources.

- A service will continue to run if the application that started it is no
longer in the foreground, and even in the event that the component
that originally started the service is destroyed.

- By default, a service will run within the same main thread as the
application process from which it was launched (referred to as a local
service).

- It Is important, therefore, that any CPU intensive tasks be performed
In a new thread within the service. Instructing a service to run within a
separate process (and therefore known as a remote service) requires
a configuration change within the manifest file.

Started service

- Unless a service is specifically configured to be private (once again via a setting
in the manifest file), that service can be started by other components on the same
Android device.

- This is achieved using the Intent mechanism in the same way that one activity can
launch another as outlined in preceding slides.

- Started services are launched via a call to the startService() method, passing
through as an argument an Intent object identifying the service to be started.

- When a started service has completed its tasks, it should stop itself via a call to
stopSelf(). Alternatively, a running service may be stopped by another component
via a call to the stopService() method, passing through as an argument the
matching Intent for the service to be stopped.

- Services are given a high priority by the Android system and are typically amongst
the last to be terminated in order to free up resource

Started service: example, playing music

- ~
/ N\
! | \ Process
: Main Thread Play thread |
| poTTTTTETETEEEEEEEEEEEEEEEEES N ,’ ---------- \ |
v N b il
Lo) Lo
| . P! Lo
1 Service Lo o
| ! L |
o [Ul Activity)i Lo
| 1 ! : I

1|

{ ‘\\ ___________________________ A / 'I
\ /
N e

- e e o e e o o o o e o e e e e e e e o o o

- An application that runs a player
to play a song...

- The service is started from the
Activity and then it spawns a
thread

@& ServiceDemo

Example: playing music

import android.app.Activity;
import android.content.Intent;
import andreoid.os.Bundle;
Services Demo
import android.view.View;
import android.view.View.OnClicklListener; Start

import android.widget.Toast; —
Stop
public class MainActivity extends Activity implements OnClickListener
@override
public woid onCreate(Bundle savedInstanceState) { <xml version="1.8" encoding="utf-8"?>

<Linearlayout xmlns:andreid="http://schemas.android.com/apk/res/android”
android:layout_width="fill_parent"
android:layout_height="fill_parent"”

super.onCreate(savedInstancestate);
setContentView(R. layout.main);

findViewById(R.id.buttonStart).setOnClicklistener(this); android:gravity="center”
findViewById(R.1id.buttonstop).setOnClickListener(this); android:orientation="vertical” >
<TextView
1 android: layout_width="fill_parent”
android: layout_height="wrap content”
public void onClick(View src) { android: gravity="center”

android: padding="28dp"
android:text="%ervices Demo”

try { android:textsize="20sp" />
Toast.mokeText(this, src.getId(), Toast.LENGTH LONG).show();
switch (src.getId()) { <Button

android: id="g+id/buttonStart”
android: layout_width="wrap_content"”

case R.id.buttonstart:

startService(new Intent(Mainfctivity.this, MyService.class)); android:layout_height="wrap content”
break; android: text="5tart" >
case R.id.buttonStop: ¢/Buttony
stopService(new Intent(MainfActivity.this, MyService.class)); <Button
break; android: id="@+id/buttonStop”
} andreid: layout_width="wrap content”

. android: layout_height="wrap_content”
t catch (Exception e) { android: text="stop" >

Toast.makeText(this, e.toString(), Toast.LENGTH LONG).show(); </Button>
¥

i

¢/LinearLayouts

Example: playing music

package com.example.servicedemo;

import android.app.Service;
import android.content.Intent;
import android.media.MediaPlayer;
import android.os.IBinder;

public class MyService extends Serwvice {
MediaPlayer player;

@verride

public void ocnCreate() {
player = MediaPlayer.create(this, R.raw.braincandy);

¥

@override The
public int onStartCommand(Intent intent, int flags, int startId) { : wwumogimﬁﬂd

new Thread(new Runnable(){
public woid run() {
player.start();

b).start();
return super.onStartCommand(intent, flags, startId);

i

@override
public void onDestroy() {

player.stop();
h

@override

public IBinder onBind({Intent intent) {
return null;

} Unbounded
} service

- VEDI SERVICE Demo

Bound Service

- Abound service is similar to a started service with the exception that
a started service does not generally return results or permit
interaction with the component that launched it.

- A bound service, on the other hand, allows the launching component
to interact with, and receive results from, the service. Through the
Implementation of interprocess communication (IPC), this interaction
can also take place across process boundaries.

- An activity might, for example, start a service to handle audio
playback. The activity will, in all probability, include a user interface
providing controls to the user for the purpose of pausing playback or
skipping to the next track.

- Similarly, the service will quite likely need to communicate information
to the calling activity to indicate that the current audio track has
completed and to provide details of the next track that is about to start

playing.

Bound Service

- A component (also referred to in this context as a client) starts
and binds to a bound service via a call to the bindService()
method and multiple components may bind to a service
simultaneously.

- When the service binding is no longer required by a client, a
call should be made to the unbindService() method. When the
last bound client unbinds from a service, the service will be
terminated by the Android runtime system.

- It is important to keep in mind that a bound service may also be
started via call to startService(). Once started, components
may then bind to it via bindService() calls.

- When a bound service is launched via a call to startService() it
will continue to run even after the last client unbinds from it.

Bound Service

- A bound service must include an implementation of the onBind()
method which is called both when the service is initially created and
when other clients subsequently bind to the running service.

- The purpose of this method is to return to binding clients an object of
type IBinder containing the information needed by the client to
communicate with the service.

- In terms of implementing the communication between a client and a
bound service, the recommended technique depends on whether the
client and service reside in the same or different processes and
whether or not the service is private to the client.

- Local communication can be achieved by extending the Binder class
and returning an instance from the onBind() method. Interprocess
communication, on the other hand, requires Messenger and Handler
Implementation.

Bound Service

- A service can be bounded to another SW component, meaning that it
can invoke methods implemented by the service through a proxy
(Binder) of the Service (which is seen as a remote object)

- Service connection is an interface monitoring connections to a service

[ServiceConnection]

creates/the binder ' N\
Activity - Service
\ Ve - = \\/
9 y l\ Binder ! \)
~ ”’

L

Represents the service

Bound service

- To create a bound service, you must implement the
onBind() callback method to return an IBinder that defines
the interface for communication with the service.

- Other application components can then call bindService()
to retrieve the interface and begin calling methods on the
service.

- The client can even call public methods defined in the service (see
example)

Example

package com.example.boundservicedemo;

import android.app.Service;
import android.content.Intent;
import android.os.Binder;
import android.os.IBinder;

public class LocalBound extends Service{

{//Methods for the clients
public String test() {return "hellc from the service...";}
public int testInt() {return 11;}

//Implementation of the onBind Method,
//returning a Binder object implementing the remote interface IBinder
@override
public IBinder cnBind(Intent arg@) {
return new mylLocalBinder();
¥

//Binder class is an implementation of IBinder
//that provides the standard support creating a local implementation of such an object.
public class mylLocalBinder extends Binderq{
LocalBound getService () {
return LocalBound.this;

}

Example

package com.example.boundservicedemo;

import com.example.boundservicedemo.LocalBound.mylLocalBinder;[]

public class MainActivity extends Activity { Interface: monitor the

Local . state of the service
representatlob LocalBound mylLocalBoundService; ‘

of the remote

service public ServiceConnection myConnection = new ServiceConnection() {[]

public void onCreate(Bundle savedInstanceState) {[]

public void btnConn(View v) {[]
¥

Example

package com.example.boundservicedemo;
® import com.example.boundservicedemo.LocalBound.myLocalBinder;[]
public class MainActivity extends Activity {
LocalBound mylLocalBoundService;
Retrieve the public ServiceConnection myConnecticn = new ServiceConnection() {
mter_face tQ the public void conServiceConnected(CompocnentName classMame,IBinder service) {
service myLocalBinder binder = (myLocalBinder)service;
mylLocalBoundService = binder.getService();
¥

= public void onServiceDisconnected(ComponentName className) {

i
I
& public void onCreate(Bundle savedInstanceState) {/]

i+ public void btnConn{view v) {[]

¥

Example

package com.example.boundservicedemo;
import com.example.boundservicedemo.LocalBound.mylLocalBinder;[]
public class MainActivity extends Activity {

LocalBound mylocalBoundService;

e public ServiceConnection myConnection = new ServiceConnection() {[]

. automatically create the
: @override)
public void onCreate({Bundle savedInstanceState) { service as IOng as the
super.onCreate(savedInstanceState); : : :
setContentView(R. layout.activity main); blndlng exists.

Intent intent = new Intent(this,LlocalBound.class);

bindService(intent,myConnecticn,Context.BIND AUTO CREATE);
¥

e public void btnConn{View v) {
String text=mylLocalBoundService.test();
((TextView)findViewById(R.id.log)).setText(text);

Other example

- LocalBound in Other Projects

System-level services

- The Android platform provides a lot of pre-defined
services, usually exposed via a Manager class, see:
- http://developer.android.com/reference/android/content/Context.ht
mi
- For example the next applications provides info about the
currently connected network....

Example

package com.example.systemservicedemo;
<uses-permission android:name="android.permission. ACCESS NETWORK _STATE"™ />

& import android.app.Activity;[]

public class MainActivity extends Activity {

a override
public wvoid onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstancestate);
setContentView(R.layout.activity main);

J/Obtain a reference to the connectivity manager
ConnectivityManager cm = (ConnectivityManager) getSystemService(Context.CONNECTIVITY SERVICE);

//look for current active network (other methods available, see documentation)
NetworkInfo ni = cm.getActiveNetworkInfo();

J/Write info to log
Log.i("TEST",ni.toString());

Jiwrite if roaming to a Toast
if (ni.isRoaming()) {
Toast.mokeText(this,"roaming”,1).show(};

else
Toast.makeText(this,"not roaming”,l).show(};
s
Application Tag Text
COm. eXample . 3ystemservicedemo TEST HetworkInfo: type: WIFI[], state: CONNECTED/COWNECTIED, reason: (unspecified), extra: o

{none), roaming: false, fajilower: false, isAwvailable: true, isIpv4Connected: true, is A

IpwvéConnected: false

Service vs thread

- A service is a component that Android is aware of (it must
be declared in the manifest), with its own lifecycle

- A service can be activated from other components (not
true for threads)

- A service is destroyed by the system only under very
heavy circumstances and re-created according to restart
options

- Aservice is in a sense similar to a Unix’s daemon, e.g, it
can be used system-wide and started automatically after
the device boot ends

Controlling Destroyed Service restart
Options

START NOT STICKY
If the system kills the service after onStartCommand () returns, do not recreate the service, unless there

are pending intents to deliver. This is the safest option to avoid running your service when not necessary
and when your application can simply restart any unfinished jobs.

START STICKY
If the system kills the service after onStartCommand () returns, recreate the service and call
onStartCommand (), but do not redeliver the last intent. Instead, the system calls cnstartCommand ()

with a null intent, unless there were pending intents to start the service, in which case, those intents are
delivered. This is suitable for media players (or similar services) that are not executing commands, but

running indefinitely and waiting for a job.

START REDELIVER INTENT
If the system kills the service after onStartCommand () returns, recreate the service and call
onStartCommand () with the last intent that was delivered to the service. Any pending intents are
delivered in turn. This is suitable for services that are actively performing a job that should be immediately
resumed, such as downloading a file.

Service priority

- The system kills the process hosting a service if it is under
heavy memory pressure.

- However, if this happens, the system will later try to restart
the service (and a pending intent can be delivered again)

- A processes hosting service have higher priority than
those running an activity

Example: use notification

- Send a message, displayed by the status bar
- Read the message associated to the notification

Example: Ul

<?uml version="1.8" encoding="utf-8"7:

<Linearlayout xmlns:android="http:// schemas. ondroid. com/apk/res/android"
android:id="g+id/mylinearLaoyoutl®
android:layout width="fill parent”
android:layout height="fill parent”

android:background="#ffeeee65" Backg round COIOr

android:orientation="vertical " >

<Button Cancel
android:id="@g+id/btnGo”
android:layout width="118px"
android:layout height="68px"
android:layout margin="18px"

android:text=" Show *
</Button:

<Button
android:id="g+id/btnStop"
android: layout _width="1l@px"
android:layout height="6@px"
android:layout _margin="1epx"

android:text=" Cancel "o
</Button>

</fLinearlLayout>

Adapted from : Victor Matos CS493

Example: Ul

<?xml version="1.8" encoding="utf-8"7:>
<Linearlayout xmlns:android="http://schemas.android. com/apk/res/android”
android: id="{g+id/main2linlLayout"”
android: layout_width="fill_parent”
android: layout_height="Fill_parent”
android:background="#ffocoeee"

1 oer

android:orientation="vertical™ >

<TextView
android:id="jg+id/widget29"
android: layout width="251px"
android: layout height="6%px"
android:text="Hello! this is screen 2!" >
o/ TextView:

</LinearLayout>

Example

package cis493.demos;
#® import android.app.Activity;[]

PEEEEE AT I TR AR E LRI T E R i i i i it iy
public class NotifyDemol extends Activity {

Button btnGo;

Button btnStop;

int notificationId = 1;

NotificationManager notificationManager;

e @override
public wvoid onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.main);

btnGe = (Button)findViewById(R.id.btnGo);
& btnGo.setOnClicklistener(new OnClickListener() {[]

btnStop = (Button)findViewById(R.id.btnStop);
& btnstop.setOnClickListener(new OnClickListener() {[]

}//onCreate
Y/ /MotifyDemol

Example: create a notification

btnGo = (Button)findViewById(R.id.btnGo);
btnGo.setOnClickLlistener(new OnClickListener() {
public woid onClick{View v) {
/fdefine a notification manager
String serName = Context.NOTIFICATION SERVICE;
notificationManager = (MotificationManager)getSystemService(seriame);

//fdefine notification using: icon, text, and timing.

int icon = R.drawable.btn stor big on selected;

String tickerText = "1. My Notification TickerTapeText™;

long when = System.currentTimeMillis();

Notification notification = new Notification(icon, tickerText, when);

J//configure appearance of the notification
String extendedTitle = "2. My Extended Title";
string extendedText = "3. This is an extended and very important message";

J// set a Pending Activity to take care of the potential request the user
// may have by clicking on the notification asking for more explanations
Intent intent = new Intent(getfApplicationContext(), MNotifyHelper.class);
intent.putExtra("extendedText"”, extendedText);
intent.putExtra("extendedTitle"”, extendedTitle);

See next slide

//& PendingIntent describes an Intent and target action to perform with it.

/{fCreate a Pending Intent through getActivity factory method

PendingIntent launchIntent =
PendingIntent.getdctivity(getApplicationContext(),®,intent,d);

//Add Pending Intent to the notification
notification.setlatestEventInfo(getipplicationContext(),

extendedTitle, extendedText, launchIntent);
f/trigger notification
notificationId = 1;
notificationManager.notify(notificationId, notification);

¥/ /click
1

Example: cancel a notification

btnstop = (Button)findViewById(R.id.btnStop);
btnStop.setOnClickListener(new OnClickListener() {
public woid onClick(View v) {
J//canceling a notification
notificationId = 1;
notificationManager.cancel(notificationId);

package cis493.demos;
import android.app.Activity;
public class NotifyHelper extends Activity {

@override
protected void onCreate(Bundle savedInstanceState) {

super.cnCreate(savedInstanceState);

setContentView(R. layout.main?);

Intent myData = getIntent();

/! show extra data sent to us

String msg = "Extra data collected in the Notificaticn intent'shnin"
+ myData.getStringExtra("extendedTitle™) + "n"
+ myData.getStringExtra("extendedText™);

Toast.makeText(getApplicationContext(), msg, 1).show();

NotifyHelper

Running the application

Ticker Tape Text Icon (star) of the notification

LT

Running the application

PH OO o all ™ 13:43
NotifyDemo1
Hello! this is screen 2!

23/03/2013 == 4 ol 13:41

I TIM Elimina

_ Activity launched
Fotocamera MainActivity MainActivity Telefono Main, th roug h inte nt

&+ Solo carica
Selezionare per cambiare il tipo di connessione |

Debug USB collegato

Seleziona per disattivare il debug USB.

2
B U

@ Aggiornamenti applicazione dispon
Toccare per scaricare gli aggiornamenti applic

Notifiche

* 2. My Extended Title 13:37
3. This is an extended and very important m E o tatatolleoted inthe Notfioation

intent's

Nuova posta s EXte n d e d 2. My Extended Title
8 Messaggi non letti (gmail.com) . . 3. This is an extended and very important
information

]

message

[Adobe Reader 22/03/2013

Notifiche Impost. rapide

