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CS 360 → Lecture Notes → Lecture 6 

9/21/18, 8:28 AM 

Lecture 6: Recurrence 

 
 
 

Recurrence 
 

 

 
We derived the run time for merge sort in lecture 4 
by constructing a recursion tree and then adding up 
the run times for each level of the recursion. The 
recursive equation for merge sort, however, fits into 
the form required by the master theorem and thus 
could have been solved by inspection. However 
when a recursive equation does not satisfy the form 
for the master theorem, an alternative technique 
known as the substitution method is required to find 
the solution (which may use the recursion tree 
technique as an intermediate step). This technique 
involves proving (similar to proof by induction) that 
a "guess" solves the recursive equation. This 
"guess" often comes from experience from other 
similar problems or through a recursion tree. 

Recursion Trees 
In order to formulate a good "guess" at a solution to 
use in the substitution method, a recursion tree can 
often be constructed to find an approximation to the 
run time. Similar to the one constructed for merge 
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sort, the procedure consists of: 
 

Construct the tree based on the 
recurrence 
Calculate the run time for each recursive 
level 
Sum up all levels to compute the total run 
time 

Example 
 

Find a "guess" for the recursive equation (which 
could be checked with the master theorem) 

 

 

Again we will assume a bound for the asymptotic 
term as Θ(n2) = c n2 and construct the tree as 
follows 

 

 
Expanding the next level gives 
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At each subsequent level there are n/4i elements, so 
we continue expanding until n/4h = 1 ‹ h = log4 n 
giving h + 1 = log4 n + 1 levels of recursion as 
shown below. 

 

 

It can be seen from the diagram that each level has 
3i terms of c (n/4i)2. Hence the run time for each 
level is 
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The last level (where i = log4 n and T(1) = c) will 
have 

 

 

Thus summing up the run time for all the levels 
gives 

 
 

 

Note: This strictly gives an upper bound which can 
be used as a starting "guess" for the substitution 
method. 



Page 5 of 9  

9/21/18, 8:28 AM 
 

Substitution Method 
While the recursion tree method provides an 
approximate bound, to mathematically prove that 
the bound is correct requires the substitution 
method. This method essentially uses a proof 
technique similar to induction where the bound is 
verified for the recursive equation and a base case is 
found that holds for the recursion. To accomplish the 
proof, the bound is assumed to hold for T(n) and 
then is substituted into the recursive equation to 
demonstrate that the assumption is correct by 
deriving EXACTLY the same bound as the 
assumption. The technique is best demonstrated by 
example. 

Example (to verify the recursive tree "guess" for 
the previous example) 

Show that the solution for 
 
 

 

is T(n) = O(n2). 

Assume the solution holds so that by the definition 
of O() 
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for some c > 0. Substituting the assumption into the 
T(n/4) term gives 

 
 

 

We must now manipulate the right side until it is 
exactly of the form cn2 as follows 

 
 

 

Now we need to verify a base case that holds for the 
recursion. Assuming T(0) = 0, for n = 1 

 

 

Evaluating the assumption for the solution gives 
 
 

 

which holds for c ≥ k (which is satisfied by our 
choice of c above to verify the recursion). The base 
cases for n = 2,3 (since T(2/4) = T(3/4) = T(0)) can 
also be easily verified and hence we have proven the 
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assumed solution T(n) = O(n2) is correct for c ≥ 
(16/13)k and n ≥ 1. Note that by inspection we see 
T(n) = Ω(n2 ) (since the combine term is at least 
that big) and thus T(n) = Θ(n2). 

Note: Unlike inductive proofs where the induction 
must hold for all n, recursive proofs for asymptotic 
bounds only need to hold for n ≥ n0. Hence we only 
need to find a value of n (not necessarily n = 1) for 
which the base case is satisfied. 

Often our guess is "too weak" to show the induction, 
however we can sometimes include a lower order 
term (which does not change the asymptotic bound) 
in order to prove the solution. 

Example 
 

Show that the solution for 
 
 

 

is T(n) = O(n). 
 

Assume the solution holds so that by the definition 
of O() 
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for some c > 0. Substituting the assumption into the 
T(n/2) term gives 

 
 

 

However we needed to show T(n) ≤ cn NOT cn + 1 
(even though 1 seems negligible for large n)! 
Instead we try another "guess" which still satisfies 
the asymptotic bound 

 

 

Now substituting the new assumption into the 
T(n/2) term gives 

 
 

 

After verifying boundary conditions, we have proven 
that T(n) = O(n). 

Lastly we can sometimes perform a substitution of 
variables to transform a recursive equation into a 
form that we can more easily solve. 

Example 
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Find the solution to the following recursive equation 
 
 
 
 

Let m = lg n ‹ n = 2m. Then the recursive equation 
can be rewritten as 

 
 
 
 

Then let S(m) = T(2m) giving 
 
 
 
 

Which has solution S(m) = O(m lg m) (i.e. merge 
sort). Thus replacing m = lg n gives T(n) = O((lg n) 
lg (lg n)). 


