
Page 1 of 9

CS 360 → Lecture Notes → Lecture 6

9/21/18, 8:28 AM

Lecture 6: Recurrence

Recurrence

We derived the run time for merge sort in lecture 4
by constructing a recursion tree and then adding up
the run times for each level of the recursion. The
recursive equation for merge sort, however, fits into
the form required by the master theorem and thus
could have been solved by inspection. However
when a recursive equation does not satisfy the form
for the master theorem, an alternative technique
known as the substitution method is required to find
the solution (which may use the recursion tree
technique as an intermediate step). This technique
involves proving (similar to proof by induction) that
a "guess" solves the recursive equation. This
"guess" often comes from experience from other
similar problems or through a recursion tree.

Recursion Trees
In order to formulate a good "guess" at a solution to
use in the substitution method, a recursion tree can
often be constructed to find an approximation to the
run time. Similar to the one constructed for merge

Page 2 of 9

9/21/18, 8:28 AM

sort, the procedure consists of:

Construct the tree based on the
recurrence
Calculate the run time for each recursive
level
Sum up all levels to compute the total run
time

Example

Find a "guess" for the recursive equation (which
could be checked with the master theorem)

Again we will assume a bound for the asymptotic
term as Θ(n2) = c n2 and construct the tree as
follows

Expanding the next level gives

Page 3 of 9

9/21/18, 8:28 AM

At each subsequent level there are n/4i elements, so
we continue expanding until n/4h = 1 ‹ h = log4 n
giving h + 1 = log4 n + 1 levels of recursion as
shown below.

It can be seen from the diagram that each level has
3i terms of c (n/4i)2. Hence the run time for each
level is

Page 4 of 9

9/21/18, 8:28 AM

The last level (where i = log4 n and T(1) = c) will
have

Thus summing up the run time for all the levels
gives

Note: This strictly gives an upper bound which can
be used as a starting "guess" for the substitution
method.

Page 5 of 9

9/21/18, 8:28 AM

Substitution Method
While the recursion tree method provides an
approximate bound, to mathematically prove that
the bound is correct requires the substitution
method. This method essentially uses a proof
technique similar to induction where the bound is
verified for the recursive equation and a base case is
found that holds for the recursion. To accomplish the
proof, the bound is assumed to hold for T(n) and
then is substituted into the recursive equation to
demonstrate that the assumption is correct by
deriving EXACTLY the same bound as the
assumption. The technique is best demonstrated by
example.

Example (to verify the recursive tree "guess" for
the previous example)

Show that the solution for

is T(n) = O(n2).

Assume the solution holds so that by the definition
of O()

Page 6 of 9

9/21/18, 8:28 AM

for some c > 0. Substituting the assumption into the
T(n/4) term gives

We must now manipulate the right side until it is
exactly of the form cn2 as follows

Now we need to verify a base case that holds for the
recursion. Assuming T(0) = 0, for n = 1

Evaluating the assumption for the solution gives

which holds for c ≥ k (which is satisfied by our
choice of c above to verify the recursion). The base
cases for n = 2,3 (since T(2/4) = T(3/4) = T(0)) can
also be easily verified and hence we have proven the

Page 7 of 9

9/21/18, 8:28 AM

assumed solution T(n) = O(n2) is correct for c ≥
(16/13)k and n ≥ 1. Note that by inspection we see
T(n) = Ω(n2) (since the combine term is at least
that big) and thus T(n) = Θ(n2).

Note: Unlike inductive proofs where the induction
must hold for all n, recursive proofs for asymptotic
bounds only need to hold for n ≥ n0. Hence we only
need to find a value of n (not necessarily n = 1) for
which the base case is satisfied.

Often our guess is "too weak" to show the induction,
however we can sometimes include a lower order
term (which does not change the asymptotic bound)
in order to prove the solution.

Example

Show that the solution for

is T(n) = O(n).

Assume the solution holds so that by the definition
of O()

Page 8 of 9

9/21/18, 8:28 AM

for some c > 0. Substituting the assumption into the
T(n/2) term gives

However we needed to show T(n) ≤ cn NOT cn + 1
(even though 1 seems negligible for large n)!
Instead we try another "guess" which still satisfies
the asymptotic bound

Now substituting the new assumption into the
T(n/2) term gives

After verifying boundary conditions, we have proven
that T(n) = O(n).

Lastly we can sometimes perform a substitution of
variables to transform a recursive equation into a
form that we can more easily solve.

Example

Page 9 of 9

9/21/18, 8:28 AM

Find the solution to the following recursive equation

Let m = lg n ‹ n = 2m. Then the recursive equation
can be rewritten as

Then let S(m) = T(2m) giving

Which has solution S(m) = O(m lg m) (i.e. merge
sort). Thus replacing m = lg n gives T(n) = O((lg n)
lg (lg n)).

