
CS 413: Analysis of Algorithms
Homework 1

Instructor: Zahra Derakhshandeh
Due at the beginning of class

(11:00 am) on Monday, September 10, 2018, for 20189 CS 413 04 1
(2:00 pm) on Monday, September 10, 2018, for 20189 CS 413 03 1

This is an individual homework assignment. All solutions has to be
typed. No credit will be received for hand written solutions (except for
figures or long equations which might be handwritten). Along with a hard
copy (submitted in class) You also need to submit a copy of your assignment
in the digital repository before the beginning of your class on Monday,
September 10, 2018.

As it appears in the course syllabus, “for the homework assignments
students are encouraged to discuss the problems with others, but one is
expected to turn in the results of one’s own effort (not the results of a friend’s
efforts)”. Even when not explicitly asked you are supposed to concisely
justify your answers.

1. Suppose you have algorithms with the five running times listed be-
low.(Assume these are the exact running times.) How much slower do
each of these algorithms get when you (a) double the input size, or (b)
increase the input size by one?
(i) n2

(ii) n3

(iii) 100n2

(iv) nlog(n)
(v) 2n

1



2. Take the following list of functions and arrange them in ascending
order of growth rate. That is, if function g(n) immediately follows
function f(n) in your list, then it should be the case that f(n) is O(g(n)).

3. Assume you have functions f and g such that f(n) is O(g(n)). For each
of the following statements, decide whether you think it is true or false
and give a proof or counterexample.

4. Express the time complexity of the quick sort as a recurrence relation.
Explain why you obtain this relation. Solve the recurrence relation
and provide the worst-case running time of quick sort accordingly.

5. Consider the following basic problem. You’re given an array A con-
sisting of n integers A[1], A[2], . . . , A[n]. You’d like to output a two-
dimensional n-by-n array B in which B[i, j] (for i < j) contains the
sum of array entries A[i] through A[j], that is, the sum A[i]+A[i+1]+
. . .+A[j]. (The value of array entry B[i, j] is left unspecified whenever
i ≥ j, so it doesn’t matter what is output for these values.) Here’s a
simple algorithm to solve this problem.

2



3


