Modeling Systems with UML

POPKIN

SOFTWARE

Modeling Systems With UML

A Popkin Software
White Paper

© Copyright 1998 Popkin Softwar e and Systems

Contents
INTRODUGCTION....ceceeieeeteeeeeee et e et sesesetesssesseesseesseassesassassesasssasesasessssssesastessesasesasesaseaasesaseaneeseseaseessenaseeasesasesasesasesnsesseens 3

WHAT ISUML 2 bbb s bbb bbb bbb 4

UML Provides Standard Notation and Semantics.
UML ISNOt @ MELNOCcuciieirierireirieereseeree et

UML L1 EXTENSIONS......cuctitueureueeressestesessssessestsssstsessssesssssssssssssssssssssssssssssstssssssssssssssssassssassesssesssssssssssssssssssssessssesssnsas
R = 1101 0= TP
Business Modeling EXLENSIONS.........coccvvrrrninerseerresessesesssesesessssssssenens
Object Constraint Language (OCL)oucerererreerereseeseressssesesesssssesesssssees

FURTHER EXTENSIONS......coittiiitrierieineeeneieenseeesi st ssess s ssessssessssssssssnsseens
Responsibility-Driven Analysis With CRC Cards.........cccoverrinseerneseessesssesesessssssesesssssessssssssssssssssssssessssees
Relational Data MOGEIINGcvverreerieriririeiresese s e esesssssese s s sesssssessssssssssesssssessssesssesssssssessenssnsns

AN OVERVIEW OF UML ..ot bbb bbb 7

A USE CASE DIFIVEN TOU ...ttt sese s bbbttt
Use Cases and Interaction DiagramsS........coccereeeereresesesesensssenesessssssssensens
Class and Implementation Diagrams..........ccceeerneeeenerensssesesessssesesesssneees
CRC Cards— An Informal UML EXIENSION........cvecurecrneeemreenineenereeneeereneens
Sz L= BT T= o 0 11T
IMPIEMENLING tNE DESIGN ...ttt ettt e et se s e s nannsnsesnensnses
Testing AQaiNSt REQUITEMENTSc.cueuviireeirereseeeresesee s esessssssssesssssessessssssssssesssssssssssssssssesssssesssssnssssssssnsesssnens

AN IN-DEPTH LOOK AT UML ..ottt s bbb

ORGANIZING YOUR SYSTEM WITH PACKAGES......ceteieereireineiseissississsssssessess st st ssssssssssessssssssssssssssssssssasens
USE CASE IMODELINGceuvuiuerereeseesessessessesessssssassessessssessssssssssssssssssssssssssssssssssnsssssssss s asssssssssssssssssssessssnssassssnsasens
Capture and/or Verify ReqQUIrements..........cooveeerrereenenensesesesessssesesesssneens
Organization of Use Case Diagrams
A Use Case for EVErY SCENATIOcccvvrvrererererssessesessesesesessssssesessssssssesens
Model Alternate Sequences Through "Extends" Relationship
Eliminate Redundant Modeling Through "Uses" RelatioNShiP......coocvcrvenreenenesessessesssessssesesessssseseseens 12
Use Cases Aid in Testing System Against Requirements.
SEQUENCE DIAGRAMS......cttitrteereersesessetsstssssstssssssstssessssess st sss st se s st essessessss e as s s bbb se e ee et s bbbt st
COLLABORATION DIAGRAMSoettietretretsetsstsstssistssessese s st sss sttt sssessssse s ss s sttt sessessesasss s sssssanens
ANALYSISAND DESIGN WITH THE CLASS DIAGRAM
Development of Class Diagram During Analysis.........ccocverereneeennennens
Design of Systemwith Class Diagram.........cccoceeeerrenresnnenssnenessesnenennens
MODELING CLASS BEHAVIOR WITH STATE DIAGRAMcovuiieiirsireeseeseesessese s sssssssssssssesssssssesssssssssssssssssens
ACTIVITY DIAGRAMS......coteretrtteereesesseseeseessessssessessessssssssssessesssssssssssssssssessssssssssessessssssssssssssssessssssssssessesssssssssssssssness
Using Activity Diagramsto Model Use CasesS.......covveneverenerereneeeenenennens
Using Activity Diagrams to Model Classes.........cccvverernerennnenenessesnnennens
M ODELING SOFTWARE COMPONENTS.....cuvuuereriereereeseeessessesessesssessessensenssees
MODELING DISTRIBUTION AND IMPLEMENTATION ..cvuiuiuimessesseseseeseesessessesesss s ssssssssssssssssssssssessssnsssssssssssssens
RELATIONAL DATABASE DESIGN — A UML EXTENSIONcvuuiuiririiriereeneenesseness s issessssessessesssssesesssssssssssssssssens

USE OF A MODELING TOOL......ciiiiiiiiiiinsiisissss s s ssss s sssss s sssaens 22

SUMMARY . bbb bR 23

REFERENCES. ..ot bbb b b bbbt 24

Introduction

Thiswhitepaper introduces the Unified Modeling Language (UML), version 1.1. It reviews the diagrams that
comprise UML, and offers a Use-Case-driven approach on how these diagrams are used to model systems.
The paper also discusses UML's built-in extensibility mechanisms, which enable its notation and semantics to
be extended. This paper also suggests extending UML by two non-built-in techniques: CRC cards for
responsibility-driven analysis and entity relation diagrams for modeling of relational databases.

What Is UML?

The Unified Modeling L anguage prescribes a standard set of diagrams and notations for modeling object-
oriented systems, and describes the underlying semantics of what these diagrams and symbols mean.
Whereas there has been to this point many notations and methods used for object-oriented design, now there
isasingle notation for modelersto learn.

UML can be used to model different kinds of systems: software systems, hardware systems, and real-world
organizations. UML offers nine diagramsin which to model systems:

Use Case diagram for modeling the business processes
- Seguence diagram for modeling message passing between objects
- Collaboration diagram for modeling object interactions
- Statediagram for modeling the behavior of objectsin the system
- Activity diagram for modeling the behavior of Use Cases, objects, or operations
- Classdiagram for modeling the static structure of classesin the system
- Object diagram for modeling the static structure of objectsin the system
- Component diagram for modeling components
Deployment diagram for modeling distribution of the system.

UML isaconsolidation of many of the most used object-oriented notations and concepts. It began asa
consolidation of the work of Grady Booch, James Rumbaugh, and Ivar Jacobson, creators of three of the most
popular object-oriented methodol ogies.

In 1996, the Object Management Group (OMG), a standards body for the object-oriented community, issued a
request for proposal for a standard object-oriented analysis notation and semantic metamodel. UML, version
1.0, was proposed as an answer to this submission in January of 1997. There were five other rival submissions.
During the course of 1997, all six submitters united their work and presented to OMG arevised UML
document, called UML version 1.1. This document was approved by the OMG in November 1997. The OMG
callsthis document OMG UML version 1.1. The OMG is currently in the process of performing atechnical
editing of this specification, scheduled for completion by April 1, 1999.

UML Provides Standard Notation and Semantics

UML prescribes a standard notation and underlying semantics for modeling an object-oriented system.
Previously, an object-oriented design might have been modeled with any one of a half dozen popular
methodol ogies, causing reviewersto have to learn the notational semantics of the methodology before trying
to understand the design. Now with UML, different designers modeling different systems can readily
understand each other’ s designs.

UML Is Not a Method

UML, however, does not prescribe a standard process or method for devel oping a system. There are a number
of popular, published methodologies; afew of the most popular of which include the following:

Catalysis: An object-oriented method that fuses much of the recent work on object-oriented
methods, and in addition provides specific techniques for modeling distributed
components.

Objectory: A Use-Case driven method for development created by Ivar Jacobson.

Shlaer/Méllor: "The" method for design of real-time systems, put forth by Sally Shlaer and Steven

Méllor in two 1991 books, Object Lifecycles, Modeling the World in States, and Object
Lifecycles, Modeling the World in Data (Prentice Hall). Shlaer/Mellor continue to

periodically update their method (most recent update is The OOA96 Report), and
recently published awhite paper on how to use UML notation with Shlaer/Mellor.

Fusion: Developed at Hewlett Packard in the mid-nineties as the first attempt at a standard
object-oriented method. Combines OMT and Booch with CRC cards and formal
methods. (www.hpl.hp.com/fusion/file/teameps.pdf)

OMT: The Object Modeling Technique was developed by James Rumbaugh and others, and
published in the seminal OO book, Object-Oriented Modeling and Design (Prentice
Hall, 1991). A method preaching iterative analysis and design, heavy on the analysis
side.

Booch: Similar to OMT, and also very popular, Grady Booch'sfirst and second editions of
Object-Oriented Design, With Applications (Benjamin Cummings, 1991 and 1994)
detail amethod preaching iterative analysis and design, heavy on the design side.

In addition, many organizations have developed their own internal methodology, using different diagrams and
techniques from various sources. Examples are the Catalyst methodology by Computer Sciences Corporation
(CSC) or the Worldwide Solution Design and Delivery Method (WSDDM) by IBM. These methodologies
vary, but generally combine workflow analysis, requirements capture, and business modeling with data
modeling, with object modeling using various notations (OM T, Booch, etc), and sometimes include additional
object-modeling techniques such as Use Cases and CRC cards. Most of these organizations are adopting and
incorporating UML as the object-oriented notation of their methodology.

Some modelers will use asubset of UML to model what they’ re after, for example just the class diagram, or just
the class and sequence diagrams with Use Cases. Otherswill use afuller suite, including the state and

activity diagramsto model real-time systems and the implementation diagram to model distributed systems.
Still otherswill not be satisfied with the diagrams offered by UML, and will need to extend UML with other
diagrams such asrelational data models and CRC cards.

UML 1.1 Extensions

Built-in extensibility mechanisms enable UML to be a somewhat open specification that can cover aspects of
modeling not specified in the 1.1 document. These mechanisms enable UML's notation and semantics to be
expanded.

Stereotypes

Stereotype is the most widely used built-in extensibility mechanism within UML. A stereotype represents a
usage distinction. It can be applied to any modeling element, including classes, packages, inheritance
relationships, etc. For example, a class with stereotype <<actor>> isaclass used as an external agent in
business modeling. A template classis modeled as a class with stereotype < <parameterized>>, meaning it
contains parameters.

Business Modeling Extensions

A separate document within UML specification calls out specific class and association stereotypes that
extend UML to cover business-modeling concepts. Thisincludes stereotyping a class as an actor, aworker
(bothinternal and case), or an entity, and stereotyping an association as a simple communication, or a
subscription between a source and a target.

Object Constraint Language (OCL)

A picture can only describe so many words. Similarly, agraphical model can only describe a certain amount of
behavior, after which it is necessary to fill in additional detailswith words. Describing something with words,
however, almost always results in ambiguities; i.e., "what did he mean when he wrote that?" The Object

Constraint Language (OCL) isincorporated into UML as astandard for specifying additional details, or
preci se constraints on the structure of the models.

Developed within the IBM Insurance Division as a business modeling language, the OCL isaformal language
designed to be easy to read and write. OCL is more formal than natural language, but not as precise asa
programming language — it cannot be used to write program logic or flow control. Since OCL isalanguage for
pure expression, its statements are guaranteed to be without side effect —they simply deliver avalue and can
never change the state of the system.

Further Extensions

Two specific areas that UML does not address currently, even with its specified extensions, are
responsibility-driven analysis and modeling of relational databases. This paper introduces these techniques
as current, real-world extensionsto UML that should be considered.

Responsibility-Driven Analysis with CRC Cards

A widely used technique for getting into the 'mindset’ of object-oriented thinking is responsibility-driven
analysiswith Class Responsibility and Collaborator (CRC) cards. With thistechnique, classes discovered
during analysis can be filtered to determine which classes are truly necessary for the system.

Relational Data Modeling

Although object-oriented databases are becoming more popular, in today's development environment, the
relational database remains the predominant method for data storage. The UML class diagram can be used to
model the relational database the system is based on, however, traditional data modeling diagrams capture
more information about the relational database and are better suited to model it. This paper discusses using
Entity Relationship (ER) diagrams as an important UML extension for relational database modeling.

An Overview of UML

A Use Case Driven Tour

Once again, UML isanotation, not amethod. It does not prescribe a process for modeling a system.
However, because UML includes the Use Case diagram, it is considered to lend itself to a problem-centric,
Use Case driven approach to design. The Use Case diagram provides the entry point into analyzing the
requirements of the system, and the problem that needs to be solved. Figure 1 provides ageneral flow of how
diagrams of UML, with extensions, interact in a Use Case-driven approach to design.

Use Cases and Interaction Diagrams

A Use Caseismodeled for all processes the system must perform. Processes are described within the Use
Case by atextual description or a sequence of steps performed. Activity diagrams can also be used to
graphically model the scenarios. Once the system's behavior is captured in thisway, the Use Cases are
examined and amplified to show what objects interrelate to make this behavior happen. Sequence and
Collaboration diagrams are used to show object interrelationships.

Class and Implementation Diagrams

Asthe objects are found, they can be grouped by type and classified in a Class diagram. It isthe Class
diagram that becomes the central analysis diagram of the object-oriented design, and one that shows the
static structure of the system. The class diagram can be divided into business, application, and datalayers,
which show the classes involved with the user-interface, the software logic of the application, and the data
storage, respectively. Component diagrams are used to group classes into components or modules. Overall
hardware distribution of the system is model ed using the Deployment diagram.

CRC Cards — An Informal UML Extension

Asaninformal extension to UML, the CRC Card technique can be used to drive the system through
responsibility-driven analysis. Classes are examined, filtered, and refined based on their responsibilitiesto the
system, and the classes they need to collaborate with in order to fulfill their responsibilities.

State Diagrams

Real-time behavior of each class that has significant dynamic behavior is modeled using a State diagram. The
Activity diagram can again be used at this point, this time as an extension to the State diagram, to show the
details of actions performed by objectsin response to internal events. The Activity diagram can also be used
to graphically represent the actions of class methods.

SPOYISIN SS90y ﬁ

uoneluawa|dw

sweibeig

1sel

Ananoy

SS8001d Sssauisng Ajoads

uolre|suel) 8pod 8|qISSOd

sweibeig

swelibeiq areis

sweibeig

1uauodwo)

swelibeiq
uonejuswsaldwy

spled 040

sweibeig
uolneloqge||0d

sweibeig

apoo

011e1aUdD) 9P0Y B|qISsod [~ N\

aseqeleq

[euone|ay

SPOYISIA SS922Y

aseqgeleq

Buuasuibus dul-punoy

S|IapoN

ereq

[earsAyd

SI9pON
eleq
euoine|ay

swelbeiq sseD

AT*

sjuswalinbay

aouanbas

sweabelg uonoeialu|

ﬁmwmﬁ.u asn

(G

Use Case Driven Approach to OO Development with UML, Including CRC Card and Data

ubisap INS

Su9alI2S

QJelBIU| I8sN

Figurel

Modeling Extensions

Implementing the Design

Implementation of the system concerns translating information from multiple UML modelsinto code and
database structure. When modeling alarge system, it is useful to break the system down into its business
layer (including user-interface objects), its application layer (including implementation objects), and its data
layer (including database structure and access objects).

Implementing the Application

The class diagram is used to generate a skeletal structure of the code in the chosen language. Information
from the Interaction, State, and Activity diagrams can provide details of the procedural part of the
implementation code.

Implementing the Database Design

The datalayer of the class diagram can be used to directly implement an object-oriented database design, or,
asaUML extension, be mapped to an Entity Relation diagram for further analysis of entity relationships. It is
in the ER diagram that relationships between entities can be modeled based on keyed attributes. Thelogical
ER diagram provides a basis from which to build a Physical diagram representing the actual tables and
relationships of the relational database.

Testing Against Requirements

Use Cases are also used to test the system to seeiif it satisfiesinitial requirements. The steps of the Use
Cases are walked through to determineif the system is satisfying user requirements.

An In-Depth Look at UML

The following sections present amore detailed ook at modeling with UML. A very simple Airline Reservation
Systemis used to illustrate UML modeling techniques and diagrams. The following topics are covered:

- Organizing your system with packages
Modeling with Use Cases, and using them to capture system requirements

- Modeling with Sequence and Collaboration diagrams
- Analyzing and designing with the Class diagram, and extending UML with the CRC card technique

Modeling behavior with State and Activity diagrams
M odeling software components, distribution, and implementation
Extending the UML with relational database design.

Organizing Your System with Packages

One of the key tasksto modeling alarge software system isto break it down into manageabl e areas first.
Whether these areas are called domains, categories, or subsystems, theideais the same: break the system into

areas that have similar subject matter.

UML introduces the notion of a package as the universal item to group elements, enabling modelersto
subdivide and categorize systems. Packages can be used on every level, from the highest level, where they
are used to subdivide the system into domains, to the lowest level, where they are used to group individual

Use Cases, classes, or components.

DEF'E“E'SEL? F'Iarée Tracking | Ea_pen_di} y fflaitrcraﬂ
Flight Booking | — ystem alntenance
System
wepends an
Accounting Personnel

Figure2 Organizing System Using Packages

10

Use Case Modeling

Use Case modeling isthe simplest and most effective technique for modeling system requirements from a
user’ s perspective. Use Cases are used to model how a system or business currently works, or how the users
wishit towork. Itisnot really an object-oriented approach; it isreally aform of process modeling. Itis,
however, an excellent way to lead into object-oriented analysis of systems. Use cases are generally the
starting point of object-oriented analysis with UML.

The Use Case model consists of actors and use cases. Actorsrepresent users and other systems that interact
with the system. They aredrawn as stick figures. They actually represent atype of user, not an instance of a
user. Use cases represent the behavior of the system, scenarios that the system goes through in response to

stimuli from an actor. They are drawn as ellipses.

Use Case Description in Step Form

1. Passenger reqests fightfrom ticket vendor.
2. Ticket vendor checks avaliabiity from Alrline.
3. Airline saysticket is avalable; providesflight details. |~ Houns are

4. Ticket vendaor provides passenget with flight detsils. possible classes

5. Passenger requestsseat preference. of class aftributes.
6. Ticket vendor books seat.

7. Ticket vendor condrms reservationwith passenger. |~ Verbsae

§. Ticket vendor requests paymentfrom passenger pozsible operations

9. Passenger sends paymentto ticket vendor .

[10. Ticket vendor sends paymentto airline.

[11. Airling provides final confirmation to ticket vendor .
Actor 12, Ticket vendar issues ticketto passenger.

Passenger Ajrline

Reserve fllght
Cancel
Reservatmn

Figure3 UseCaseModeling

Use Case

Each Use Case is documented by a description of the scenario. The description can be written in textual form
or in astep-by-step format. Each Use Case can also be defined by other properties, such as the pre- and post-
conditions of the scenario — conditions that exist before the scenario begins, and conditions that exist after
the scenario completes. Activity Diagrams provide a graphical tool to model the process of a Use Case. These
are described in alater section of this document.

Capture and/or Verify Requirements

Thefinal objective of any software design isto satisfy the user requirements for the system. These
requirements can be software requirements, product requirements, or testing requirements. The goal of
capturing and verifying user requirementsisto ensure that all requirements are fulfilled by the design, and
that the design conforms to the defined requirements.

Oftentimes system requirements exist already in the form of requirements documents. Use Cases are used to
correlate every scenario to the requirementsit fulfills. If the requirements do not exist, modeling the system
through Use Cases enabl es discovery of requirements.

Organization of Use Case Diagrams

During business analysis of the system, you can develop one Use Case model for the system, and build
packages to represent the various business domains of the system. Y ou may decompose each package with a
Use Case diagram that contains the Use Cases of the domain, with actor interactions.

A Use Case for Every Scenario

Thegoal isto build aUse Case diagram for each significantly different kind of scenario in the system. Each
scenario shows a different sequence of interactions between actors and the system, with no 'or' conditions.

11

Model Alternate Sequences through "Extends" Relationship

Typically, one models each Use Case with anormal sequence of actions. The user then considers "what if"
conditions for each step, and devel ops Use Cases based on these alternate sequences of events. The
alternate sequences are modeled in separate Use Cases, which arerelated to the original Use Case by an
"Extends" relationship. The Extends relationship can be thought of as a Use Case equivalent to inheritance, in
that the Extending Use Case inherits and overrides behavior of the original Use Case.

Eliminate Redundant Modeling through "Uses" Relationship

To eliminate redundant modeling of a chunk of behavior that appears in multiple Use Cases, the chunk of
behavior can be modeled in a separate Use Case that is related to the other Use Cases by the Uses
relationship. The Uses relationship can be thought of as a Use Case equivalent of aggregation.

Fassenger Airline

Resemnre flight
<dextandss =
Reserve Flight by Trawel Agent

Fay for Flight

Trawvel Agent

Fayment not acceptable

Figure4 Use Case ExtendsVersus Uses Relationships

Use Cases Aid in Testing System against Requirements
Use Cases are also used to build test scriptsthat are used to verify that the application satisfies the business
and system requirements.

When you have arrived at the lowest Use Case level, you may create a Sequence diagram for the Use Case.
With the Sequence and Collaboration diagrams, you can model the implementation of the scenario.

Sequence Diagrams

The Sequence diagram is one of the most effective diagrams to model object interactionsin asystem. A
Seguence diagram is modeled for every Use Case. Whereas the Use Case diagram enables modeling of a
business view of the scenario, the Sequence diagram contains implementation details of the scenario,
including the objects and classes that are used to implement the scenario, and messages passed between the
objects.

Typically one examines the description of the Use Case to determine what objects are necessary to implement
the scenario. If you have modeled the description of the Use Case as a sequence of steps, then you can ‘walk
through’ the steps to discover what objects are necessary for the steps to occur.

A Seguence diagram shows objectsinvolved in the scenario by vertical dashed lines, and messages passed

between the objects as horizontal vectors. The messages are drawn chronologically from the top of the
diagram to the bottom; the horizontal spacing of objectsisarbitrary.

12

Joe Bloggs:Passenger A.T.Mays:"Ticket Yendor™ United Airlines:Airline

Request Flight »

Check Availablity

T i
! - Reservation Available !

; ¢ Airline Flight Details i
. Flight Details i i

Request Seat Preference

X

Book Seat

Y

______'Reseruation Confirmation

Request Payment

.

S

Send Payment

)

Send Flight Payment

o
Lani]

=gl

o Issue Ticket

|
h
1
I Flight Final Confirmation
!
i
T

Figure5 Sequence Diagram for a Scenario

During initial analysis, the modeler typically places the business name of a message on the message line.
Later, during design, the business name is replaced with the name of the method being called by one object on
the other. The method called, or invoked, belongs to the definition of the class instantiated by the object on
the receiving end of the message.

Collaboration Diagrams

The Collaboration Diagram presents an alternate to the Sequence Diagram for modeling interactions between
objectsin the system. Whereasin the Sequence Diagram the focusis on the chronological sequence of the
scenario being modeled, in the Collaboration Diagram the focusis on understanding all of the effectson a
given object during ascenario. Objects are connected by links, each link representing an instance of an
association between the respective classesinvolved. The link shows messages sent between the objects, the
type of message passed (synchronous, asynchronous, simple, balking, and time-out), and the visibility of
objectsto each other.

T
»# A.T.Mays:"Ticket Vendor" \

5: Flight Details
o4 \\

3: Reservation Confirmation
9: Request Payment
13: Issue Ticket
1: Request Flight 2: Check Availablity
: Request Seat Preference 7: Book Seat
10: Send Payment 11: Send Flight Payment

3: Reservation Available
4: Airline Flight Details
12: Flight Final Confirmation

Joe Bloggs:Passenger United Airlines:Airline

Figure6 Collaboration Diagram for a Group of Objects

13

Analysis and Design with the Class Diagram

The class diagram is the main static analysis and design diagram for asystem. Init, the class structure of the
system is specified, with relationships between classes and inheritance structures. During analysis of the

system, the diagram is devel oped with an eye for an ideal solution. During design, the same diagram is used,
and modified to conform to implementation details.

Development of Class Diagram During Analysis

Use Case Driven Approach

In aUse Case-driven approach to OO analysis, the Class diagram is devel oped through information garnered
in the Use Cases, Sequence diagrams, and Collaboration diagrams. The objects found during analysis are
modeled in terms of the classes they instantiate, and the object interactions are mapped to relationships
between the instantiated classes.

— Passenger
eirlire a

Ticket_\endor Pazsenger_Mame : char

i+ Reservation_dwailablity : EQOL

i+ Provide_Flight_Detsils : Woid
I+ Confirm_Booking @ Boolean

reservation numberf :

resenves fight

Rezerve_Flight

- [Check_wailability

i booked with
T

f Passenger_dddress @ char far *
Social _Security_Muomber :irt [9)

' 1.0

H Request_Flight : Wioid

ersistent Flight_Reservation persistert ket [+ Pay_for_Ticket : Void
E” ht ru:mber [+ Passenger_Marne : char firline_Mame : char perzistent
' [¥ Flight_Hurnber :int Ticket_Price :int
Reszervation_Mumber :int Flight_Date : char
Flight_Tirme : char
schedules p— Flight_Mumber : int
Ticket_Mumber : char
1.0
Flight er sistert
+ Destination : char
+ Departure : char near *
+ Flight_Date : char
+ Flight_Tirne : char
+ Flight_Price :int Travel _btgerit dirline_Ticket_wendor
+ Flight_Murnber it
- Wendor _Mame : char - dirlire_Marme : char near *
N - Wendor _Address : char far # + firline_fddress : char far *
persistert

persistert

persistert

Figure7 ClassDiagram During Analysis Stage

Responsibility-Driven Extension

The CRC card technique is sometimes used as an extension to UML for responsibility-driven analysis. Class
definitions are refined based on the class's responsibilities and other classesit collaborates with to fulfill
responsibilities.

Each classis represented on an index card, and designers play-act the roles of classesin the system to
determine their job, and who they need to collaborate with to fulfill their responsibilities. Thisinformation

translates directly into a class diagram; responsibilities correspond to class methods, collaborations translate
to associations between classes.

14

| st knowe my price,
| need to collaborate
with an airline and a
type of passenger
ta find it aut.

Ticket
Fl

Superclasses: cnone:

Subclaszes: <honer

Responzibilities Collabor ators
Enomw Price Auirlee, Pazzenger

Pazzenger
Fli

Superclazses chone:r
Subclasses: chomes

Eesponsibilities Collaborators
Fay ko Ticket Ticket_Wendor
Eequest Flight Ticket_Vendor

Flight
Tl

Superclasses: cnone:

Subclaszes: <honer

Responzibilities Collabor ators
Encow TE Seats dvailable) tnome:

Aitline Ticket_Wender M\
FIi

Superclasses: cnomes Superclasses: cnomes

Subclazzes: <hone: Subclaszesn <none:

Responsibilities Collsborators Responsibilities Collaborators

Frovide Flight Detail: | Ticket_Tendor, Flight Check_Auailability Airline, Flight

Contirn Baoking Ticket_Werdor, Flight Reseive Flight Airline, Passenger

Figure8 Informal UML Extension -- CRC Cardsfor Responsibility Driven Analysis

Design of System with Class Diagram
During design, the class diagram is elaborated to take into account the concrete detail s of implementing the
system.

Multi-Tiered Architectures

One concern during design isto establish the architecture of the system. Thisincludes establishing whether
it will be asimple system designed to run on a single machine, atwo-tiered system consisting of aclient and a
server, or amulti-tiered system with user-interface objects separate from business application objects separate
from the database, each potentially running on different platforms.

One approach to managing the class diagram for a complex system is to separate the diagram into sections
that show the application logic, the user interface design, and the classes involved with the storage of data.
This can be physically done by segmenting the class diagram, using separate diagrams for each section, or
simply by adding a property to each class that tracks which tier it belongs to.

Component Design

A component is agroup of interacting objects or smaller components that combine to provide aservice. A
component is similar to a black box, in which the services of the component are specified by itsinterface or
interfaces, without providing knowledge of the component'sinternal design and implementation.
Component-based development is the process of assembling the right combination of componentsin the right
configuration to achieve desired functionality for a system.

Components are represented in the UML class diagram by specifying the interface of aclass or package.
There are two notations to show an interface — oneisto show the interface as aregular class symbol with the
stereotype <<interface>>, with alist of operations supported by the interface listed in the operation
department. The alternate, shortcut notation isto display the interface asasmall circle attached to the class
by a solid line, with the name of the interface by the circle.

15

The example in Figure 9 shows that the class Passenger provides a move(x coord, y coord) operation for it's
appearance on a GUI, through it'sDisplayable interface. Both UML interface notations are shown in the
figure. In addition, the Passenger class also provides a save(store at) operation through its Persistent
interface. A database connectivity class or component might use thisinterface.

Formal Notation for Interface Shorthand "Lollipop" Notation for Interface
<<interfaces»
Displayable
Displayable
+ move(¥-coord, y-coord) : Passenger
k ~" Persistant + Mave(x-coord, y-coord)
\ <<usesrs 07+ save(store at)
<<uses>>\ -
\ -~
Gul

Figure9 Component Design: Specifying Interface of Class

Iterative Analysis and Design

The class diagram can be developed in an iterative fashion, through arepeated cycle of analysis, design, and
implementation, and then back to analysis, to begin the cycle again. This processis often referred to as
‘round-trip engineering’. Modeling tools such as System Architect 2001 can facilitate this process by
enabling you to implement the design in alanguage such as C++ or Java, and then reverse the code back into

the existing class diagram, automatically updating the information stored on the diagram and in the underlying
repository.

16

"Round-trip Engineering" iz Java

Code Importing *%. s

Reports

D

Figure10 Iterative Analysisand Design and Documentation with Class Diagram

Modeling Class Behavior with State Diagram

Whileinteraction and collaboration diagrams model dynamic sequences of action between groups of objects
in asystem, the state diagram is used to model the dynamic behavior of a particular object, or class of objects.

A state diagram is modeled for all classes deemed to have significant dynamic behavior. Init, you model the
sequence of states that an object of the class goes through during itslifein response to received stimuli,
together with its own responses and actions.

For example, an object’ s behavior is modeled in terms of what state it isininitialy, and what state it
transitionsto when aparticular event isreceived. Y ou also model what actions an object performswhilein a
certain state.

States represent the conditions of objects at certain pointsin time. Events represent incidents that cause
objectsto move from one state to another. Transition lines depict the movement from one state to another.
Each transition line is |abeled with the event that causes the transition. Actions occur when an object arrives
in astate.

17

s Booking Flight ™

Cancellation
o] Coach Seats Al Seats Reserved Coach Seats
-~ Ayailable Booked
Flight Scheduled
Cancellation
irstClass Seats First Class
- available All Seats Reserne Boaked
Ceparture Time
Artives A
First Class Available
Ready to Depant S Allow Upgrades | All Gieats Taken
— to First Class
A -

Figurell Modeling Dynamic Behavior of Flight Object with State Diagram

Activity Diagrams

The Activity Diagram is a multi-purpose process flow diagram that is used to model behavior of the system.
Activity diagrams can be used to model a Use Case, or aclass, or acomplicated method.

An Activity Diagram is similar to aflow chart; the one key difference is that activity diagrams can show
parallel processing. Thisisimportant when using activity diagrams to model business processes, some of
which can be performed in parallel, and for modeling multiple threads in concurrent programs.

Using Activity Diagrams to Model Use Cases

Activity Diagrams provide agraphical tool to model the process of a Use Case. They can be used in addition
to, or in place of, atextual description of the Use Case, or alisting of the steps of the Use Case. A textual
description, code, or another activity diagram can detail the activity further.

Using Activity Diagrams to Model Classes

When modeling the behavior of aclass, aUML State Diagram is normally used to model situations where
asynchronous events occur. The Activity Diagram is used when all or most of the events represent the
completion of internally generated actions. Y ou should assign activities to classes before you are done with
the activity diagram.

18

Passenger Ticket Vendor Airline

Request Flight

Chech
Por ailabilit

Prowide Flight
Dietails

Prowide Flight
Choizes & Prices

Select Flight

Request
Paymert

Book: Flight

Figure12 Activity Diagram

Confirm Seat
Reservation

Pay for Ticket

Modeling Software Components

The component diagram is used to model the structure of the software, including dependencies among
software components, binary code components, and executable components.

In the component diagram you model system components, sometimes grouped by package, and the
dependencies that exist between components (and packages of components).

Flight Booking System —l
DEMS Print Server Flight Plan
T
~
-
—
N -
. s
-
N £
Database Front-End

Figure13 Modeling Componentswith Component Diagram

19

Modeling Distribution and Implementation

Deployment diagrams are used to model the configuration of run-time processing elements and the software
components, processes, and objects that live on them. In the deployment diagram, you start by modeling the
physical nodes and the communication associations that exist between them. For each node, you can indicate
what component instances live or run on the node. Y ou can also model the objects that are contained within
the component.

Deployment diagrams are used to model only components that exist asrun-time entities; they are not used to
model compile-time only or link-time only components. Y ou can also model components that migrate from
node to node or objects that migrate from component to component using a dependency relationship with the
becomes stereotype.

Airport
Ticket Printer Reservation

PC's

Server

T1 Connection

Travel Agent
PC's

Firewall

Intern

Ticket Print
ic rinter Home PC's Read-only Access

\

Figure14 Modeling Distribution of System with Deployment Diagram

Relational Database Designh — A UML Extension

The class diagram presents an implementation neutral mechanism to model the data storage aspects of the
system. Persistent classes, their attributes, and their relationships can be implemented directly in an object
oriented database. However, in today's devel opment environment, the relational database remainsthe
predominant method for data storage. Itisin modeling thisareathat UML fallsshort. The UML Class
diagram can be used to model some aspects of the relational database design, but it failsto cover all the
semantics involved in relational modeling, most notably the notion of keyed attributes that rel ate tables to one
another. To capturethisinformation, an Entity Relation (ER) diagram is recommended as an extension to
UML.

The class diagram can be used to model the logical framework of the database, independent of it being object-
oriented or relational, with classes representing tables, and class attributes representing columns. If a
relational database is the chosen implementation medium, then the class diagram can be mapped to alogical
ER diagram. Persistent classes and their attributes map directly to logical entities and their attributes; the
modeler is faced with choices on how to map associations over to relationships between entities. Inheritance
relationships are mapped directly to super-sub rel ationships between entitiesin an ER diagram.

20

UhiL Class Diagram
Business Logic] User Interface [rata Tier

Tier OoCBmMS

Object-Oriented Schemata -

=
ObjectiRelational Mapping Logicali/P hysical Mapping Fhysical Diagram RDEMS

Entity Relation 17" ""°"1 [F="""777]

Ciagram

ROBENMS

Figure1l5 UML Extension -- Relational Database Design with ER Diagram

Onceinthe ER diagram, the modeler can begin the process of determining how the relational model fits
together; and which attributes are primary keys, secondary keys, and foreign keys based on relationships with
other entities. Theideaisto build alogical model that conformsto the rules of data normalization.

When implementing the relational design, it isan advised strategy to map the logical ER diagram to a physical
diagram representing the target RDBMS. The physical diagram can be denormalized to achieve a database
design that has efficient data access times. Super-sub relationships between entities are resolved by actual
table structures. In addition, the physical diagram is used to model vendor-specific properties for the RDBMS.
Multiple physical diagrams are created if there are multiple RDBM S's being deployed; each physical diagram
representing one target RDBMS.

"Ticket™ entity has its own primary key "Ticket Humber”,

and two other primary keys established through relationships
ObjectID for "Ticket Vendor™ class is automatically with other entities, making them “foreign keys".

established as primary key for "Ticket Vendor™ entity.

ey
"Ticket Humber™ [P
"Titket Yendor ID" [PK2]
cial Security Humber" [PK3]
Mon-Hey Data
“Airline Hame"*
“Ticket Price"
“Flight Date™
ight Tim
“Flig er”
o

[licket VYendor
H Hey Data H
|"Ticket Yendor ID" [PK1]

i booked with*Passenger
L=
1]

ravel Agent irline Ticket Yendor

Hey Data ——————————— Key Data ——————————|
Ticket Vendor ID* [PK1] [FK]| PTicket Vendor ID" [PK1] [FK]
-Mon-Key Datg ——————————| Mon-Key Data —————
"Vendor Hame" "Airline Hame™

‘Wendor Address" "Airline Address"

is booked with*Ticket WYendor

7
|
|
|
|
|
|
|
|
|
|

A N

"Social Security Humber™ [PK1]
-Mon-Hey Data ————
'"Passenger Hame"

.Passenger Address"

Figure16 Keyed RelationshipsBetween Entitiesin an ER Diagram

21

Use of a Modeling Tool

Exchange of design information and ideas using UML notation will be done in the mediumsthat have always
been popular: blackboards, notebooks, and paper napkinsto name afew. But UML isbest served by a
modeling tool, which can be used to capture, store, reuse, automatically integrate, and document design
information.

As aside benefit to modelers, UML also makesit easier to choose a modeling tool. In the past, the model er
first had to select a methodology notation, and then islimited to selecting atool that supported it. Now with
UML as astandard, the choice of notation has already been made for the modeler. And with al major
modeling tools supporting UML, the modeler can select the tool based on the key areas of functionality it
supports that enable problems to be solved and sol utions documented.

Like agood toolchest, agood modeling tool should provide all the tools necessary to get avariety of jobs
done efficiently, never leaving you without the right tool. Within the systems design framework described in
this paper, thisincludes the following:

Support for the full UML notation and semantics.

Support for awide breadth of modeling techniques and diagrams to compliment UML —including CRC

Cards, data modeling, flow charts, and user screen design. Ability to reuse information captured in other

techniques still in play, such astraditional process modeling.

Facilitate capture of information in an underlying repository — enabling reuse across diagrams.

Ability to customize the definition properties underlying UML model elements.

Enable multiple teams of analyststo work on same data at sametime.

Ability to capture requirements, associate them with model elements which satisfy them, and trace how

requirements have been satisfied at all stages of development.

Ability to create customized reports and documentation on your designs, and output these reportsin

multiple formats, including HTML for distribution on your corporate intranet or internet.

Ability to generate and reverse code (i.e., C++, Java, etc) to facilitate iterative analysis and design, for

reuse of existing code or classlibraries, and for documentation of code.

System Architect 2001

Popkin Software provides extensive support for modeling systems with UML in System Architect 2001. It
provides all of the features described above to enable efficient modeling of systems. For more information on
the Popkin Software product line, browse www.popkin.com

22

Summary

UML 1.1isagood beginning —it provides system architects with a standard notation for modeling systems.
Now, like architects reading blueprints, an object modeler can pick up any design and understand what is
being captured. UML is also good for the modeling community —instead of spending time arguing about how
to expressinformation being captured, model ers can get to solving the problem at hand, which is designing
the system.

However, although UML lendsitself to a Use-Case driven approach, UML does not answer the question of
how to build a system. This choice of what methodology, or process, to use is still left open for the modeler
to decide, or figure out.

From anotational standpoint, UML 1.1 is not the complete solution yet; but it is expected that UML will
continue to evolve with time. In the meantime, modelers will use UML as a base, extending it by a combination
of other techniques, such as responsibility-driven analysis and relational data modeling, to model the real
world.

23

References

Understanding UML: The Developer's Guide, With a Web-Based Application in Java, by Paul Harmon and
Mark Watson; Morgan Kauffman Publishers, Inc., 1998 (www.mkp.com/books catal 0g/1-55860-465-0.asp).

What's Missing fromthe UML?, an article by Scott Ambler, Object Magazine, October 1997, SIGS Publications
(www.sigs.com/omo/articles/ambler.html).

UML 1.1 Specification (UML Resource Center at www.popkin.com).

Objects, Components, and Frameworks with UML, The Catalysis Approach, by Desmond F. D'Souza and
Alan C. Wills, Addison Wesley Longman, 1998.

Picture Credit
All diagramsin this paper were drawn using System Architect 2001.

24

For more information on analysis and design tool s that can make your UML project easier, contact Popkin
Software and Systems, Inc., makers of System Architect 2001.

POPKIN

SOFTWARE

Popkin Software & Systems, Inc.
11 Park Place
New York, NY 10007
212-571-3434

Popkin Software & Systems, LTD
2nd Floor, St. Albans House
Portland Street
Lemington Spa
Warwickshire CV 32 5EZ England
44-1926-450858

25

	Modeling Systems With UML
	Contents
	Introduction
	What is UML?
	UML 1.1 Extensions
	Further Extensions

	An Overview of UML
	An In-Depth Look at UML
	Packages
	Use Case Modeling
	Sequence Diagrams
	Collaboration Diagrams
	Class Diagram
	State Diagram
	Activity Diagram
	Modeling Software Components
	Modeling Distribution and Implementation
	Relational Database Design

	Use of a Modeling Tool
	Summary
	References

