
BROADCAST RECEIVER
SERVICE

Broadcast receiver
• A broadcast receiver is a dormant component of the Android

system.

• Only an Intent (for which it is registered) can bring it into action.

Using a Broadcast Receiver, applications can register for a • Using a Broadcast Receiver, applications can register for a
particular event. Once the event occurs, the system will notify
all the registered applications.
• Examples: Boot completed, Time tick

• The Broadcast Receiver’s job is to activate some sw
component, for example to notify the end user something
occurred.

Registering a receiver
• There are two ways to register a Broadcast Receiver; one

is Static and the other Dynamic.
• Static:

• Use <receiver> tag in your Manifest file. (AndroidManifest.xml)
• Not all events can be registered statically• Not all events can be registered statically
• Some events require permission

• Dynamic:
• Use Context.registerReceiver () method to dynamically register an

instance.
• Note: Unregister when pausing

Broadcast intents
• Broadcast intents are Intent objects that are broadcast via a

call to the sendBroadcast(), sendStickyBroadcast() or
sendOrderedBroadcast() methods of the Activity class.

• In addition to providing a messaging and event system
between application components, broadcast intents are also
used by the Android system to notify interested applications used by the Android system to notify interested applications
about key system events (such as the external power supply or
headphones being connected or disconnected).

• When a broadcast intent is created, it must include an action
string in addition to optional data and a category string.

•

Broadcast intents
• As with standard intents, data is added to a broadcast intent

using key-value pairs in conjunction with the putExtra() method
of the intent object.

• The optional category string may be assigned to a broadcast
intent via a call to the addCategory() method.intent via a call to the addCategory() method.

• The action string, which identifies the broadcast event, must be
unique and typically uses the application’s Java package name
syntax. For example, the following code fragment creates and
sends a broadcast intent including a unique action string and
data:

•

Broadcast intent

>Android 3.0

Type of broadcasts
• Ordered Broadcasts:

• These broadcasts are synchronous and follows the order specified
using android: priority attribute.

• The receivers with greater priority would receive the broadcast
first.

• Normal Broadcasts:
• Normal broadcasts are not orderly.

Broadcast receiver

• An application listens for specific broadcast intents by
registering a broadcast receiver.

• Broadcast receivers are implemented by extending the
Android BroadcastReceiver class and overriding the Android BroadcastReceiver class and overriding the
onReceive() method.

• The broadcast receiver may then be registered, either
within code (for example within an activity), or within a
manifest file.

Broadcast receiver
• Part of the registration implementation involves the

creation of intent filters to indicate the specific broadcast
intents the receiver is required to listen for.

• This is achieved by referencing the action string of the • This is achieved by referencing the action string of the
broadcast intent.

• When a matching broadcast is detected, the onReceive()
method of the broadcast receiver is called, at which point
the method has 5 seconds within which to perform any
necessary tasks before returning.

Broadcast receiver template

Registering a Broadcast receiver

Another example
• An activity creates a broadcast receiver that subscribes

dynamically for TIME_TICK events (fired every minute)

• The receiver is registered to the event when the activity is
startedstarted

• The receiver is unregistered when the hosting activity is
paused.

Another example

Creates the receiver

Register the receiver Register the receiver
to receive time ticks…

Unregister the receiver
when paused

Another example

Good tutorial:
http://www.grokkingandroid.com/android-tutorial-broadcastreceiver/

Another example
• An application generates custom bcast intent
• A receiver registers to receive the intent

Another example: the receiver

Add in the manifest file

Service
• The Android Service class is designed specifically to allow

applications to initiate and perform background tasks.

• Unlike broadcast receivers, which are intended to perform
a task quickly and then exit, services are designed to a task quickly and then exit, services are designed to
perform tasks that take a long time to complete

• …such as downloading a file over an internet connection
or streaming music to the user, but do not require a user
interface.

Service type
• Intent Service

• Simplest form of service
• Created to execute a task in a separate thread and then exit

• Service • Service
• Started Service

• Run until explicitly stopped (in the rare case android needs to kill it, the
service will be restarted as soon as possible)

• Started with startCommand method

• Bound Service
• Allows the exchange data with the interacting software component

through an interface (set of methods)
• Bind to a service interface

Intent service
• As previously outlined, services run by default within the same main thread as the

component from which they are launched. As such, any CPU intensive tasks that
need to be performed by the service should take place within a new thread,
thereby avoiding affecting the performance of the calling application.

• The IntentService class is a convenience class (subclassed from the Service
class) that sets up a worker thread for handling background tasks and handles
each request in an asynchronous manner.

• Once the service has handled all queued requests, it simply exits. All that is
required when using the IntentService class is that the onHandleIntent() method
be implemented containing the code to be executed for each request.

• For services that do not require synchronous processing of requests,
IntentService is the recommended option. Services requiring synchronous
handling of requests will, however, need to subclass from the Service class and
manually implement and manage threading to handle any CPU intensive tasks
efficiently.

Intent Service: example

Main
Activity

Intent
Service

Explicit
Intent

• The service needs to be registered in the manifest file
• The main activity creates an explicit intent pointing to the service
• The service is started and the onHandleIntent method executed
• Intents are queued and served serially

Intent Service: example

Example
• Testing the weather condition periodically and send a

notification if an alarm occurs

Time tick event

Broadcast
Receiver

Intent
Service

If allarm User
Notification

Start

Time tick event

Started service
• Started services are launched by other application components (such

as an activity or even a broadcast receiver) and potentially run
indefinitely in the background until the service is stopped, or is
destroyed by the Android runtime system in order to free up
resources.

• A service will continue to run if the application that started it is no • A service will continue to run if the application that started it is no
longer in the foreground, and even in the event that the component
that originally started the service is destroyed.

• By default, a service will run within the same main thread as the
application process from which it was launched (referred to as a local
service).

• It is important, therefore, that any CPU intensive tasks be performed
in a new thread within the service. Instructing a service to run within a
separate process (and therefore known as a remote service) requires
a configuration change within the manifest file.

Started service
• Unless a service is specifically configured to be private (once again via a setting

in the manifest file), that service can be started by other components on the same
Android device.

• This is achieved using the Intent mechanism in the same way that one activity can
launch another as outlined in preceding slides.

• Started services are launched via a call to the startService() method, passing • Started services are launched via a call to the startService() method, passing
through as an argument an Intent object identifying the service to be started.

• When a started service has completed its tasks, it should stop itself via a call to
stopSelf(). Alternatively, a running service may be stopped by another component
via a call to the stopService() method, passing through as an argument the
matching Intent for the service to be stopped.

• Services are given a high priority by the Android system and are typically amongst
the last to be terminated in order to free up resource

Started service: example, playing music

Service

Main Thread Play thread
Process

• An application that runs a player
to play a song…

• The service is started from the
Activity and then it spawns a
thread

UI Activity

Example: playing music

Example: playing music

• VEDI SERVICE Demo

Bound Service
• A bound service is similar to a started service with the exception that

a started service does not generally return results or permit
interaction with the component that launched it.

• A bound service, on the other hand, allows the launching component
to interact with, and receive results from, the service. Through the
implementation of interprocess communication (IPC), this interaction implementation of interprocess communication (IPC), this interaction
can also take place across process boundaries.

• An activity might, for example, start a service to handle audio
playback. The activity will, in all probability, include a user interface
providing controls to the user for the purpose of pausing playback or
skipping to the next track.

• Similarly, the service will quite likely need to communicate information
to the calling activity to indicate that the current audio track has
completed and to provide details of the next track that is about to start
playing.

Bound Service
• A component (also referred to in this context as a client) starts

and binds to a bound service via a call to the bindService()
method and multiple components may bind to a service
simultaneously.

• When the service binding is no longer required by a client, a
call should be made to the unbindService() method. When the call should be made to the unbindService() method. When the
last bound client unbinds from a service, the service will be
terminated by the Android runtime system.

• It is important to keep in mind that a bound service may also be
started via call to startService(). Once started, components
may then bind to it via bindService() calls.

• When a bound service is launched via a call to startService() it
will continue to run even after the last client unbinds from it.

Bound Service
• A bound service must include an implementation of the onBind()

method which is called both when the service is initially created and
when other clients subsequently bind to the running service.

• The purpose of this method is to return to binding clients an object of
type IBinder containing the information needed by the client to
communicate with the service.communicate with the service.

• In terms of implementing the communication between a client and a
bound service, the recommended technique depends on whether the
client and service reside in the same or different processes and
whether or not the service is private to the client.

• Local communication can be achieved by extending the Binder class
and returning an instance from the onBind() method. Interprocess
communication, on the other hand, requires Messenger and Handler
implementation.

Bound Service
• A service can be bounded to another SW component, meaning that it

can invoke methods implemented by the service through a proxy
(Binder) of the Service (which is seen as a remote object)

• Service connection is an interface monitoring connections to a service

Activity Service

Binder

ServiceConnection

Represents the service

creates the binder

Bound service
• To create a bound service, you must implement the

onBind() callback method to return an IBinder that defines
the interface for communication with the service.

• Other application components can then call bindService()• Other application components can then call bindService()
to retrieve the interface and begin calling methods on the
service.
• The client can even call public methods defined in the service (see

example)

Example

Example
•

Interface: monitor the
state of the serviceLocal

representation
state of the service

representation
of the remote
service

Example

Retrieve the Retrieve the
interface to the
service

Example

automatically create the
service as long as the
binding exists.

Other example
• LocalBound in Other Projects

System-level services
• The Android platform provides a lot of pre-defined

services, usually exposed via a Manager class, see:
• http://developer.android.com/reference/android/content/Context.ht

ml

• For example the next applications provides info about the • For example the next applications provides info about the
currently connected network….

Example

Service vs thread
• A service is a component that Android is aware of (it must

be declared in the manifest), with its own lifecycle

• A service can be activated from other components (not
true for threads)true for threads)

• A service is destroyed by the system only under very
heavy circumstances and re-created according to restart
options

• A service is in a sense similar to a Unix’s daemon, e.g, it
can be used system-wide and started automatically after
the device boot ends

Controlling Destroyed Service restart
Options

Service priority

• The system kills the process hosting a service if it is under
heavy memory pressure.

• However, if this happens, the system will later try to restart • However, if this happens, the system will later try to restart
the service (and a pending intent can be delivered again)

• A processes hosting service have higher priority than
those running an activity

Example: use notification
• Send a message, displayed by the status bar
• Read the message associated to the notification

Example: UI

Background color

Adapted from : Victor Matos CS493

Example: UI

Example

Example: create a notification

See next slide

Example: cancel a notification

NotifyHelper

Running the application
Ticker Tape Text Icon (star) of the notification

Running the application

Activity launched
through intent

Extended
information

