CS 413 – Analysis of Algorithms

Assignment 1 – Big-0 and Data Structures
Part 1: Write a program (in any programming language) that can be used as a database of student’s information for a department. The program should be able to dynamically allocate or de-allocate storage for the student’s records using a linked list. You must use a linked list to keep the list of items for this program. The database should have the following fields: the first and last names, a course code, and a grade for a student. You can use a struct, class or any data type of your choice to store the node information.The program should display the following menu:

Welcome to the database menu!

Press 1 to insert a new record

Press 2 to delete a record

Press 3 to search the database (by last name)

Press 4 to print a range in the database

Press 5 to find the class average for a course

Press 9 to quit

The insert function should work regardless of the position. Position 0 refers to the position before the first record. Any position greater than the length of the database should be put as the last position.

Similarly, the delete position should work for any position. Make sure that it works even when deleting the first, last or middle records.

The search function should be used to search by last name. If that student is found, all records associated with that student should be printed (on the screen). The print function should work regardless of the range requested. If the start or end ranges are not defined, only the valid records should be printed. Hint: To compute the class average, first search the field with the course code. Only average those grades that match the proper course code.
Part 2: Answer the following questions (no programming)
1. What is the runtime complexity of the following code fragments in big-O notation as functions of m and/or n? Explain each answer. (Your answers should represent the tightest/closest function for the code given.)

a. int sum = 0;

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j+=2)

sum += (i+j);

b. int sum = 0;

for (int i = 1; i <= 50; i+=2)

for (int j = 1; j <= n; j+=3)

 sum += (i+j);

c. int sum = 0;

for (int i = 1; i <= m; i++)

for (int j = 1; j <= n; j*=2)

sum += (i+j);

d. int sum1 = 0;

for (int i = 1; i <= m*m; i++)

sum1 += i;

int sum2 = 0;

for (int j = 1; j <= m; j++)

sum2 += j;

2. Consider the following Java method that returns true if an array of n integers has two adjacent values that are the same, false otherwise:

public static boolean adjacentDuplicates(int[] a) {

for (int i = 0; i < a.length-1; i++)

if (a[i] == a[i+1])

return true;

return false;

}

a. What is the runtime complexity of this method using big-O notation in the worst case? Explain your answer.

b. What is the runtime complexity of this method using big-O notation in the best case? Explain your answer.

3. Given an array of integers in increasing order, and given a target sum, we wish to determine if the array contains two integers that can be added together to make that sum.

a. What is the worst-case runtime complexity (in big-O notation) of the following solution if the length of the array is n? Briefly explain your answer.

public static boolean sumInArray(int[] a, int sum) {

// finds sum of all pairs in the array

for (int I = 1; I < a.length; i++)

 for (int j = 0; j < I; j++)

 if (a[i] + a[j] == sum)

 return true;

return false;

}

b. Describe an algorithm (or give computer code) that performs better asymptotically than the algorithm above. Determine the worst-case runtime complexity of your algorithm.
WHAT TO SUBMIT
Complete both parts. You need to submit the source code for part 1 along with an MS Word document, Text File or PDF that contains your algorithm proofs, pseudocode (if you make it), and the answers to the part 2 questions.

Submit your (source code) + (MS Word filed) to the canvas submission area for Assignment 1.
